
Continuous Compliance Home
Continuous Compliance

Exported on 10/24/2023

Continuous Compliance – Continuous Compliance Home

2

Table of Contents

1 Welcome to the Delphix Continuous Compliance documentation! 36

2 Quick references .. 48

3 Release notes... 49

3.1 New features .. 49

3.1.1 Release 16.0.0.0... 49

3.1.2 Release 15.0.0.0... 50

3.1.3 Release 14.0.0.0... 50

3.1.4 Release 13.0.0.0... 52

3.1.5 Release 12.0.0.0... 52

3.1.6 Release 11.0.0.0... 52

3.1.7 Release 10.0.0.0... 53

3.1.8 Release 9.0.0.0... 53

3.1.9 Release 8.0.0.0... 54

3.1.10 Release 7.0.0.0... 54

3.1.11 Release 6.0.17.. 54

3.1.12 Release 6.0.16.0... 54

3.1.13 Release 6.0.15.0... 55

3.1.14 Release 6.0.14.0... 55

3.1.15 Release 6.0.13.0... 56

3.1.16 Release 6.0.12.0... 57

3.1.17 Release 6.0.11.0... 58

3.1.18 Release 6.0.10.0... 60

3.1.19 Release 6.0.9.0... 61

3.1.20 Release 6.0.8.0... 61

3.1.21 Release 6.0.7.0... 62

3.1.22 Release 6.0.6.0... 64

3.1.23 Release 6.0.5.0... 64

Continuous Compliance – Continuous Compliance Home

3

3.1.24 Release 6.0.4.0... 65

3.1.25 Release 6.0.3.0... 66

3.1.26 Release 6.0.2.0... 67

3.1.27 Release 6.0.1.0... 68

3.1.28 Release 6.0.0.0... 69

3.1.29 Release 5.3 ... 71

3.2 Fixed issues.. 75

3.2.1 Release 16.0.0.0... 75

3.2.2 Release 15.0.0.0... 76

3.2.3 Release 14.0.0.0... 77

3.2.4 Release 13.0.0.0... 77

3.2.5 Security Fixes ... 78

3.2.6 Release 12.0.0.0... 78

3.2.7 Security fixes.. 79

3.2.8 Release 11.0.0.0... 79

3.2.9 Security fixes.. 80

3.2.10 Release 10.0.0.0... 80

3.2.11 Release 9.0.0.0... 81

3.2.12 Release 8.0.0.0... 82

3.2.13 Release 7.0.0.0... 82

3.2.14 Release 6.0.17.0... 84

3.2.15 Release 6.0.16.0... 86

3.2.16 Release 6.0.15.0... 88

3.2.17 Release 6.0.14.0... 89

3.2.18 Release 6.0.13.0... 91

3.2.19 Release 6.0.12.0... 92

3.2.19.1 Log4j updates... 92

3.2.19.2 Fixed Issues ... 93

3.2.20 Release 6.0.11.0... 96

Continuous Compliance – Continuous Compliance Home

4

3.2.21 Release 6.0.10.0... 98

3.2.22 Release 6.0.9.0... 100

3.2.23 Release 6.0.8.0... 102

3.2.24 Release 6.0.7.0... 104

3.2.25 Release 6.0.6.0... 106

3.2.26 Release 6.0.5.0... 107

3.2.27 Release 6.0.4.0... 109

3.2.28 Release 6.0.3.0... 111

3.2.29 Release 6.0.2.0... 113

3.2.30 Release 6.0.1.0... 115

3.2.31 Release 6.0.0.0... 117

3.3 Known issues ... 119

3.3.1 Release 16.0.0.0... 119

3.3.2 Release 15.0.0.0... 120

3.3.3 Release 14.0.0.0... 121

3.3.4 Release 13.0.0.0... 121

3.3.5 Release 12.0.0.0... 122

3.3.6 Release 11.0.0.0... 122

3.3.7 Release 10.0.0.0... 123

3.3.8 Release 9.0.0.0... 123

3.3.9 Release 8.0.0.0... 124

3.3.10 Release 7.0.0.0... 124

3.3.11 Release 6.0.17.0... 124

3.3.12 Release 6.0.16.0... 125

3.3.13 Release 6.0.15.0... 125

3.3.14 Release 6.0.14.0... 125

3.3.15 Release 6.0.13.0... 125

3.3.16 Release 6.0.12.0... 126

3.3.17 Release 6.0.11.0... 126

Continuous Compliance – Continuous Compliance Home

5

3.3.18 Release 6.0.10.0... 127

3.3.19 Release 6.0.9.0... 127

3.3.20 Release 6.0.8.0... 127

3.3.21 Release 6.0.7.0... 127

3.3.22 Release 6.0.6.0... 127

3.3.23 Release 6.0.5.0... 127

3.3.24 Release 6.0.4.0... 127

3.3.25 Release 6.0.3.0... 127

3.3.26 Release 6.0.2.0... 128

3.3.27 Release 6.0.1.0... 128

3.3.28 Release 6.0.0.0... 128

3.4 Deprecated and end-of-life features ... 129

3.4.1 Release 15.0.0.0... 129

3.4.1.1 Deprecated features .. 129

3.4.2 Release 11.0.0.0... 129

3.4.2.1 Deprecated features .. 129

3.4.2.2 End-of-Life features ... 129

3.4.3 Release 10.0.0.0... 129

3.4.3.1 Deprecated features .. 129

3.4.4 Release 6.0.17.0... 130

3.4.4.1 End-of-life features .. 130

3.4.5 Release 6.0.15.0... 130

3.4.5.1 End-of-life features .. 130

3.4.6 Release 6.0.12.0... 130

3.4.6.1 End-of-life features .. 130

3.4.7 Release 6.0.11.0... 130

3.4.7.1 Deprecated features .. 130

3.4.7.2 End-of-life features .. 131

3.4.8 Release 6.0.10.0... 131

Continuous Compliance – Continuous Compliance Home

6

3.4.8.1 End-of-life features .. 131

3.4.9 Release 6.0.9.0... 131

3.4.9.1 Deprecated features .. 131

3.4.10 Release 6.0.8.0... 131

3.4.10.1 End-of-life features .. 131

3.4.11 Release 6.0.7.0... 132

3.4.11.1 End-of-life features .. 132

3.4.12 Release 6.0.4.0... 132

3.4.12.1 Deprecated features .. 132

3.4.12.2 End-of-life features .. 132

3.4.13 Release 6.0.3.0... 132

3.4.13.1 End-of-life features .. 132

3.4.14 Release 6.0.0.0... 133

3.4.14.1 End-of-life features .. 133

3.5 Licenses and notices ... 133

4 Getting started ... 134

4.1 Introduction to Delphix Masking ... 134

4.1.1 Challenge.. 134

4.1.2 Solution... 134

4.1.3 High-level platform architecture ... 135

4.1.4 How Delphix identifies sensitive data... 136

4.1.5 How Delphix secures your sensitive data... 137

4.2 Data source support .. 137

4.2.1 Standard connectors ... 138

4.2.2 Select connectors .. 138

4.2.3 DB2 LUW connector... 138

4.2.3.1 TLS/SSL setup ... 140

4.2.4 Oracle connector.. 140

4.2.4.1 TLS/SSL setup ... 141

Continuous Compliance – Continuous Compliance Home

7

4.2.5 MS SQL connector ... 142

4.2.5.1 TLS/SSL setup ... 143

4.2.6 PostgreSQL connector .. 143

4.2.6.1 TLS/SSL setup ... 145

4.2.7 MySQL / MariaDB connector... 145

4.2.7.1 TLS/SSL setup ... 148

4.2.8 SAP ASE (Sybase) connector.. 148

4.2.9 DB2 z/OS and iSeries connectors... 149

4.2.10 Files connector... 151

4.2.11 Mainframe data set connector.. 151

4.2.12 On-The-Fly masking jobs ... 152

4.3 Installation.. 152

4.3.1 Containerized installation.. 153

4.3.1.1 Kubernetes installation for containerized masking................................. 153

4.3.1.2 Obtaining the images... 153

4.3.1.3 Setup... 153

4.3.1.4 Debugging .. 157

4.3.2 Network connectivity requirements.. 158

4.3.2.1 General outbound connections from the virtual machine Delphix
Continuous Compliance Engine.. 159

4.3.2.2 General inbound connections to the virtual machine Delphix Continuous
Compliance Engine .. 159

4.3.2.3 General outbound connections from the containerized Delphix
Continuous Compliance Engine.. 160

4.3.2.4 General inbound connections to the containerized Delphix Continuous
Compliance Engine .. 160

4.3.2.5 Firewalls and Intrusion Detection Systems (IDS) 161

4.3.3 Prerequisites .. 161

4.3.3.1 VM-based Continuous Compliance Engines.. 161

4.3.3.2 Container (Kubernetes) based Continuous Compliance Engine 162

Continuous Compliance – Continuous Compliance Home

8

4.3.4 First time setup .. 163

4.3.4.1 Setting up network access to the Delphix Engine.................................... 164

4.3.4.2 Setting up the Delphix Engine ... 164

4.3.4.3 Logging in to the Delphix Continuous Compliance Engine 166

4.3.5 AWS EC2 installation ... 166

4.3.5.1 Instance types.. 167

4.3.5.2 Network configuration... 168

4.3.5.3 Storage configurations .. 168

4.3.5.4 Additional AWS configuration notes... 170

4.3.5.5 Installing AMI on AWS EC2 ... 170

4.3.6 Azure installation ... 171

4.3.6.1 Instance types.. 171

4.3.6.2 Network configuration... 172

4.3.6.3 Storage configuration.. 173

4.3.6.4 Extensions .. 173

4.3.6.5 Installing VHD on AZURE... 173

4.3.7 Google Cloud Platform installation... 174

4.3.7.1 Machine types.. 174

4.3.7.2 Network configuration... 174

4.3.7.3 Storage configuration.. 175

4.3.7.4 Additional GCP configuration notes ... 175

4.3.7.5 Installing on Google Cloud Platform... 175

4.3.8 IBM Cloud Platform installation.. 176

4.3.8.1 Supported profiles ... 176

4.3.8.2 Network configuration... 176

4.3.8.3 Storage configuration.. 177

4.3.8.4 Additional IBM configuration notes.. 177

4.3.8.5 Procedure for deploying in the IBM Cloud.. 178

4.3.9 Hyper-V installation.. 183

Continuous Compliance – Continuous Compliance Home

9

4.3.9.1 Supported versions.. 183

4.3.9.2 Virtual CPUs ... 183

4.3.9.3 Memory... 184

4.3.9.4 Network .. 184

4.3.9.5 SCSI Controller ... 185

4.3.9.6 Storage configuration.. 185

4.3.9.7 Installing Hyper-V... 187

4.3.10 OCI installation... 188

4.3.10.1 Supported databases .. 188

4.3.10.2 Compute image types.. 188

4.3.10.3 Supported shapes.. 188

4.3.10.4 Network configuration... 189

4.3.10.5 Storage configuration.. 190

4.3.10.6 Additional OCI configuration notes... 190

4.3.10.7 Installing OCI .. 191

4.3.11 VMware installation ... 194

4.3.11.1 Supported ESX versions .. 195

4.3.11.2 Virtual CPUs ... 195

4.3.11.3 Memory... 196

4.3.11.4 Network .. 196

4.3.11.5 Storage ... 197

4.3.11.6 Additional VMware configuration notes... 198

4.3.11.7 Installing OVA on VMware... 198

4.4 Naming requirements.. 199

4.4.1 Affected configurable objects... 199

4.4.2 Upgrade .. 202

4.4.3 Maximum name lengths.. 202

4.4.4 Create/rename ... 203

4.4.5 Environment export/import ... 203

Continuous Compliance – Continuous Compliance Home

10

4.4.6 Sync .. 203

4.5 Users and roles .. 204

4.5.1 What are roles? .. 204

4.5.1.1 Actions.. 204

4.5.1.2 Objects.. 204

4.5.1.3 Adding a role .. 205

4.5.1.4 Role Type.. 208

4.5.1.5 Recommended roles.. 208

4.5.1.6 Modifying Roles ... 209

4.5.2 What are users? ... 212

4.5.2.1 Adding a user ... 212

4.5.2.2 Updating a user .. 214

4.5.2.3 Deleting a user ... 216

4.5.3 Sample JSON ... 218

4.5.3.1 All privileges ... 218

4.5.3.2 Create new user ... 221

4.5.3.3 User update .. 222

4.6 Best practices for defining masking roles ... 222

4.6.1 Introduction .. 222

4.6.2 Sample RACI... 223

4.6.3 Sample roles for Masking ... 224

4.7 Audit logs.. 225

4.7.1 Audit log UI page.. 225

4.7.2 Audit log APIs... 226

4.7.3 What gets logged? ... 226

4.7.4 Retention policy.. 227

4.7.5 Recommendation... 227

4.8 Kerberos configuration.. 227

4.8.1 Introduction .. 227

Continuous Compliance – Continuous Compliance Home

11

4.8.2 Terminology ... 227

4.8.3 Configuring Kerberos on the appliance .. 227

4.8.4 Creating masking database connectors using Kerberos 229

4.8.5 Reference database configurations ... 231

4.8.5.1 Oracle database ... 231

4.8.5.2 MS SQL Server ... 233

4.8.5.3 Sybase .. 236

4.9 Password vault configuration ... 241

4.9.1 Introduction .. 241

4.9.2 Configuring a password vault on the appliance....................................... 241

4.9.2.1 Setting up a password vault.. 241

4.9.2.2 Setting up a credential path .. 242

4.9.3 Configuring the database connector .. 244

4.9.4 UI configuration.. 244

4.9.5 API configuration ... 244

4.10 DB2 connector license installation ... 244

4.10.1 Applying DB2 connector for mainframe... 245

4.10.2 Applying DB2 connector for iSeries .. 245

4.11 Continuous Compliance Engine icon reference....................................... 246

4.12 Delphix masking terminology.. 247

4.12.1 High level concepts ... 247

4.12.2 Masking algorithms ... 248

4.12.3 Profile job concepts... 251

4.12.4 Masking job concepts ... 252

4.13 Changing the IP address of the Delphix Engine....................................... 254

4.13.1 Pre-requisites ... 254

4.13.2 Changing the IP address from the user interface.................................... 254

4.13.3 Changing the IP address using CLI... 254

Continuous Compliance – Continuous Compliance Home

12

4.14 Stopping and starting the containerized Continuous Compliance
Engine ... 256

4.14.1 Overview ... 256

4.14.2 Starting the containerized Masking Engine.. 256

4.14.3 Stopping the containerized Masking Engine.. 257

4.14.4 Removing persistent volumes / persistent volume claims..................... 257

4.15 Stopping, starting, and restarting the continuous compliance engine... 258

4.15.1 Overview ... 258

4.15.2 Use cases examples.. 258

4.15.3 Troubleshooting before a restart .. 259

4.15.4 Using the Command-Line Interface (CLI) ... 259

4.15.4.1 Restarting the Masking Engine example .. 260

4.16 Upgrading the Continuous Compliance Engine 260

4.16.1 Upgrades for virtual Compliance Engines .. 260

4.16.2 Upgrades for containerized Compliance Engines 261

4.17 Utilization.. 261

4.17.1 Overview ... 261

4.17.2 Utilization UI page .. 261

4.17.3 The jobs utilization report.. 261

4.17.4 The database size report... 262

4.17.4.1 Support matrix.. 262

5 Preparing data.. 264

5.1 Database user permissions for executing masking and profiling job.... 264

5.1.1 Introduction .. 264

5.1.2 List of database entitlements required to run masking jobs 264

5.1.3 List of database entitlements required to run profiling jobs................... 265

5.2 Preparing Oracle database for profiling/masking 265

5.2.1 Overview ... 265

5.2.2 Archive logging .. 265

Continuous Compliance – Continuous Compliance Home

13

5.2.3 DB/VDB memory allocation .. 265

5.2.4 Undo tablespace size and undo retention time: 266

5.2.5 Redo logs are optimally sized ... 266

5.2.6 Change PCTFREE to 40-50: ... 267

5.2.7 Change primary Key To ROWID:.. 267

5.2.8 Masking user privileges:.. 267

5.3 Preparing SQL server database for profiling and masking 268

5.3.1 Logging... 268

5.3.2 DB/VDB memory allocation .. 268

5.3.3 Primary/Foreign/DMS_ROW_ID Keys ... 269

5.3.4 Creating a masking user and privileges ... 269

5.4 Preparing Sybase database for profiling and masking 270

5.4.1 What is min/max memory in SQL server? .. 270

5.4.1.1 Determining the amount of memory SAP ASE needs 270

5.4.1.2 Determine the SAP ASE memory configuration....................................... 271

5.4.2 Primary/Foreign/DMS_ROW_ID keys to for masking Sybase: 271

5.4.3 Creating a Masking user and privileges: .. 272

6 Connecting data... 273

6.1 Managing environments.. 273

6.1.1 Adding an application.. 274

6.1.2 Creating an environment ... 274

6.1.3 Exporting settings .. 275

6.1.4 Importing settings.. 276

6.1.5 Async task status... 277

6.1.6 Exporting an environment ... 278

6.1.7 Importing an environment ... 279

6.1.8 Editing an environment.. 281

6.1.9 Copying an environment.. 281

6.1.10 Deleting an environment.. 282

Continuous Compliance – Continuous Compliance Home

14

6.1.11 Searching for environments .. 282

6.2 Managing remote mounts for VM continuous compliance engines 282

6.2.1 Mount filesystem API .. 283

6.2.1.1 Mount information ... 283

6.2.2 Mount options .. 283

6.2.2.1 Enforced options.. 283

6.2.2.2 Minimal options ... 284

6.2.2.3 Version options .. 284

6.2.2.4 Generic options .. 284

6.2.3 CRUD operations.. 285

6.2.3.1 Create ... 285

6.2.3.2 Read.. 285

6.2.3.3 Update .. 285

6.2.3.4 Delete.. 285

6.2.4 Mount operations... 285

6.2.4.1 Connect .. 285

6.2.4.2 Disconnect.. 285

6.2.4.3 Remount ... 286

6.2.4.4 Resolve mount consistency .. 286

6.2.5 Using mounts ... 286

6.2.5.1 File connector... 286

6.2.5.2 File format .. 288

6.2.5.3 Sync mounts... 289

6.2.6 Recommended mount server configuration .. 289

6.2.6.1 CIFS server ... 289

6.2.6.2 NFS server .. 289

6.3 Managing remote mounts for containerized masking 289

6.3.1 Creating the mountpoint connection in Kubernetes................................ 290

6.3.1.1 NFS Persistent Volume YAML .. 290

Continuous Compliance – Continuous Compliance Home

15

6.3.1.2 NFS persistent volume claim YAML ... 291

6.3.2 Using the mountpoint in the pod configuration 291

6.3.2.1 Excerpt of kubernetes-config.yaml to show support for NFS volumes.. 291

6.3.3 Using the mountpoint in the UI.. 292

6.3.4 Other types of filesystem mountpoint .. 292

6.3.5 Known limitations .. 292

6.3.6 Local file masking troubleshooting .. 293

6.4 Managing SSL/TLS over JDBC for containerized masking..................... 293

6.4.1 Prerequisites .. 293

6.4.2 Create configmap entry based on database provided SSL/TLS
certificate.. 294

6.4.3 Mount the configured configmap as volume... 294

6.4.4 Create trust store and upload all mounted SSL/TLS certificates 295

6.4.5 Configure SSL/TLS over JDBC connector.. 295

6.4.6 SSL/TLS over JDBC troubleshooting.. 296

6.5 Managing connectors.. 296

6.5.1 Creating a connector ... 297

6.5.2 Editing a connector .. 298

6.5.3 Deleting a connector.. 299

6.5.4 Database connectors... 299

6.5.5 Database connector properties .. 301

6.5.5.1 Getting properties .. 301

6.5.5.2 Setting properties... 302

6.5.5.3 Security considerations ... 304

6.5.6 File connectors... 304

6.5.6.1 Mainframe MVS Storage Access.. 307

6.5.6.2 Valid Connection With Mainframe.. 307

6.5.6.3 Invalid Connection with Mainframe.. 308

6.5.6.4 FTPS Connector for Mainframe Storage.. 309

Continuous Compliance – Continuous Compliance Home

16

6.5.6.5 Invalid/No Certificate... 311

6.6 Managing extended connectors ... 311

6.6.1 Limitations.. 312

6.6.2 Installing a new driver.. 312

6.6.3 Driver permissions ... 315

6.6.4 Extended logging ... 315

6.6.5 Creating an extended connector... 316

6.6.6 Synchronization ... 317

6.6.7 License entitlement for commercial JDBC drivers 318

6.6.7.1 Installing a license ... 318

6.6.7.2 Managing licenses... 319

6.7 Managing rule sets .. 319

6.7.1 The rule sets screen .. 320

6.7.2 The create/Edit rule set window ... 320

6.7.3 Creating a rule set .. 323

6.7.4 Refreshing a rule set .. 323

6.7.5 Copying a rule set .. 324

6.7.6 Deleting a rule set .. 324

6.7.7 The rule set screen .. 324

6.7.8 Editing/Modifying a rule set .. 325

6.7.9 Removing a table or File .. 325

6.7.10 Modifying tables in a rule set .. 326

6.7.10.1 Logical key.. 326

6.7.10.2 Edit filter ... 326

6.7.10.3 Custom SQL ... 327

6.7.11 Creating a ruleset for file formats... 327

6.7.12 Control character support for delimited files... 327

6.7.12.1 Control character as a delimiter.. 328

6.7.12.2 Control character as an end of record.. 329

Continuous Compliance – Continuous Compliance Home

17

6.7.12.3 Control character as a value ... 330

6.7.13 Define enclosure escaping strategy for delimited files 330

6.7.13.1 Double enclosure ... 331

6.7.13.2 Custom ... 331

6.7.13.3 Escape "enclosure escape character" .. 332

6.7.13.4 Configure enclosure escape character for the large ruleset................... 332

6.8 Managing file formats ... 333

6.8.1 Construct a Delimited File Format to upload ... 333

6.8.2 Construct a Fixed-width File Format to upload.. 334

6.8.3 Construct XML File Format to upload .. 335

6.8.4 Construct JSON File Format to upload... 336

6.8.5 Mainframe data set to upload... 336

6.8.6 To import a File format.. 337

6.8.7 To import a Mainframe format ... 340

6.8.7.1 Removing a selected file ... 342

6.8.8 To delete a format ... 342

6.8.9 To edit a format ... 342

6.8.10 Assigning a file format to files .. 343

6.8.11 Add Fields to a file format ... 343

6.8.11.1 To create new fields: ... 344

6.8.11.2 Constructing a JSON path... 345

6.8.12 View, Edit, or Delete a file field .. 346

6.8.13 Record types .. 347

6.8.14 Redefine conditions ... 347

6.8.14.1 Entering a Redefine condition ... 348

6.8.14.2 Format of Redefine conditions ... 350

6.9 Managing inventories .. 350

6.9.1 The inventory screen ... 350

6.9.2 Sorting on an inventory grid .. 351

Continuous Compliance – Continuous Compliance Home

18

6.9.3 Filtering on an inventory grid... 351

6.9.4 View more columns on the inventory grid.. 352

6.9.5 Assigning algorithms... 353

6.9.6 Managing database inventory settings .. 355

6.9.7 Managing a fixed-width or delimited file inventory settings 356

6.9.8 Managing a JSON file inventory settings ... 357

6.9.9 Managing an XML file inventory settings... 358

6.9.10 Managing Mainframe inventory settings ... 359

6.9.11 Importing and exporting an inventory... 361

6.9.11.1 To export an inventory ... 361

6.9.11.2 To import an inventory... 361

6.9.12 Document Store Type masking... 362

6.9.12.1 Multi-column algorithm support for document store type masking....... 365

6.9.13 Inventory Approval Workflow (database rule sets only).......................... 368

6.9.13.1 Enabling Inventory Approval Workflow for an environment.................... 369

6.9.13.2 Workflow stages .. 369

6.10 Managing record types and header/footer records 372

6.10.1 Overview ... 372

6.10.1.1 Records types... 372

6.10.1.2 Header and footer records .. 373

6.11 Whole file masking .. 378

6.11.1 Pre-requisite ... 379

6.11.2 Masking a whole file .. 379

7 Identifying sensitive data .. 382

7.1 Discovering your sensitive data .. 382

7.1.1 Overview ... 382

7.1.2 Concepts .. 383

7.1.2.1 Profile set ... 383

7.1.2.2 Domain ... 383

Continuous Compliance – Continuous Compliance Home

19

7.1.2.3 Level - column or data ... 383

7.1.2.4 Classifier... 383

7.1.2.5 Search expression ... 384

7.1.2.6 Type expression... 384

7.2 Out of the box profiling settings ... 384

7.2.1 ASDD standard profile set ... 384

7.2.2 Standard profile set ... 384

7.2.3 Legacy profile sets... 385

7.3 ASDD standard profile set ... 385

7.4 Standard profile set expressions .. 423

7.4.1 Column level expressions ... 423

7.4.2 Type expressions ... 427

7.5 Legacy profile set expressions ... 429

7.5.1 Account numbers... 430

7.5.2 Physical addresses.. 430

7.5.3 Beneficiary ID ... 431

7.5.4 Biometrics .. 431

7.5.5 Certificate ID... 432

7.5.6 City .. 432

7.5.7 Country ... 432

7.5.8 Credit card .. 432

7.5.9 Customer number .. 433

7.5.10 Date of birth.. 433

7.5.11 Driver license number .. 434

7.5.12 Email ... 434

7.5.13 First name... 435

7.5.14 IP address... 435

7.5.15 Last name... 436

7.5.16 Plate number .. 436

Continuous Compliance – Continuous Compliance Home

20

7.5.17 PO Box numbers .. 436

7.5.18 Precinct... 436

7.5.19 Record number... 437

7.5.20 School name .. 437

7.5.21 Security code.. 437

7.5.22 Serial number ... 437

7.5.23 Signature .. 438

7.5.24 Social security number .. 438

7.5.25 Tax ID.. 438

7.5.26 Telephone number... 439

7.5.27 Vin number ... 439

7.5.28 Web address .. 439

7.5.29 ZIP code.. 440

7.6 Configuring profile sets ... 440

7.6.1 Creating and modifying profile sets ... 441

7.6.1.1 To add a profiler set for the legacy profiler.. 442

7.6.1.2 To add a profile set for the ASDD Profiler .. 443

7.6.1.3 To edit an existing profile set.. 443

7.6.1.4 To delete an existing profile set.. 444

7.7 Managing domains .. 444

7.7.1 Overview ... 444

7.7.2 Domains ... 444

7.7.3 Adding a new domain .. 445

7.8 Managing classifiers ... 446

7.8.1 To add a classifier ... 447

7.8.2 To edit a classifier.. 449

7.8.3 To delete a classifier.. 449

7.8.4 Configuration considerations for classifiers.. 449

7.8.4.1 Strength values .. 450

Continuous Compliance – Continuous Compliance Home

21

7.8.4.2 Regex configuration... 452

7.8.4.3 Type classifiers .. 452

7.8.4.4 Tokenization in list classifiers... 452

7.9 Managing expressions .. 452

7.9.1 Profile expressions .. 452

7.9.2 Managing expressions .. 454

7.9.2.1 To add a search expression .. 454

7.9.2.2 To edit an expression .. 456

7.9.2.3 To delete an expression .. 456

7.9.2.4 Searching and filtering expressions ... 456

7.10 ASDD profile set import and export .. 457

7.10.1 ASDD profile set import ... 457

7.10.1.1 Limitations.. 457

7.10.2 ASDD profile set export ... 457

7.11 Creating a profiling job .. 458

7.11.1 Creating a new profiling job .. 458

7.12 Running a profiling job... 460

7.13 Reporting profiling results ... 461

7.13.1 Monitor page .. 461

7.13.2 PDF report .. 462

7.13.3 Inventory page.. 463

7.13.3.1 Database inventory .. 463

7.13.3.2 File inventory .. 464

7.13.3.3 Mainframe Inventory.. 465

7.13.4 CSV ... 466

7.13.5 API endpoint... 467

7.14 ASDD features and support... 468

7.14.1 ASDD features.. 468

7.14.2 ASDD limitations .. 469

Continuous Compliance – Continuous Compliance Home

22

8 Securing sensitive data ... 470

8.1 Algorithms .. 470

8.1.1 Introduction to Masking algorithms ... 470

8.1.2 Algorithm options .. 470

8.1.2.1 Out-of-the-box algorithm instances .. 470

8.1.2.2 Algorithm frameworks... 474

8.1.3 Configuring your own algorithms ... 476

8.1.3.1 Algorithm settings ... 476

8.1.3.2 Creating new algorithms ... 477

8.1.3.3 Editing algorithms.. 477

8.1.4 Algorithms Keys... 478

8.1.5 Multi-column algorithms ... 478

8.1.5.1 Overview ... 478

8.1.5.2 Usage.. 478

8.1.6 Limitations.. 479

8.1.7 Algorithm frameworks overview... 479

8.1.7.1 Choosing an algorithm framework ... 479

8.1.7.2 Choosing between character and segment mapping frameworks 479

8.1.8 Out of the box algorithm instances .. 480

8.1.8.1 dlpx-core: CM Alpha-Numeric ... 480

8.1.8.2 dlpx-core: CM Digits... 481

8.1.8.3 dlpx-core: CM Numeric .. 482

8.1.8.4 Credit Card.. 482

8.1.8.5 Date Shift Discrete ... 483

8.1.8.6 Date Shift Fixed.. 483

8.1.8.7 Date Shift Variable ... 484

8.1.8.8 dlpx-core: Email SL .. 484

8.1.8.9 dlpx-core: Email Unique ... 485

8.1.8.10 dlpx-core: FirstName ... 486

Continuous Compliance – Continuous Compliance Home

23

8.1.8.11 dlpx-core: FullName... 487

8.1.8.12 dlpx-core: LastName.. 488

8.1.8.13 dlpx-core:Lat_Long Coordinates ... 489

8.1.8.14 NullValueLookup.. 492

8.1.8.15 dlpx-core: Phone Unique.. 492

8.1.8.16 dlpx-core: Phone US... 493

8.1.8.17 dlpx-core:Redact Digits-Zero... 493

8.1.8.18 RepeatFirstDigit ... 494

8.1.8.19 Secure Lookup (Out of the box algorithm instances).............................. 494

8.1.8.20 dlpx-core:TimeRange... 504

8.1.8.21 dlpx-core: IBAN .. 505

8.1.8.22 SecureShuffle... 507

8.1.9 Algorithm frameworks... 507

8.1.9.1 Binary Lookup(Algorithm frameworks) .. 508

8.1.9.2 Character Mapping (Algorithm frameworks) ... 509

8.1.9.3 Data Cleansing (Algorithm frameworks).. 511

8.1.9.4 Date Replacement (Algorithm frameworks) .. 513

8.1.9.5 Date Shift (Algorithm frameworks)... 515

8.1.9.6 Dependent Date Shift (Algorithm frameworks).. 517

8.1.9.7 Email (Algorithm frameworks).. 520

8.1.9.8 Free Text Redaction (Algorithm frameworks).. 523

8.1.9.9 Full Name (Algorithm frameworks) .. 526

8.1.9.10 Mapping (Algorithm frameworks) .. 530

8.1.9.11 Min Max (Algorithm frameworks)... 539

8.1.9.12 Name (Algorithm frameworks) ... 541

8.1.9.13 Numeric Expression (Algorithm frameworks) ... 545

8.1.9.14 Payment Card (Algorithm frameworks) ... 552

8.1.9.15 Regex Decompose (Algorithm frameworks).. 554

8.1.9.16 Secure Lookup (Algorithm frameworks) .. 556

Continuous Compliance – Continuous Compliance Home

24

8.1.9.17 Segment Mapping (Algorithm frameworks) .. 558

8.1.9.18 Tokenization (Algorithm frameworks) ... 564

8.1.10 General UI for extended algorithms.. 570

8.1.10.1 Overview ... 570

8.1.10.2 GUI steps .. 570

8.2 Builtin Driver Supports ... 578

8.2.1 Introduction .. 578

8.2.2 Oracle.. 579

8.2.3 MSSQL .. 579

8.2.4 PostgreSQL .. 579

8.2.5 Db2 LUW... 579

8.2.6 Db2 z/OS .. 579

8.2.7 Db2 iSeries ... 580

8.2.8 Built-in Oracle driver support plugin ... 580

8.2.8.1 Optimizations ... 580

8.2.8.2 Task execution order ... 580

8.2.8.3 Enabling tasks on a job.. 581

8.2.8.4 Known limitations .. 581

8.2.9 Built-in MSSQL driver support plugin.. 581

8.2.9.1 Summary .. 581

8.2.9.2 Tasks .. 582

8.2.9.3 Task execution order ... 582

8.2.9.4 Enabling tasks on a job.. 582

8.2.9.5 Known limitations .. 582

8.2.10 Built-in PostgreSQL driver support plugin .. 583

8.2.10.1 Tasks .. 583

8.2.10.2 Task Execution Order... 583

8.2.10.3 Important Considerations ... 584

8.2.10.4 Known Limitations ... 584

Continuous Compliance – Continuous Compliance Home

25

8.2.11 Built-in DB2 LUW driver support plugin... 584

8.2.11.1 Tasks .. 585

8.2.11.2 Task Execution Order... 585

8.2.11.3 Important Considerations ... 585

8.2.11.4 Known Limitations ... 586

8.2.12 Built-in DB2 z/OS driver support plugin .. 586

8.2.12.1 Tasks .. 586

8.2.12.2 Task Execution Order... 586

8.2.12.3 Important Considerations ... 587

8.2.12.4 Known Limitations ... 587

8.2.13 Built-in DB2 iSeries driver support plugin ... 587

8.2.13.1 Tasks .. 588

8.2.13.2 Task Execution Order... 588

8.2.13.3 Important Considerations ... 588

8.2.13.4 Known Limitations ... 589

8.3 Creating masking jobs... 589

8.3.1 Creating new jobs .. 589

8.3.2 Creating a new masking job.. 590

8.3.3 Enabling and disabling database constraints .. 594

8.3.4 Creating SQL statements to run before and after Jobs 595

8.4 Managing jobs.. 595

8.4.1 Managing jobs from the environment overview screen 595

8.4.1.1 Submitting a job ... 595

8.4.1.2 Stopping a Job ... 596

8.4.1.3 Verifying a Job ... 596

8.5 Monitoring masking job... 597

8.5.1 Monitoring your masking jobs .. 597

8.5.1.1 Search... 598

8.5.1.2 Event Status ... 598

Continuous Compliance – Continuous Compliance Home

26

8.5.1.3 Events ... 599

8.5.1.4 Queue Position... 600

8.5.2 Monitoring a single job .. 600

8.5.3 Displaying non-conformant data... 601

8.5.4 Interpreting samples of non-conformant data patterns.......................... 602

8.5.5 Tracking Non-conformant Data .. 603

8.5.5.1 Oracle DB specific example .. 603

8.5.5.2 Limitation for the multi-column extensible algorithm 604

8.6 Masking job wizard.. 604

8.6.1 Supported data platforms ... 605

8.6.2 Supported operations .. 605

8.6.3 What is not supported in the wizard ... 605

8.6.3.1 Unsupported data types .. 605

8.6.3.2 Unsupported operations.. 606

8.6.4 Opening the masking job wizard... 606

8.6.5 Creating a new masking job.. 608

8.6.5.1 When objects are saved .. 612

8.6.6 Updating an existing masking job... 612

8.7 Running stopping jobs... 613

8.7.1 Running and stopping jobs from the environment overview screen 613

9 Masked provisioning.. 614

9.1 Configuring virtualization service for masked provisioning.................... 614

9.1.1 Introduction .. 614

9.1.2 Instructions .. 614

9.2 Provision masked VDBs .. 615

9.2.1 Prerequisites .. 615

9.2.2 Restrictions .. 615

9.2.3 Identifying and navigating to masked VDBs .. 616

9.2.4 Provisioning masked VDBs ... 616

Continuous Compliance – Continuous Compliance Home

27

9.2.4.1 Associating a masking job with the dSource... 616

9.2.4.2 Provisioning a masked VDB using the dSource provisioning wizard 618

9.2.5 Refresh a masked VDB.. 621

9.2.6 Disassociating a masking operation on a dSource 621

9.2.7 Masked VDB data operations ... 621

9.2.8 Continuous Data and Continuous Compliance Engine compatibility
matrix.. 622

10 Managing multiple engines for masking.. 623

10.1 Introduction (Managing multiple engines for masking) 623

10.1.1 Software Development Life Cycle (SDLC) .. 623

10.1.2 Horizontal scale ... 623

10.1.3 Best practice guide and example architectures for synchronizing 624

10.1.3.1 SDLC ... 624

10.1.3.2 Horizontal Scale... 625

10.2 Sync concepts.. 625

10.2.1 Syncable object.. 625

10.2.2 Object identifiers and types... 626

10.2.3 Dependencies... 627

10.2.3.1 Syncable Object dependencies relationship .. 628

10.2.4 Object revision tracking... 629

10.2.5 Export document.. 630

10.2.6 Security ... 630

10.2.6.1 Access control ... 631

10.2.6.2 Transmission security ... 631

10.2.6.3 Storage security ... 631

10.2.7 Digital signature ... 631

10.2.8 Overwrite .. 631

10.2.8.1 Attempting to import identical objects... 632

10.2.8.2 Overwrite of the encryption key .. 633

Continuous Compliance – Continuous Compliance Home

28

10.2.9 Error handling... 633

10.2.10 Concurrent sync operations .. 634

10.2.11 Global objects .. 634

10.2.11.1 Global KEY.. 634

10.2.12 Reference objects .. 634

10.2.13 On-the-fly masking jobs... 634

10.2.14 Circular dependencies ... 635

10.3 Sync endpoints... 635

10.3.1 GET /syncable-objects... 635

10.3.2 POST /export.. 636

10.3.3 POST /export-async... 636

10.3.3.1 Error handling... 637

10.3.4 POST /import ... 637

10.3.5 POST /import-async .. 639

10.4 Algorithm syncability ... 639

10.4.1 Overview ... 639

10.4.2 Non-deterministic Algorithms ... 640

10.4.3 Fixed Algorithms .. 640

10.5 User workflow examples ... 641

10.5.1 Syncing all global objects.. 641

10.5.1.1 Source masking engine steps... 641

10.5.1.2 Destination Masking Engine steps ... 645

10.5.2 Syncing a masking job... 647

10.5.2.1 1. Export the job ... 647

10.5.2.2 2. Import the job... 650

10.5.3 Syncing an environment .. 651

10.5.3.1 1. Export the environment ... 651

10.5.3.2 2. Create a new environment on the target engine.................................. 653

10.5.3.3 3. Import the environment into the newly created environment 653

Continuous Compliance – Continuous Compliance Home

29

10.6 Change log ... 655

10.6.1 Changes in 6.0.. 655

10.6.1.1 New syncable objects.. 655

10.6.2 Changes in 5.3.. 656

10.6.2.1 New syncable objects.. 656

10.6.2.2 Key per algorithm... 657

10.6.2.3 Changed model of import status reporting.. 657

10.6.2.4 Changed granularity of transactions for import 657

10.6.2.5 Filter for /syncable-objects ... 657

10.6.2.6 Async endpoints .. 657

11 Delphix masking APIs.. 658

11.1 Masking client .. 658

11.1.1 Masking API client ... 658

11.1.1.1 Introduction .. 658

11.1.1.2 API calls for masking administration ... 664

11.1.2 API calls for managing algorithms ... 673

11.1.2.1 Configuring algorithms.. 673

11.1.2.2 Managing algorithm usage ... 675

11.1.2.3 Migrating algorithms ... 679

11.1.2.4 Binary lookup.. 681

11.1.2.5 Character mapping .. 682

11.1.2.6 Data cleansing.. 684

11.1.2.7 Date replacement... 686

11.1.2.8 Date shift .. 687

11.1.2.9 Dependent date shift ... 689

11.1.2.10 Email ... 691

11.1.2.11 Free text redaction ... 693

11.1.2.12 Full name .. 695

11.1.2.13 Mapping.. 696

Continuous Compliance – Continuous Compliance Home

30

11.1.2.14 Min Max .. 699

11.1.2.15 Name .. 701

11.1.2.16 Numeric expression... 703

11.1.2.17 Payment card ... 705

11.1.2.18 Regex decompose ... 706

11.1.2.19 Secure lookup... 709

11.1.2.20 Segment mapping.. 712

11.1.2.21 Tokenization... 714

11.1.3 API calls for managing extended connectors .. 716

11.1.3.1 Introduction .. 716

11.1.3.2 Installing a driver support plugin... 717

11.1.3.3 Installing a JDBC driver ... 719

11.1.3.4 Creating an extended database connector .. 720

11.1.3.5 Managing masking job driver support tasks.. 721

11.1.4 API calls for ASDD profile set import and export..................................... 721

11.1.4.1 ASDD profile set import ... 722

11.1.4.2 ASDD profile set export ... 724

11.1.5 API calls for managing classifiers .. 725

11.1.5.1 Retrieving classifier framework configurations....................................... 726

11.1.5.2 Example: Creating a new PATH classifier .. 726

11.1.5.3 Downloading files associated with classifiers... 728

11.1.5.4 Searching and Filtering Classifiers ... 729

11.1.6 API calls for managing profile set usage ... 729

11.1.6.1 Overview ... 729

11.1.6.2 Viewing profile set usage .. 729

11.1.6.3 Examples .. 730

11.1.7 API calls for searching and filtering.. 732

11.1.7.1 Comparison operators... 732

11.1.7.2 Search operator.. 733

Continuous Compliance – Continuous Compliance Home

31

11.1.7.3 Logical operators ... 733

11.1.7.4 Grouping ... 733

11.1.7.5 Literal Values.. 733

11.1.7.6 Limitations.. 734

11.1.7.7 Filtering usage examples .. 734

11.1.8 API calls for managing masking job driver support tasks 738

11.1.8.1 View the tasks implemented by driver support plugin 739

11.1.8.2 Create masking Job that enables tasks... 740

11.1.8.3 Disable tasks.. 741

11.1.9 API calls for creating an inventory .. 742

11.1.9.1 Fetch table names from database connector.. 743

11.1.9.2 Create table metadata ... 744

11.1.9.3 Get All column metadata belonging to table metadata 744

11.1.9.4 Update column metadata with algorithm assignment 745

11.1.10 API calls for creating and running masking jobs 746

11.1.10.1 Creating a masking job.. 747

11.1.10.2 Running a masking job .. 747

11.1.10.3 Checking the status of a masking job .. 748

11.1.10.4 Retrieving execution events related to a masking job............................. 749

11.1.10.5 Retrieving non-conformant data samples associated with an execution
Event ... 750

11.1.11 API calls involving file upload and download... 752

11.1.11.1 File download ... 752

11.1.11.2 File upload .. 752

11.1.11.3 Creating a file format... 753

11.1.11.4 Creating an SSH Key.. 753

11.1.12 Backwards compatibility API usage ... 754

11.1.12.1 API versioning context... 754

11.1.12.2 Pinning down a version number to guarantee backwards-
compatibility... 754

Continuous Compliance – Continuous Compliance Home

32

11.1.12.3 Omitted version numbers .. 755

11.1.13 API response escaping.. 755

11.1.14 API call for generating support bundle... 756

11.1.14.1 Generating a support bundle... 756

11.1.14.2 Reading the async task result ... 757

11.1.14.3 Retrieving the generated support bundle file ... 758

11.2 API examples ... 759

11.2.1 loginCredentials ... 760

11.2.2 helpers .. 760

11.2.3 apiHostInfo... 764

11.2.4 Configure enclosure escape character .. 764

11.2.5 createApplication... 767

11.2.6 createEnvironment... 767

11.2.7 createInventory .. 768

11.2.8 create DatabaseConnector ... 769

11.2.9 create DatabaseRuleset .. 770

11.2.10 getBillingUsage .. 770

11.2.11 getAuditLogs.. 771

11.2.12 getSyncableObjects ... 772

11.2.13 getSyncableObjectsExport .. 772

11.2.14 profileTypeExpressions ... 774

11.2.14.1 Add a new type expression ... 774

11.2.14.2 Delete a type expression ... 775

11.2.15 runMaskingJob .. 775

11.2.16 getDatabaseUsage .. 776

12 Authoring extensible plugins... 778

12.1 Introduction (Authoring extensible plugins)... 778

12.1.1 Before getting started.. 778

12.1.2 SDK features .. 779

Continuous Compliance – Continuous Compliance Home

33

12.1.3 Versions Compatibility .. 779

12.2 General plugin structure .. 781

12.2.1 Introduction (General plugin structure) .. 781

12.2.2 Dependency management .. 781

12.2.2.1 How to properly use and embed external libraries 782

12.2.2.2 Example build file... 782

12.2.3 Plugin Metadata... 784

12.2.3.1 Manifest Attributes .. 784

12.2.4 Versioning .. 785

12.2.4.1 Table of Versioned Objects ... 785

12.2.4.2 Ensuring Plugin Compatibility ... 786

12.2.4.3 Plugin Naming.. 786

12.3 Setting up your development environment .. 786

12.3.1 Downloading and installing tools.. 786

12.3.2 Creating a new project... 786

12.3.3 Enabling remote debugging .. 787

12.4 Algorithms (Authoring extensible plugins)... 788

12.4.1 SDK Features.. 788

12.4.2 Getting more information .. 789

12.4.3 The MaskingAlgorithm Java Interface ... 789

12.4.3.1 Core Data Types... 789

12.4.3.2 Special Case Values .. 790

12.4.3.3 Method Overview ... 790

12.4.3.4 The Life Cycles of Algorithm Objects ... 791

12.4.3.5 Multi-Column Masking... 793

12.4.3.6 Batch Masking ... 793

12.4.4 SDK Workflows (Algorithms) .. 794

12.4.4.1 Outline for a guided tour.. 794

12.4.4.2 Building the sample plugin (SDK workflows/Algorithms)....................... 794

Continuous Compliance – Continuous Compliance Home

34

12.4.4.3 Creating a New Project (SDK workflows/Algorithms)............................. 794

12.4.4.4 Service discovery (SDK workflows/Algorithms) 797

12.4.4.5 Running an Algorithm using the SDK tools (SDK workflows/
Algorithms)... 798

12.4.4.6 Installing multiple plugins onto the Delphix Masking engine (SDK
workflows/Algorithms).. 800

12.4.4.7 Retrieving information about installed plugins (SDK workflows/
Algorithms)... 803

12.4.5 Configurability .. 804

12.4.5.1 Introduction .. 804

12.4.5.2 Making an Algorithm Configurable... 805

12.4.5.3 Using an Algorithm Framework .. 808

12.4.5.4 Using Multi-Column Algorithms.. 811

12.4.6 Service interfaces (Algorithms) .. 816

12.4.6.1 Introduction .. 816

12.4.6.2 Accessing Files .. 817

12.4.6.3 Accessing Database Servers (JDBC) ... 819

12.4.6.4 Algorithm chaining... 821

12.4.6.5 Using cryptographic keys .. 824

12.4.6.6 Logging... 826

12.4.7 Security considerations ... 828

12.4.7.1 Algorithm implementation... 828

12.5 Driver supports... 830

12.5.1 Introduction .. 830

12.5.1.1 SDK features .. 830

12.5.1.2 Getting more information .. 830

12.5.2 The DriverSupport Java interface ... 831

12.5.2.1 Method overview.. 831

12.5.2.2 The life cycles of driver support objects .. 831

12.5.3 SDK workflows (Driver supports).. 832

Continuous Compliance – Continuous Compliance Home

35

12.5.3.1 Introduction .. 832

12.5.3.2 Outline for a guided tour.. 832

12.5.3.3 Building the sample plugin (SDK workflows/Driver supports)................ 832

12.5.3.4 Creating a new project (SDK workflows/Driver supports) 834

12.5.3.5 Service discovery (SDK workflows/Driver supports)............................... 837

12.5.3.6 Executing a driver support task using the SDK (SDK workflows/Driver
supports) .. 837

12.5.3.7 Retrieving information about installed plugins (SDK workflows/Driver
supports) .. 839

12.5.4 Service Interface (Driver supports) ... 840

12.5.4.1 Introduction .. 840

12.5.4.2 Accessing masking engine rulesets ... 841

12.5.4.3 Accessing database server (JDBC) .. 842

12.5.4.4 Logging (Service interfaces) ... 843

12.6 Managing plugins using the API client ... 845

12.6.1 Displaying information about installed plugins 845

12.6.2 Other plugin endpoint operations ... 845

12.7 Installing a plugin onto the Delphix masking engine 845

12.8 Secure plugin deployment... 847

12.8.1 Using roles to restrict plugin installation.. 847

12.8.2 Verifying the SHA256 hash of installed plugins....................................... 848

12.9 Terminology ... 849

12.9.1 Terminology ... 849

Continuous Compliance – Continuous Compliance Home

Welcome to the Delphix Continuous Compliance documentation! – 36

•

•

1 Welcome to the Delphix Continuous Compliance
documentation!

This information explains how to deploy Continuous Compliance Engines for data masking, use its features,
or tune its configurations for optimal performance. The content has been organized into several categories,
available from the lefthand navigation.

List of Continuous Compliance documentation versions in PDF format.

Versions in primary support:

13.0.0.0_ContinuousCompl…

 (see page 36)

12.0.0.0_ContinuousCompl…

 (see page 36)

Continuous Compliance – Continuous Compliance Home

Welcome to the Delphix Continuous Compliance documentation! – 37

•

•

•

11.0.0.0_ContinuousCompl…

 (see page 36)

10.0.0.0_ContinuousCompl…

 (see page 36)

9.0.0.0_ContinuousCompli…

 (see page 36)

Continuous Compliance – Continuous Compliance Home

Welcome to the Delphix Continuous Compliance documentation! – 38

•

•

•

8.0.0.0_ContinuousCompli…

 (see page 36)

7.0.0.0_ContinuousCompli…

 (see page 36)

6.0.17.0_ContinuousCompl…

 (see page 36)

Continuous Compliance – Continuous Compliance Home

Welcome to the Delphix Continuous Compliance documentation! – 39

•

•

•

6.0.16.0_ContinuousCompl…

 (see page 36)

6.0.15.0_ContinuousCompl…

 (see page 36)

6.0.14.0_ContinuousCompl…

 (see page 36)

Versions in extended support:

Continuous Compliance – Continuous Compliance Home

Welcome to the Delphix Continuous Compliance documentation! – 40

•

•

•

6.0.13.0_ContinuousCompl…

 (see page 36)

6.0.12.0_ContinuousCompl…

 (see page 36)

6.0.11.0_ContinuousCompl…

 (see page 36)

Continuous Compliance – Continuous Compliance Home

Welcome to the Delphix Continuous Compliance documentation! – 41

•

•

•

6.0.10.0_ContinuousCompl…

 (see page 36)

6.0.9.0_ContinuousCompli…

 (see page 36)

6.0.8.0_ContinuousCompli…

 (see page 36)

Continuous Compliance – Continuous Compliance Home

Welcome to the Delphix Continuous Compliance documentation! – 42

•

•

•

6.0.7.0_ContinuousCompli…

 (see page 36)

6.0.6.0_ContinuousCompli…

 (see page 36)

6.0.5.0_ContinuousCompli…

 (see page 36)

Continuous Compliance – Continuous Compliance Home

Welcome to the Delphix Continuous Compliance documentation! – 43

•

•

•

6.0.4.0_ContinuousCompli…

 (see page 36)

Versions in legacy support:

6.0.3.0_ContinuousCompli…

 (see page 36)

6.0.2.0_ContinuousCompli…

 (see page 36)

Continuous Compliance – Continuous Compliance Home

Welcome to the Delphix Continuous Compliance documentation! – 44

•

•

•

6.0.1.0_ContinuousCompli…

 (see page 36)

6.0.0.0_ContinuousCompli…

 (see page 36)

5.3.9_ContinuousComplian…

 (see page 36)

Continuous Compliance – Continuous Compliance Home

Welcome to the Delphix Continuous Compliance documentation! – 45

•

•

•

5.3.8_ContinuousComplian…

 (see page 36)

5.3.7_ContinuousComplian…

 (see page 36)

5.3.6_ContinuousComplian…

 (see page 36)

Continuous Compliance – Continuous Compliance Home

Welcome to the Delphix Continuous Compliance documentation! – 46

•

•

•

5.3.5_ContinuousComplian…

 (see page 36)

5.3.4_ContinuousComplian…

 (see page 36)

5.3.3_ContinuousComplian…

 (see page 36)

Continuous Compliance – Continuous Compliance Home

Welcome to the Delphix Continuous Compliance documentation! – 47

•

•

5.3.2_ContinuousComplian…

 (see page 36)

5.3.1_ContinuousComplian…

 (see page 36)

Continuous Compliance – Continuous Compliance Home

1 https://masking.delphix.com/docs/latest/introduction-to-delphix-masking
2 https://masking.delphix.com/docs/latest/installation
3 https://masking.delphix.com/docs/latest/discovering-your-sensitive-data
4 https://masking.delphix.com/docs/latest/new-features
5 https://masking.delphix.com/docs/latest/fixed-issues

Quick references – 48

•
•
•
•
•

2 Quick references
Data masking overview1

Installation2

Identifying sensitive data3

New features4

Fixed issues5

https://masking.delphix.com/docs/latest/introduction-to-delphix-masking
https://masking.delphix.com/docs/latest/installation
https://masking.delphix.com/docs/latest/discovering-your-sensitive-data
https://masking.delphix.com/docs/latest/new-features
https://masking.delphix.com/docs/latest/fixed-issues
https://masking.delphix.com/docs/latest/introduction-to-delphix-masking
https://masking.delphix.com/docs/latest/installation
https://masking.delphix.com/docs/latest/discovering-your-sensitive-data
https://masking.delphix.com/docs/latest/new-features
https://masking.delphix.com/docs/latest/fixed-issues

Continuous Compliance – Continuous Compliance Home

Release notes – 49

•
•
•
•
•

•

•

•

•

•

•

•

•

3 Release notes
This section covers the following topics:

New features (see page 49)

Fixed issues (see page 75)

Known issues (see page 119)

Deprecated and end-of-life features (see page 129)

Licenses and notices (see page 133)

3.1 New features

3.1.1 Release 16.0.0.0

New Multi-Column Conditional Algorithm Framework
A new algorithm framework has been added that allows users to conditionally mask a column. This is
an extremely handy new capability that will eliminate scripting or custom plug-ins that were required
to satisfy conditional masking use cases in the past.
FTPS support for Mainframe data sets
Users masking files on the Mainframe can now establish direct connections using the built-in FTPS
protocol support on the Mainframe.
Automated index, constraint, and trigger control for Db2 iSeries
Users masking Db2 iSeries databases can now take advantage of our automated support for
managing indexes, constraints, and triggers that are impacted by masked columns. This eliminates
custom pre and post scripting that has otherwise been required.
Automated constraint and trigger control for Db2 z/OS
Users masking Db2 z/OS databases can now take advantage of our automated support for managing
constraints and triggers that are impacted by masked columns. This eliminates some of the custom
pre and post scripting that has otherwise been required. Index automation is not available for Db2 z/
OS.
Additional classifiers and algorithms
Additional classifiers, domains, and algorithms have been added to allow users an easier experience
finding and masking age and location data.
Password vault for SAP ASE
Supported password vaults may now be used with SAP ASE (Sybase) databases.
Updated user experience
Continued overhauls of the user interface have been implemented to provide better utility, scalability,
and stability. In this release, the Inventory page for XML and Mainframe file formats has been
updated.
Redeploy Support (Repave)
Continuous Compliance Engines may now be disconnected from their storage and redeployed,

Continuous Compliance – Continuous Compliance Home

Release notes – 50

•

•

•

•

•

•

•

•

•

•

maintaining the previous configuration and data. Redeployment support only works with the same
Delphix Engine version.

3.1.2 Release 15.0.0.0

Document type masking support for Delimited File Fields (JSON and XML)
Increasingly, XML and JSON data are stored in delimited file fields, often as the result of exporting a
database table to a delimited file. Now, these fields can be assigned an appropriate file format so fine
grained masking of XML or JSON can be performed.
Masking UI Revamp - Inventory screens for databases and JSON
This release introduces completely overhauled database and JSON inventory pages, showcasing a
range of user-friendly improvements. These improvements include filtering, sorting, column resizing,
and overall performance optimizations. For those using databases and working with JSON data, this
upgrade is a must-have.
Improved auditing of cascading deletes
In some cases, deleting an object (e.g., a Connector) results in a cascading deletion of dependent
objects (e.g., rule sets, jobs). Previously the audit log only recorded the initial object deletion. Now,
the audit log will also record an entry for all other deleted objects.

3.1.3 Release 14.0.0.0

Updated Classifiers
A new tranche of classifiers has been added to discover additional sensitive data. These new
classifiers include elements like medical record number, full name, age, and IP address. Several
existing classifiers have been improved to better discover sensitive information, including credit card
numbers and bank account numbers.
Data Discovery and Authentication Support
Automated Sensitive Data Discovery now supports OAuth for Salesforce or Kerberos for Oracle
Database, Microsoft SQL Server, and SAP ASE.
FTP Support for Mainframe MVS Storage
The Compliance Engine now offers enhanced functionality with FTP support, enabling direct access
to the mainframe MVS storage environment.
Updated IBM Db2 LUW Connector
The connector will now provide more automated control of indexes, constraints, and triggers as well
as deliver automated identity column support. This will automatically upgrade and allow you to
choose these features.
IBM Db2 LUW, iSeries and z/OS Temporary Identity Column Support The connector will now created
an identity column and index for Db2 tables where none exists. These will be removed and the table
returned to it’s original state after masking concludes.
Password Vault for IBM DB2 on LUW, iSeries and z/OS
Supported password vaults may now be used with DB2 databases on LUW, iSeries, and z/OS
systems.
Updated User Experience
The process of overhauling the user interface to provide you better utility, scalability, and stability

Continuous Compliance – Continuous Compliance Home

Release notes – 51

•

•

•

•

•

•

•

•

continues. In this release, the inventory page has been updated for fixed-length and delimited file
types, as well as the file format settings page.
ESXi 8.0 U1
Continuous Compliance may now be run on VMware ESXi 8.0 U1.

Usage that will see limited or no Impact:

Using Curl / HttpRequest / other Third party HTTP libraries
These tools do not consume the REST API schema. The only known, observable difference regards
the error response returned when a request is sent with an empty body (when body content is
required). Valid API usage should never encounter this error.
Using Swagger 2.0 static stubs
API client stub methods generated previously from an API schema taken from earlier product
versions should continue to function normally. The REST API version used to construct the API stubs
should be specified in the request path to maintain compatibility; this a general requirement for API
compatibility not resulting from this change.

Usage that will see significant impact:

Generating API client stubs
This approach dynamically generates API client access classes using the REST API's swagger
schema specification. These classes are sometimes referred to as client-stubs. Third-party libraries
like swagger-codegen or openapi-generator can be used to generate API helper classes. To
continue with dynamic client generation, the third-party library in use will need to be upgraded to a
version compatible with the OpenAPI 3 schema format.

After the library upgrade, the auto-generated OpenAPI 3 client stubs will likely differ from the
Swagger 2 specification’s client stubs, requiring updates to any code that consumes the stub
classes. These changes include the following, though other variations may exist that were not
encountered during testing:

Change in default date-time libraries (can be configured through generator library
arguments).

Change in the order of request parameters and request body within the method
arguments of stubs classes.

Change in getter functions of boolean variables (ex: variable-“valid” getter function in
2.0 specification is getValid() , whereas in 3.0 it is isValid()).

The product’s REST API schema specification has been upgraded from Swagger 2.0 to OpenAPI
3.0.1. This may impact API consumers in different ways, depending on what tools are used to
access the API. The short summary is: unless your API client is dynamically generating API
access classes (aka. stubs), you should not notice any disruption.

Continuous Compliance – Continuous Compliance Home

Release notes – 52

•

•

•

•

•

•

•

•

•

•

•

3.1.4 Release 13.0.0.0

Password Vault Support for Microsoft SQL Server
In this release, the SQL Server connector joins the growing list of connectors that support credential
management systems.
SQL Server
SQL Server 2022 is now supported.
Microsoft Azure SQL Data Warehouse
Azure SQL Data Warehouse is now supported.
Updated User Experience
The Roles page has been updated, with a number of handy templates now provided as well.

3.1.5 Release 12.0.0.0

ASDD extended drivers
Extended drivers allow you to provide your driver with additional data sources. Automated Sensitive
Data Discovery, which aims to identify common sensitive and personally identifiable data elements,
now works with these sources.
Password vault support for Oracle
You can now leverage supported password vaults to manage credentials for Oracle databases.

3.1.6 Release 11.0.0.0

IBAN discovery and masking
Supports automatically discovering and masking International Bank Account Numbers.
New US driver's license classifier
Supports automatically discovering and masking US Driver’s Licenses.
Oracle source sizing
Measures the size of connected Oracle databases. This information will be available via a new
utilization PDF report, as well as through the GET /billing-usage API.
New features for the Postgres connector
The connector will now provide more automated control of indexes, constraints, and triggers. This
will automatically upgrade and allow you to choose these features.
User-controlled automated sensitive data discovery (ASDD) set upgrade
With the 11.0 release, Delphix will begin shipping the standard ASDD discovery set independent of
Continuous Compliance. You can use a new API endpoint to control when to adopt new ASDD
discovery sets. This will allow you to upgrade to newer releases of the software without impacting
existing workflows, as well as easily creating and distributing your own classifier sets.

Continuous Compliance – Continuous Compliance Home

Release notes – 53

•

•

•

•

•

•

•

3.1.7 Release 10.0.0.0

Password vault support for PostgreSQL connections
This release adds HashiCorp Vault and CyberArk support for storing and accessing secrets, keys, and
certificates necessary for PostgreSQL operations.
More automated sensitive data discovery classifiers
Classifiers improve our ability to automatically discover sensitive information and accurately
recommend masking algorithms. This update adds classifiers for identifying Credit Cards, Addresses,
Telephone numbers, US Passports, US SSNs, and Bank accounts. With ASDD Classifiers,
organizations can easily mask new data sources for downstream teams to start working with
compliant data quickly.
Classifiers user interface
This update adds a new user interface for the Automated Sensitive Data Discovery classifiers
introduced in 9. Previously, classifier definitions were only accessible via the API.
Enhanced document type support for JSON and XML
This update expands our support for the JSON and XML Document types. Applying the multi-column
algorithms to JSON and XML structures is now possible. Further, it is now possible to mask JSON
and XML structures stored in BLOBs.
CData license upload
Our partnership with CData allows customers to purchase and use CData JDBC drivers from Delphix
to connect to additional data sources with Continuous Compliance. This release enables users to
install the required license files on their engines. Customers download the CData drivers directly from
CData but download the corresponding license files for these drivers from Delphix. Consult your
account representative for purchasing and using a specific CData driver.

3.1.8 Release 9.0.0.0

New Automated Sensitive Data Discovery (ASDD) profiler implementation
The new ASDD profiler has been introduced with a number of new features (see page 468), including
new data-level profiling logic and improved database sampling capabilities. A new profile set, ASDD
Standard (see page 384) has been added that leverages the new implementation.
UI Updates: Audit and Classifiers
Audit: This page allows for a quick review of historical user activity with global audit logs, to help
ensure compliance. Updated for speed and ease-of-use, with significantly better filtering, searching,
and performance.
Classifiers: This section of the Settings page contains a list of Classifiers with relevant information
and actions. The Profiler can be customized for domain and data level (name, column metadata, data
value) using standard regex expressions. Improved performance, data level inspection, and accuracy
for matching data types (using data classifiers).

Continuous Compliance – Continuous Compliance Home

Release notes – 54

•

•

•

•

•

•

•

•

3.1.9 Release 8.0.0.0

Improved JSON document store performance
Upon upgrade, JSON Document Store masking is significantly faster. For more information, visit
Document Store Type Masking (see page 0).
This release contains bug fixes for the Continuous Compliance Engine.

3.1.10 Release 7.0.0.0

JSON and XML: tokenization/re-identification and chained algorithms
Easily leverage tokenization/re-identification algorithms and chained algorithms with JSON and XML
data. Data tokenization/re-identification provides reversible data anonymization to protect data in
non-prod environments. Chain algorithms enable complex multistep algorithms to be run on separate
values, such as Full Name algorithms.

3.1.11 Release 6.0.17

JSON; XML field masking
This release introduces the ability to mask JSON; XML objects nested in string/text fields, allowing
Continuous Compliance to be maintained for semi-structured JSON &amp; XML data in non-
production environments. With this, the Continuous Compliance library can be leveraged, or
customized algorithms can be created to meet required data schemas.
Microsoft Intelligent Data Platform Integration (Azure Data Factory; Azure Synapse Pipelines)
Accelerate data compliance using Microsoft Intelligent Data Platform’s ETL tools with Delphix
Continuous Compliance. This allows users to quickly mask data while moving between 100+ Azure
Synapse Analytics and Azure Data Factory connections. Quickly identify sensitive data in ETL
pipelines and mask using Delphix algorithms.
Containerized masking
This feature allows users to efficiently spin up and tear down Continuous Compliance containers.
Easily orchestrate scaling out Continuous Compliance using a container orchestrator, allowing for
quick parallelized masking jobs in the self-managed container cluster to multiple instances.
Hyperscale Compliance masking job sync
Introducing fast migration for masking jobs from existing Continuous Compliance Engines to the
Hyperscale Compliance Orchestrator. This accelerates the masking of massive Oracle databases for
compliance and greatly improves masking speed for databases with billions of rows containing PII,
PHI, or sensitive data fields.

3.1.12 Release 6.0.16.0

Strict content security policy
This release adds a new application setting group that drives strict content security policy. Content
Security Policy (CSP) is an added layer of security that helps to detect and mitigate certain types of
attacks. Including (but not limited to) Cross Site Scripting (XSS), and data injection attacks.

Continuous Compliance – Continuous Compliance Home

6 https://delphixdocs.atlassian.net/wiki/spaces/CC/pages/8456938

Release notes – 55

•

•

•

•

•

•

•

•
•

•

•

•

3.1.13 Release 6.0.15.0

JSON file masking
This update introduces support for JSON File Masking, a popular human-readable data exchange
format. Teams can leverage Delphix's existing library of pre-built algorithms to mask sensitive
information. For more information, see JSON File Masking.6

Segmented mapping algorithm V2
This update enhances the Segmented Mapping Algorithm for improved performance, extensibility,
security, and portability. It produces new masking results from the legacy algorithm. Segmented
Mapping allows a user to create unique masked values by dividing data into segments that are
masked piecewise. For more information, see Segmented Mapping. (see page 712)

Numeric expression algorithm
This new algorithm enables formula transformations to values, so that teams can run common math
operators to scale or shift numbers.
New API endpoints
This release introduced a new API Support Bundle Generation endpoint:

The new API endpoint is:

Group Endpoints Description

supportBundle POST /support-bundle Generates support bundle

For more information, see API for generating support bundle. (see page 756)

3.1.14 Release 6.0.14.0

Certifications

SAP HANA 2.0 SP 05

CockroachDB

VMware ESXi 7.0 U3c
Data cleansing
The Data Cleansing algorithm has been updated to standardize spellings, misspellings, and convert
abbreviations. Algorithm based data cleansing eliminates slow and manual processes prior to
masking the data. For more information, see Data Cleansing. (see page 684)

Min Max
The MinMax Number and MinMax Date algorithms have been updated for normalizing outlier data in
a table column by masking numbers and dates that could give context of records based on values.
Continuous Compliance UI improvements

Monitoring interface now details which job step is currently underway

https://delphixdocs.atlassian.net/wiki/spaces/CC/pages/8456938
https://delphixdocs.atlassian.net/wiki/spaces/CC/pages/8456938

Continuous Compliance – Continuous Compliance Home

Release notes – 56

•

•

•
•

•

•

•

•

•

•

Improved Continuous Compliance job management for intermediate steps

Redesigned Execution Monitor interface

For more information, see Monitoring Masking Job. (see page 597)

“Optional” columns for multi-column algorithms
The Multi-column algorithm now allows for some fields to be marked as optional for more run-time
flexibility. Concurrent Continuous Compliance operations can now occur using multiple data columns
in a single operation. For more information, see Using Multi-Column Algorithms. (see page 811)

Automated sensitive data discovery
A new default profile set is being implemented to improve the accuracy and speed of column level
profiling. 40 new profile expressions utilizing type constraints are introduced for domain and
algorithm assignment to help reduce false positives associated with data type mismatches during
inspection. The default profiler set upgrade has no change or impact on existing users.
New API endpoints
This release extends the list of API-endpoints by adding the following task-based progress
monitoring endpoints.
The new API endpoints are :

Group Endpoints Description

monitoring GET /monitor-task get the status of Execution or async
task

monitoring GET /monitor-task/ get the status of Execution or async
task by the id

3.1.15 Release 6.0.13.0

Certifications
This release adds support for VMware ESX/ESXi 7.0 U3c and DB2 12.0 on z/OS.
New tokenization algorithm
In this release, Delphix introduces a new Tokenization algorithm framework to replace the legacy
Tokenization algorithm. This new Tokenization algorithm framework includes additional
configuration options for increased security. For more information, see Tokenization (see page 564).
Legacy Tokenization algorithm instances will remain in place and function the same until their
planned EOL in version 6.0.15.0, migration to the new Tokenization algorithm is recommended.
Zip+4 algorithm
A new version of the Zip+4 algorithm is now available that is used for full-length (nine-digit) zip
codes. This new version is built upon the Masking Algorithm SDK and offers the same benefits as
other new algorithms, including greater performance.
Improved masking monitoring

Continuous Compliance – Continuous Compliance Home

Release notes – 57

•

•

•

•

This release improves usability and diagnosability of the Masking Engine by allowing users to search
for past jobs and filter the results based on job type and status. For more information, see the Search
section at Monitoring Masking Job. (see page 597)

New API endpoints
This release extends the list of API-endpoints by adding the following execution logs endpoints.
These API endpoints will return file download ID that can be used to download execution logs under
GET /file-downloads/{fileDownloadId}.
The new API endpoints are :

Group Endpoints Description

executions GET /execution-logs get all execution logs of all jobs.

executions GET /executions/ get a particular execution log by
using execution ID.

execution-component-log GET /execution-component-log get all the execution component
logs of all jobs, execution ID is a
mandatory parameter.

execution-component-log GET /execution-component-log/ get a particular execution log by
using componentId.

3.1.16 Release 6.0.12.0

New Microsoft SQL Server implementation to disable constraints/triggers and drop indexes
In this release, Delphix adds default driver support for Microsoft SQL Server database masking
options of Disable Constraints, Drop Indexes, and Disable Triggers as job tasks. These changes apply
to masking, reidentification, and tokenization jobs where enabled.
For details on the usage and known limitations of the Microsoft SQL Server Disable Constraints, Drop
Indexes, and Disable Triggers driver support tasks, see Microsoft SQL Server Built-in Driver Support
Plugin (see page 581). Upon engine upgrade, any existing jobs on built-in Microsoft SQL Server
connectors where these options were selected will be upgraded to these enabled driver support
plugin tasks.
Improved user experience diagnosability
This release improves user experience by ensuring time is displayed in a consistent fashion. It
prevents users from running parallel update threads against incompatible databases and provides
per-job log information. The job monitoring view now displays the total time taken in the
hours:minutes:seconds format.
Free text redaction

Continuous Compliance – Continuous Compliance Home

7 https://delphixdocs.atlassian.net/wiki/spaces/CD/pages/6295763/
Configuring+OAuth2+authentication+for+API+access

Release notes – 58

•

•

•

•

•

•

•

•

This release updates the free text redaction algorithm to the new extensible Algorithm framework to
improve performance and allow chaining of algorithm instances. For more information, see Free Text
Redaction. (see page 693)

Updated secure lookup instances
This release updates the legacy Secure Lookup algorithms to the extensible Secure Lookup
framework. Masked results will remain the same other than whitespace handling.
New API endpoint for define fields
This release extends the list of API-endpoints by adding the following file-field-metadata endpoint to
create field metadata for a file format. This field allows users to add a file field that you want to mask
in a format. After the user uploads a format, all the fields from the uploaded file format are displayed
at the inventory screen.
The new API endpoint is :

Group Endpoints Description

fileFieldMetadata POST /file-field-metadata Creates field metadata for a file
format.

Masking whole file
You can now configure the masking engine to mask the complete file and pass the content of that file
as a single input to an algorithm. For more information, see Masking Whole File. (see page 378)

Character mapping algorithm support for tokenization/reidentification jobs
The character mapping algorithm can now be used for tokenization and reidentification jobs.

3.1.17 Release 6.0.11.0

Certifications
This release adds support for Oracle database 21c.
General UI for extended algorithms
In this release, Delphix continues to improve the experience of creating and using new extended
algorithms. These algorithms may include configuration information stored in JSON format. The
configurations are now editable via the UI. For more information, see General UI for Extended
Algorithms. (see page 570)

OAuth2 API support
The Virtualization and Masking engine APIs are now accessible via OAuth2 tokens that improve
Delphix's security offerings. For more information, see Configuring OAuth2 Authentication for API
Access.7

New Oracle optimizations to disable constraints/triggers and drop indexes
In this release, Delphix has re-implemented the Oracle database masking options of Disable
Constraints, Drop Indexes, and Disable Triggers as job tasks, using the Driver Support Plugin

https://delphixdocs.atlassian.net/wiki/spaces/CD/pages/6295763/Configuring+OAuth2+authentication+for+API+access
https://delphixdocs.atlassian.net/wiki/spaces/CD/pages/6295763/Configuring+OAuth2+authentication+for+API+access

Continuous Compliance – Continuous Compliance Home

Release notes – 59

•

•

•

•

Framework (see page 578), improving both functionality and performance. These optimizations apply to
masking, reidentification, and tokenization jobs where these tasks are enabled.
For details on the optimizations, usage, and known limitations of the Oracle Disable Constraints, Drop
Indexes, and Disable Triggers driver support tasks, see Oracle Built-in Driver Support Plugin (see page

580). Upon engine upgrade, any existing jobs on built-in Oracle connectors where these options were
selected will be upgraded to these enabled driver support plugin tasks.
New export secure lookup values API
This release extends the list of API-endpoints by adding a new API for exporting the values from a
secure lookup algorithm instance.
The new API endpoint is:

Group Endpoints Description

algorithm POST /algorithms/ Export lookup values form secure lookup
algorithm.

For more information, see Secure Lookup - Exporting Secure Lookup Values via API (see page 556).
New copy ruleset API
This release extends the list of API-endpoints by adding three new APIs for copying rulesets under
databaseRuleset, fileRuleset, and mainframeDatasetRuleset.
The new API endpoints are :

Group Endpoints Description

databaseRuleset PUT /database-rulesets/ Copy ruleset objects in the same
database environment.

fileRuleset PUT /file-rulesets/ Copy ruleset objects in the same
file environment.

mainframeDatasetRuleset PUT /mainframe-dataset-
rulesets/

Copy ruleset objects in the same
dataset environment.

New binary lookup algorithm
This release introduces a new binary lookup algorithm framework in the masking extensibility SDK
that supports advanced features such as algorithm chaining. Legacy binary lookup algorithm
instances will be automatically and seamlessly migrated to the new binary lookup framework when
you upgrade the masking engine. For more information, see Binary Lookup (see page 508).
UI/UX enhancements
This release introduces substantial improvements to the user interface that gives a new look and feel
to the masking engine.

Continuous Compliance – Continuous Compliance Home

8 https://ecosystem.delphix.com/docs

Release notes – 60

•

•

•

3.1.18 Release 6.0.10.0

Masking Salesforce data
There has been an increasing demand for an easy way to manage and utilize the highly sensitive data
stored in Salesforce. With this new Select Connector offering, sensitive data discovery and masking
algorithm assignment is automatically handled for the Salesforce default schema; this is not only
unique in the market, but also the first time Delphix is delivering this solution as an addition to its
product suite. This is the top compliance solution for Salesforce on the market and provides a
dramatically simpler deployment option to manage and secure this business-critical data. For more
information, see Application Solutions documentation.8

New mapping algorithm
A more powerful and faster mapping algorithm is now available. This allows running the same
mapping algorithm across multiple jobs and across multiple engines. Running the same mapping
algorithm across multiple engines requires a compatible external database. New APIs now support
migrating mappings from existing mapping algorithms to the new mapping algorithms.
Algorithm replacement APIs
APIs are now being introduced to list and replace algorithms.

Group Endpoints Description

algorithm GET /algorithms/ Retrieves all usage of the algorithm specified
in the request path.

algorithm PUT /algorithms/ Updates all usage of the algorithm specified in
the request path to use the new algorithm
name supplied as a query parameter.

For more information, see Managing Algorithm Usage (see page 675).

Group Endpoints Description

algorithm GET /algorithms/migration Returns a list of result objects describing
each possible migration. One object is
returned for every algorithm on the engine
that can be migrated.

algorithm POST /algorithms/ Creates a new algorithm named
newAlgorithmName (from the API query
parameters), by migrating from the algorithm
named in the query path.

https://ecosystem.delphix.com/docs
https://ecosystem.delphix.com/docs

Continuous Compliance – Continuous Compliance Home

9 https://community.delphix.com/blogs/michael-torok/2021/08/12/delphix-end-of-life-notice-legacy-masking-algorith

Release notes – 61

•

•

•

•

•

•

•

For more information, see Migrating algorithms (see page 679).
New phone masking algorithm
A new masking algorithm for the phone number framework for US and international numbers is now
available. Migration from the old phone masking algorithm to the new one is required. For more
information on transition, see Delphix Community Post9.
New custom SQL API
In this release, Delphix has extended the list of API-endpoints by adding a new table-metadata
endpoint for generating custom SQL for the given tableMetadataId.
The API endpoint is :

Group Endpoints Description

tableMetadata GET /table-metadata/ Generates a custom SQL.

3.1.19 Release 6.0.9.0

Masking SDK driver support plugins
The Masking SDK functionality is extended with the ability to develop a new kind of plugin, called
driver support plugins. These allow the execution of developer-defined tasks as part of a masking job.
Masking SFTP connector is extended with a new flag UserDirIsRoot
Delphix introduces a new flag, setting whether the SFTP Connector configured Path is relative or
absolute.
New Email framework
Delphix introduces a new Email Framework along with two default algorithm instances. This
functionality allows for more customization in masking email addresses.
New copy environment API
In this release, Delphix has extended the list of API-endpoints by adding a new API for copying
environments.
The API endpoint is :

Group Endpoints Description

environment POST /environments/ Copy environment objects in the
same or a different application

3.1.20 Release 6.0.8.0

New name and full name frameworks

https://community.delphix.com/blogs/michael-torok/2021/08/12/delphix-end-of-life-notice-legacy-masking-algorith
https://community.delphix.com/blogs/michael-torok/2021/08/12/delphix-end-of-life-notice-legacy-masking-algorith

Continuous Compliance – Continuous Compliance Home

Release notes – 62

•

•

•

•

i.

ii.

•

•

•

•

•

•

•

Delphix introduces new Name and Full Name Frameworks, as well as their default algorithms
instances. That functionality adds flexibility and more sophisticated ways for name masking.
Masking SDK multiple plugins capacity
Masking SDK functionality is extended with an option of loading multiple plugins and chaining
extensible algorithms based on different plugins. The dlpx-core plugin is uploaded by default.
New regex decompose algorithm chaining framework
Delphix introduces the Regex Decompose extensible algorithm framework, which allows the
capability to build new algorithms from a combination of predefined actions and existing algorithms.
Enclosure escape character support for delimited file masking
In this release, Delphix has added escape character support for delimited file masking. Specifically
the following were added:

Enclosure escaping strategy: The user can configure the enclosure escape character from
the UI/API to escape the enclosure. To configure the enclosure escape character from the UI,
the user must select the "Enclosure Escaping Strategy" dropdown value as per the below
options on the edit Rule Set popup window.

Double Enclosure: Double enclosure option will set the escape character value same
as enclosure value.
Custom: By selecting custom option, the user can specify any single character as an
enclosure escape character, except the "escape sequences" and "control characters".

Escape "Enclosure Escape Character"
The user can escape the "enclosure escape character" itself by clicking on the Escape "Enclosure
Escape Character" checkbox on the edit RuleSet popup window.
For more detailed information, see Managing rule sets (see page 319).

3.1.21 Release 6.0.7.0

New date masking frameworks
Delphix introduces new date masking frameworks, which includes date replacement, date shift, and
multi-column dates. These new frameworks obviate the need for many of the custom date algorithms
that were required in the past. Delphix also introduces new default implementations of common date-
masking functionality. The new date masking frameworks are briefly described below.

Date Replacement: Selects a replacement value from a configurable date range.

Date Shift: Produces a replacement value by randomly shifting the input date by a
configurable increment range.

Multi-column Date: Masks date values that have a dependency, such as admission and
discharge date using the same algorithm as Date Shift. This allows masking of both the initial
date and the difference between the dates.

New credit card masking algorithms
Delphix introduces a robust payment-card masking framework, as well as a default algorithm
implementation for credit card data. The legacy credit card algorithm (that produced random values)
is being replaced by the new default instance, which provides consistent masking results, a unique
output for every valid input, always changes a valid input value, and preserves all non-digit portions of
the input value.
Masking Engine changes for users and groups

Continuous Compliance – Continuous Compliance Home

Release notes – 63

•

•

a.

b.

c.

•

•

•

•

•

•

•

This enhancement adds stronger on-Masking Engine safeguards to the Users and Groups experience
delivered in Central Management ,in which the access to a Masking Engine’s objects is determined by
assigning authorization via global access groups. Specifically, when an engine opts into the global
model, it relinquishes local control of object access. With this, the local enforcement of global
(Central Management) settings is strengthened by deactivating local object access in the UI, thus
ensuring the local values will not be overridden via frequent, periodic scans from Central
Management.
New forgot and reset password APIs
In this release, Delphix has extended the list of API-endpoints by adding two new API's related to the
existing Forgot and Reset password feature for a user, which was available via GUI only till now.
The two new sets of API endpoints are :

Group Endpoints Description

user POST /users/forgot-password Send reset password mail to
the user

POST /users/reset-password Reset new password for the
user

The forgot-password API will generate and send a password reset link to the registered email id of
the user, for which the password has to be reset.
The reset-password API will use the token sent via the password reset link, to set the new password.
Control character support for delimited file masking
In this release, Delphix has added the control character support for delimited file masking.
Specifically the following were added:

Control character as a delimiter: The user can specify a control character as the delimiter
from UI/API.
Control character as an end of record: The user can specify a control character as the end of
record from UI/API.
Control character as a value: Delimited files containing values with control characters are
now supported.

Date-Time format change for the API response
In this release, the date-time format for API responses is changed
From: yyyy-MM-dd'T'HH:mm:ss.SSSZ e.g. 2021-03-17T17:35:39.352+0000
To: yyyy-MM-dd'T'HH:mm:ss.SSSXXX e.g. 2021-03-17T17: 35:39.352+00:00.
The API endpoints below will be affected by this change:

GET /system-information

GET /plugin

GET /profile-jobs

GET /profile-sets

GET /execution-events

GET /async-tasks

Continuous Compliance – Continuous Compliance Home

Release notes – 64

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•
•

GET /audit-logs

GET /algorithms in algorithm extension object

GET /execution-components

GET /jdbc-drivers

GET /masking-jobs

GET /reidentification-jobs

GET /tokenization-jobs

3.1.22 Release 6.0.6.0

Certifications
This release adds support for DB2 iSeries v7.4.
Multi-column algorithm
In this release, Delphix has introduced a Multi-Column Extensible Algorithm mechanism, which allows
masking multiple columns of the same table conditional to their values (or using any other logic
needed by the customer). To use the Multi-Column Algorithm Framework, users first create an
algorithm via the Masking SDK and then install their algorithm on a Masking Engine via the Extensible
Algorithm Plugin interface.
Latest API version
The latest masking API version supported on the engine will be included in the GET /system-

information API response.
Custom database connection properties
There is now a way to specify custom connection properties for all of our database connector types
by uploading a properties file. For more information, see Database Connection Properties (see page

296).

3.1.23 Release 6.0.5.0

Certifications
This release adds support for the following certificates:

MySQL 8

Postgres SQL 12

DB2 LUW 11.5

Oracle Database Cloud Services on Virtual Machines

Oracle Database Cloud Services on Bare Metal

Google Cloud SQL for PostgreSQL

Google Cloud SQL for MySQL

Google Cloud SQL for SQL Server
Character mapping algorithm
Delphix is introducing a replacement for the Segment Mapping Algorithm, the Character Mapping
Algorithm. The new Character Mapping Algorithm is built using the recently released algorithm SDK,

Continuous Compliance – Continuous Compliance Home

Release notes – 65

•

•

•

•

•

•

•

•

and in most common configurations this new algorithm will be faster and require less memory than
the existing segment mapping algorithm. In addition, this new version does not have a length
limitation for the input string and can handle non-ASCII characters.
Default API version
Introducing the ability to specify the Masking API version to be used when the version is omitted from
the base path of the Masking API request's URL.
New API version
To reflect the API improvements mentioned above, the API version increased to 5.1.5 in this release.
For a complete listing of version 5.1.5, see Masking API Client (see page 658).

3.1.24 Release 6.0.4.0

Certifications
This release adds support for SQL Server 2017 and 2019.
Masking job memory improvements
Memory management has been dramatically improved. Not only can jobs run with less memory, but
the Masking Engine will also now ensure that jobs can only run if enough memory is available and
that the engine cannot run out of memory.
Along with these changes, there are two new execution statuses: CANCELLED and QUEUED .
Extensible connector permissions change
The first iteration of the Masking Extensible Connectors, supporting the ability to upload and use
JDBC drivers, required that the permissions for each driver be enumerated at install time. Delphix has
now replaced this mechanism with a fixed security policy blocking only the most dangerous
permissions (specifically those that could inflict harm to the Masking Engine), removing the need for
user management of permissions. It remains the case that the engine administrator must ensure that
only trusted JDBC driver software is installed.
File masking performance
The performance of file masking has been significantly improved.
Builtin extensible secure lookup framework
Delphix has added a builtin, configurable Secure Lookup Algorithm Framework, based on the
Extensible Algorithms feature (introduced in 6.0.3.0 release).
This framework provides better performance and new features when compared with the Legacy
Secure Lookup Algorithms.
It allows configuring the case sensitivity of input values (true/false), and the case configuration of the
output values:
Preserve Lookup File Case // i.e. as found in Lookup File Preserve Input

Case // i.e. preserve case of input value - UpperCase /

LowerCase / Mixed Force all Lowercase // forces output to

LowerCase Force all Uppercase // forces output to UpperCase
The algorithm instance (based on the new Secure Lookup Algorithm Framework) might be managed
via the existing Algorithm API, similar to any other plugin algorithm. The GUI has been changed for
configuring/editing Secure Lookup Algorithm. For more information, see Secure Lookup Algorithm
Framework (see page 556).
Job scheduler removed

Continuous Compliance – Continuous Compliance Home

Release notes – 66

•

•

•

•

As of this release, we have removed the Job Scheduler feature. The introduction of Masking’s REST
API several releases ago allowed customers to schedule job executions using their preferred job
scheduler. As a result, the integrated scheduler is seldom used.
Free text redaction algorithm
The redaction strategies used in a free text redaction algorithm have been renamed to "Allowlist" and
"Denylist".
New API version
To reflect the API improvements mentioned above, the API version increased to 5.1.4 in this release.
For a complete listing of version 5.1.4, see Masking API Client (see page 658).

3.1.25 Release 6.0.3.0

Extensible algorithms
We introduced a new, radically simpler, method to create new masking algorithms. With the new
framework, Delphix partners and customers can create and share new algorithms.
Extensible algorithms and their related algorithm plugins can be managed through the following APIs:

Group Endpoints Description

plugin GET /plugin Get all plugins

POST /plugin Install plugin

DELETE /plugin/ Delete plugin

GET /plugin/ Get plugin detail by pluginId

PUT /plugin/ Update plugin

Existing algorithm API is extended with the following endpoints:

Group Endpoints Description

algorithm GET /algorithm/frameworks Get all algorithm frameworks

GET /algorithm/frameworks/id/ Get algorithm framework by
frameworkId

UI-based environment sync

Continuous Compliance – Continuous Compliance Home

10 http://jtds.sourceforge.net/faq.html
11 https://docs.microsoft.com/en-us/sql/connect/jdbc/building-the-connection-url?view=sql-server-ver15

Release notes – 67

•

•

•

•

•

•

•

•

•

•

•

Over the past several releases Delphix has introduced and refined the ability to synchronize objects
between Masking Engines via the API. In 6.0.3, Delphix now supports importing and exporting
environments via the UI.
Note: In this release, the deprecated XML import/export functionality has been removed. If you used
the XML import/export feature in previous releases, you'll find the new Sync Environment feature to
be a more robust and complete solution with complete API support in addition to being available in
the UI.
New SQL Server JDBC driver
The product switched from the jTDS JDBC driver to Microsoft's official open-source JDBC driver. This
was done to obtain improved support for recent versions of SQL Server.
All SQL Server basic connectors will be converted transparently. If you used a SQL Server Advanced
connector or a Generic connector using the jTDS driver, you will need to manually convert your JDBC
URL to the Microsoft JDBC driver's format. To perform this conversion, see the references for the
jTDS parameters10 and the Microsoft JDBC parameters11. Delphix Customer Support's upgrade
validation checks will detect any SQL Server Advanced connectors and Generic connectors using the
jTDS driver in your installation and they will notify you of the need to manually convert those
connectors.
AzureSQL managed databases
This release is certified to be compatible with the following Azure SQL Managed Databases:

Azure Database for PostgreSQL service

Azure Database for MySQL service

Azure Database for MariaDB service

Azure Database for SQL

Note: You must enable support for non-TLS connections.
File masking performance
This release contains significant performance improvements for delimited and XML file masking.
New API version
To reflect the API improvements mentioned above, the API version increased to 5.1.3 in this release.
For a complete listing of version 5.1.3, see Masking API Client (see page 658).

3.1.26 Release 6.0.2.0

Certifications
This release adds support for Oracle 19c.
Mainframe data set improvements for masking
This release delivers multiple quality-of-experience enhancements around mainframe masking
workflows:

Mainframe masking performance: Anyone masking mainframe data sets may see a large
improvement in performance.

http://jtds.sourceforge.net/faq.html
https://docs.microsoft.com/en-us/sql/connect/jdbc/building-the-connection-url?view=sql-server-ver15
http://jtds.sourceforge.net/faq.html
https://docs.microsoft.com/en-us/sql/connect/jdbc/building-the-connection-url?view=sql-server-ver15

Continuous Compliance – Continuous Compliance Home

Release notes – 68

•

•

•
•

•

•

•

Engine sync support for mainframe: The Sync APIs and workflows now support mainframe
objects: connectors, rule sets, jobs, and formats.

Mainframe data set record type APIs: This enhancement builds upon the recent release of
Record Type APIs to include mainframe support. You will now be able to manage Mainframe
data set record types via REST API, including redefine conditions. When masking a mainframe
data set, the Masking Engine uses a mainframe data set format to interpret the data set's
contents. A mainframe data set format has one default record type "All Record". If a
mainframe data set format contains redefined fields, each redefined and redefines field will
have a corresponding record type that holds the redefined condition for the redefined and
redefines fields. Specifically, the following APIs were added:

Group Endpoints Description

mainframeDatasetRecordTy
pe

GET /mainframe-dataset-
record-types

Get all Mainframe Dataset
record type

GET /mainframe-dataset-
record-types/

Get Mainframe Dataset
record type by ID

PUT /mainframe-dataset-
record-types/

Update Mainframe Dataset
record type by ID

For more information on redefine conditions, see Managing a mainframe inventory (see page 350).
JDBC to delimited files support
On-the-fly masking jobs with a JDBC source and delimited file target are now supported. This is
targeted at users with data lake applications. This is targeted at users with data lake applications
who wish to extract unmasked data using a JDBC connection and insert masked data back using a
bulk file load mechanism.
Environment sync support for masking
With this release, an entire environment is now syncable with a single operation via the Sync REST
APIs. Previously, Sync users would have to export/import objects on an individual basis, the process
now is far more streamlined. Note: Environment Sync APIs are the preferred way of handling
environment export/import versus XML-based transfer.
New API version
To reflect the API improvements mentioned above, the API version increased to 5.1.2 in this release.
For a complete listing of version 5.1.2, see Masking API Client (see page 658).

3.1.27 Release 6.0.1.0

Extended connectors
Extended connectors is a new feature that allows you to upload additional JDBC Drivers to the
Continuous Compliance engine. This enables masking data sources that are not natively supported
by Continuous Compliance. For more information, see Managing Extended Connectors (see page 311).

Continuous Compliance – Continuous Compliance Home

Release notes – 69

•

•

•

Sync for tokenization and reidentification jobs
The Sync feature allows you to coordinate the operation of multiple engines. This release adds Sync
support for Tokenization and Reidentification Jobs. For more information on the Sync feature, see
Managing Multiple Engines for Masking (see page 623).
File record type APIs
When masking a delimited or fixed length file, the Masking Engine uses a file format to interpret the
file's contents. Each format has one or more record types. In previous releases, these record types
could only be created and managed through the graphical user interface. This release adds the ability
to also create and manage file record types through the APIs. Specifically, the following APIs were
added:

Group Endpoints Description

recordType GET /record-types Get all record type

POST /record-types Create record type

DELETE /record-types/ Delete record type by ID

GET /record-types/ Get record type by ID

PUT /record-types/ Update record type

recordTypeQualifier GET /record-type-qualifiers Get all record type qualifiers

POST /record-type-qualifiers Create record type qualifier

DELETE /record-type-
qualifiers/

Delete record type qualifier by
ID

GET /record-type-qualifiers/ Get record type qualifier by ID

PUT /record-type-qualifiers/ Update record type qualifier by
ID

Note that record types are only used for delimited and fixed-length file formats. For more information
on record types, see Adding Record Types for Files (see page 372).

3.1.28 Release 6.0.0.0

Objects names requirements

Continuous Compliance – Continuous Compliance Home

Release notes – 70

•

•

•

•

•

•

•

Delphix 6.0 adds validations for object names that can be created/renamed manually. For more
information, see Naming Requirements (see page 199).
Please note that enforcing these requirements might fail the import, sync, or upgrade from pre-6.0
release. For resolving those failures, see [Knowledge Base Article KBA5096](https://
support.delphix.com/Delphix_Masking_Engine/Object_Naming_Requirements_(KBA5096).
Versioning framework
6.0 marks the release of version 5.1 of the Masking API. For information on how the Masking API is
versioned, see Masking API Versioning Documentation (see page 754).
New API endpoints
In 6.0 we have expanded the list of API endpoints to include:

Group Endpoints Description

Application DELETE /applications/ Delete application by ID

Mount Filesystem GET /mount-filesystem Get all mounts

POST /mount-filesystem Create a mount

GET /mount-filesystem/ Get a mount by ID

DELETE /mount-filesystem/ Delete a mount by ID

PUT /mount-filesystem/ Update a mount by ID

PUT /mount-filesystem/ Connect a mount by ID

PUT /mount-filesystem/ Disconnect a mount by ID

PUT /mount-filesystem/ Remount a mount by ID

In addition to the new API endpoints, we have improved existing API endpoints. These improvements
include:

Addition of the applicationId field to the application model

Replacement of the application field with an applicationId field in the Environment model

Removal of the classification field from the domain model

Addition of the rulesetType field to the Masking, Profiling, Reidentification, and Tokenization
job models.

Addition of mountName in the ConnectionInfo of a file connector and a mainframe dataset
connector to use a filesystem mount point.

Continuous Compliance – Continuous Compliance Home

Release notes – 71

•
•

•

•

•

•

•

•

•
•
•
•
•

•

•

•

•

For more information on Continuous Compliance APIs, see API documentation (see page 658).
NFS and CIFS mounts
In previous releases, the Masking Engine has supported masking files via FTP or SFTP. In this
release, we have added the ability for users to directly mount and mask a file system over NFS and
CIFS. This should dramatically simplify the process of file masking. As with other Masking Engine
objects, the Sync feature can be used to coordinate mount objects across multiple engines. For more
information on the mount feature, see Managing Remote Mounts (see page 289).

3.1.29 Release 5.3

Synchronizing masking jobs and universal settings across Engines
In 5.2 we introduced the ability to synchronize Masking Algorithms between engines to ensure
consistent masking, regardless of the engine executing the masking. In 5.3 we are expanding the list
of syncable objects to include:

Masking Jobs

Connectors

Rulesets

Domains

File Formats

The sync of objects is possible through improvements to several sync API endpoints, including:

GET /syncable-objects[?object_type=
POST /export
POST /export-async
POST /import
POST/import-async

This expansion of syncable objects ensures that users can sync their Masking Jobs and all the objects
necessary for that masking job to execute successfully - regardless of the masking engine it lives on,
allowing for easier scaling of Continuous Compliance across the enterprise. For more information, see
Managing Multiple Masking Engines (see page 623).

Support for Kerberized connections
In 5.2.4 we added support for Kerberos for our Oracle Masking Connector. In 5.3 we have expanded
the list of connectors that support Kerberos to:

SQL Server

Sybase

To enable Kerberized connectors your engine must be configured properly and you must
configure your masking Connectors for Kerberos. Kerberos can be enabled by going to the
Advanced mode on Oracle, SQL Server and Sybase. For more information, see Managing
Connectors (see page 296).

Continuous Compliance – Continuous Compliance Home

Release notes – 72

• New API endpoints
In 5.2 we released an all-new set of API endpoints allowing for the automation of many masking
workflows. In 5.3, we have expanded this list of API endpoints around Algorithms, Users, Roles, File
Upload, System Information, Login, Rulesets, and Connector. Below are the net new API endpoints:

Group Endpoints Description

Algorithms POST /algorithms Create algorithm

DELETE /algorithms/ Delete algorithm by name

GET /algorithms/ Get algorithm by name

PUT /algorithms/ Update algorithm by name

PUT /algorithms/ Randomize key by name

Users GET /users Get all users

POST /users Create user

DELETE /users/ Delete user by ID

GET /users/ Get user by ID

PUT /users/ Update user by ID

Roles GET /roles Get all roles

Continuous Compliance – Continuous Compliance Home

Release notes – 73

Group Endpoints Description

POST /roles Create role

DELETE /roles/ Delete role by ID

GET /roles/ Get role by ID

PUT /roles/ Update role by ID

Rulesets PUT /database-rulesets/ Update the rule set’s tables

PUT /database-rulesets/ Refresh the rule set

Connectors POST /database-connectors/ Test a database connector

POST /database-connectors/
test

Test an unsaved database
connector

POST /file-connectors/ Test a file connector

POST /file-connectors/test Test an unsaved file connector

Async Tasks GET /async-tasks Get all asyncTasks

GET /async-tasks/ Get asyncTask by ID

PUT /async-tasks/ Cancel asyncTask by ID

File Upload/Download DELETE /file-uploads Delete all file uploads

POST /file-uploads Upload file

GET /file-downloads/ Download file

System Information GET /system-information Get version, etc.

Continuous Compliance – Continuous Compliance Home

Release notes – 74

•

•

•

•

•

Group Endpoints Description

Login/Logout PUT /logout User logout

Executions GET /execution-components Status for a table, file, or
Mainframe data set

Tokenization Job GET /tokenization-jobs Get all tokenization jobs

POST /tokenization-jobs Create tokenization job

DELETE /tokenization-jobs/ Delete tokenization job by ID

GET /tokenization-jobs/ Get tokenization job by ID

PUT /tokenization-jobs/ Update tokenization job by ID

Re-identification Job GET /reidentification-jobs Get all re-identification jobs

POST /reidentification-jobs Create re-identification job

DELETE /reidentification-jobs/ Delete re-identification job by
ID

GET /reidentification-jobs/ Get re-identification job by ID

PUT /reidentification-jobs/ Update re-identification job by
ID

Database Rulesets PUT Update Database Ruleset by ID

In addition to the net new API endpoints, we have improved pre-existing API endpoints. Some of the
improvements include:

Addition of DB2 iSeries and Mainframe to connector endpoints.

Addition of Kerberos configuration on Oracle, SQL Server, and Sybase connectors

Ability to have ruleset refresh drop tables

Support for XML file types

Addition of dataType to column metadata

Continuous Compliance – Continuous Compliance Home

Release notes – 75

•

•

Addition of isProfilerWritable field to file-field-metadata endpoints. This is now represented in
the API as a new isProfilerWritable boolean field in the body of a file-field-metadata. When the
isProfilerWritable field is set to true, the algorithm/domain assignment on a column can be
overwritten by the profiler. When the field is false, it may not be overwritten.

Addition of multipleProfilerCheck field to Profile Job endpoints. This feature is turned on
using the boolean field in the body of a profile job. The job profiler normally stops profiling a
column as soon as it flags a field as sensitive. If multipleProfilerCheck is true, the profiler will
continue to scan the column for additional sensitive patterns. In the event that it finds more
than one pattern, it will tag all the data domains found and apply 'one' standard algorithm for
all those domains. The standard algorithm is ‘Null SL’ as of 5.3.4.0. This feature was formerly
called ‘multi PHI’.

For more information on Continuous Compliance APIs, see API documentation (see page 658). Please note that
the previous generation of Masking APIs (commonly referred to as V4) is EOL and no longer supported in
this release. All users are encouraged to migrate to the V5 APIs.

3.2 Fixed issues

3.2.1 Release 16.0.0.0

Bug Number Description

DLPX-52296 Fixed an issue where masking a MSSQL table without primary key column(s) using
custom SQL fails.

DLPX-84493 Fixed an issue where an Oracle table with primary key column(s) fails if primary key
column(s) are not included in custom SQL.

DLPX-87311 Fixed an issue related to uploaded copybook formats that have a group item with a
picture node.

DLPX-87535 Fixed an issue where copy privileges for custom roles are not getting updated via
masking UI and API.

DLPX-87800 Improved performance of saving profiling results for non-ASDD database profiling.

DLPX-87875 Improved performance of Mainframe dataset files with redefined conditions.

DLPX-88027 Fixed an issue where a masking job could override JDBC driver default fetch size, which
caused memory issues for MySQL and MariaDB.

Continuous Compliance – Continuous Compliance Home

Release notes – 76

DLPX-88182 Removed an unused libwebp library in Containerized Masking.

3.2.2 Release 15.0.0.0

Bug Number Description

DLPX-86773 Improved performance of the Environment-Jobs overview UI page.

DLPX-87009 Fixed an issue regarding profile job errors due to duplicate billing periods.

DLPX-87054 Masking Teradata TIMESTAMP columns no longer fails when data has null values.

DLPX-87131 Added a new search and filter API for fetching executions.

DLPX-87183 Fixed an issue where an extended connector's uploaded JDBC driver passed an extra
property named "URL".

DLPX-87185 Masking Teradata INTEGER and BIGINT columns no longer fails when data has null
values.

DLPX-87349 Sync import of the Free Text Redaction algorithm will no longer fail when the lookup file
name has spaces.

DLPX-87363 Fixed an issue in the Continuous Compliance UI where inventory or edit format did not
have an option to filter by Masked Fields.

DLPX-87514 The presences of header and/or trailer record types will no longer cause algorithm
batching to be disabled for delimited file masking.

DLPX-87604 The secure shuffle algorithm should now function normally when the Row Limit for a job
is set to 0 (unlimited).

DLPX-87697 Fixed an issue where sorting the monitorJobsDBCompleted grid by 'Status/Logs'
column did not sort the rows that have non-conforming data with the “success” status.

DLPX-49075
DLPX-87767

Improved performance of database inventory screen having a large number of tables
and columns.

Continuous Compliance – Continuous Compliance Home

Release notes – 77

3.2.3 Release 14.0.0.0

Bug Number Description

DLPX-85469 For JSON Masking, Algorithm assignment to JSON multi-dimensional array field ($

['sample'][*][*] type of paths) and multi-column algorithm assignment are
allowed when they are under the same parent level.

DLPX-86322 Columns that are set with ID method = USER are excluded from ASDD profiling,
including data fetch.

DLPX-86877 Masking OTF job with Sybase and MSSQL database will no longer fail if the table name
starts with a number and the table contains an identity column.

DLPX-86955 Email Unique algorithm no longer strips beginning or ending whitespace from input
rows.

DLPX-87189 Fixed an issue for PostgresSQL where masking a large value in NUMERIC(0) column
was causing precision loss.

DLPX-86865 Clarified that only database rule sets support the approval workflow feature.

3.2.4 Release 13.0.0.0

Bug Number Description

DLPX-79868 Fixed an issue with Inventory export/import functionality to avoid CSV injection.

DLPX-82217 Fixed an issue where dlpx-core:FirstName would not mask as expected.

DLPX-82912 Fixed an issue showing HTML code instead of an actual success/error GIF when
performing an inventory import from the UI.

DLPX-84783 Fixed an issue with permissions ambiguity when viewing Jobs logs vs Application logs.
Now, a user who can view a job on the Monitor page will be able to view logs as well. In
addition, a non-admin user with permission to view diagnostics will be able to view
application logs.

Continuous Compliance – Continuous Compliance Home

Release notes – 78

DLPX-84875 Fixed an issue where a user with create/edit permissions was not able to create or edit
the classifier.

DLPX-85564 Fixed an issue where non-admin user access was restricted to only the tasks they
started (API methods: GET /async-tasks and GET /async-tasks/

{asyncTaskId}).

DLPX-86134 Fixed an issue where a masking algorithm migration failure during engine upgrade
causes the Algorithm UI to not load and the dlpx-core plugin to not upgrade.

DLPX-86254 Added Audit log entries for rulesets and jobs in case of the deletion of a related
connector.

DLPX-86715 Secured GraphQL APIs by adding Content-Security-Policy headers and removing unsafe
CPRS headers.

DLPX-86717 Fixed an issue where ASDD jobs on Maria DB will no longer fail with SQL exceptions due
to incorrect identifier quoting.

3.2.5 Security Fixes

Bug Number Introduced Description Security Bulletin

DLPX-86715 13.0.0.0 Secured GraphQL APIs
by adding Content-
Security-Policy headers
and removing unsafe
CORS headers.

TB110

3.2.6 Release 12.0.0.0

Bug
Number

Description

DLPX-8560
0

Fixed the DROP INDEX feature for MySQL databases.

Continuous Compliance – Continuous Compliance Home

Release notes – 79

Bug
Number

Description

DLPX-8586
4

Fixed an issue related to uninformative masking progress whenever the row count is more
than 2.1bn for SQL server.

DLPX-8597
1

Fixed an issue where a masking job fails if column name contains special characters and
custom SQL is used.

DLPX-8604
9

Fixed an issue related to the GraphQL service returning Http-502 in certain scenarios.

DLPX-8619
6

Fixed an issue where segment mapping algorithms exported using Engine Synchronization
(from releases 6.0.15.0 -> 10.0) were not validated upon import to 11.0.

DLPX-8624
9

Updated protobuf-java dependency version to 3.23.2.

DLPX-8625
9

ASDD job execution will now correctly show execution event(s) in the UI when failures
occur.

3.2.7 Security fixes

Bug Number Introduced Description Security Bulletin

DLPX-86329 6.0.13.0 Sysadmin can execute
shell commands on the
underlying Operating
System.

TB109

3.2.8 Release 11.0.0.0

Bug Number Description

DLPX-85961 Fixed an issue where the Filter, Logical Key, and Custom sql for DB tables could
not be updated when using the table name search feature inside DB rulesets.

DLPX-85867 The non-conformant data will no longer get copied to all the tables.

Continuous Compliance – Continuous Compliance Home

Release notes – 80

Bug Number Description

DLPX-85862 Fixed a CSS issue causing the Inventory UI to slide to the bottom of the page.

DLPX-85743 Fixed missing tables in the UI-Job Monitor-Waiting grid page.

DLPX-85514 Fixed an issue in the ASDD profiler where the count of rows profiled was not
displayed in the job monitor.

DLPX-85459 Fixed an issue that sometimes caused long delays before log messages related to
jobs would show in the main logs.

DLPX-86112 ASDD profiling fails when multiple tables with similar names containing an
underscore are present.

DLPX-82007 The deletion of a user-created mapping algorithm now deletes associated
mappings from MDS.

DLPX-85289 Added changes for ensuring JDBC parameters are handled properly with DB2
mainframe connectors.

3.2.9 Security fixes

Bug Number Introduced Description Security Bulletin

DLPX-85414 6.0.15.0 Unmasked Data or
Masking Job Failure
When Using a Migrated
Version of the Segment
Mapping Algorithm

TB108

3.2.10 Release 10.0.0.0

Bug Number Description

DLPX-79335 Fix for Oracle databases masking job failing while masking XMLType columns,
having masked data more than 2000 characters.

Continuous Compliance – Continuous Compliance Home

Release notes – 81

Bug Number Description

DLPX-84025 If a mapping algorithm is used on a field that contains only characters set to be
ignored, a non-conforming data error will no longer be thrown.

DLPX-84303 Phone Unique and Phone US algorithms no longer report non-conforming data as
an error, since masking can continue and it can obscure true breaking errors.

DLPX-84874 Fixed an issue that causes long load times for the algorithm and domain settings
screens.

DLPX-84966 Prevents masking job failures by adding extra validation when defining
alphanumeric segments with Segment Mapping algorithms.

DLPX-85382 Fixed an issue with the ASDD profiler that can make data-level profiling take much
longer than expected on large tables in a Microsoft SQL Server DB.

DLPX-85437 Fixed an issue that can make deletion of a database ruleset very time consuming
when many profiler results exist.

DLPX-85961

3.2.11 Release 9.0.0.0

Bug Number Description

DLPX-82535 Added an application setting to change the default API page size for all GET APIs
from 1 to 5000.

DLPX-84110 Fixed an issue where the drop index checkbox reset to an unchecked state after
the masking dialog box is closed.

DLPX-84336 The search options on the Environment and Ruleset page now allow for "-"
character matching.

DLPX-84488 Phone Unique and Phone US algorithms saw a failure on zero width and
formatting characters included with a phone number in a database row. Phone
algorithms can now pass over these non-numeric charactacters as expected.

Continuous Compliance – Continuous Compliance Home

Release notes – 82

3.2.12 Release 8.0.0.0

Bug Number Description

DLPX-73334 Profiling jobs in tokenization environments where domains lack a tokenization
algorithm assignment no longer fail.

DLPX-82175 Fixed an issue where editing a DB ruleset was taking a long time to modify the
logical key of a table with a massive amount of data, by moving the validation
from the UI to a backend check for null values in a conditional column.

DLPX-83340 Encryption algorithm upgrade for Engine sync bundles.

DLPX-83536 The city column level profiling expression has been updated to not match
"address".

DLPX-84046 Added a flag 'trimWhitespaceFromInput' to the Secure Lookup algorithm that can
be used to restore pre-6.0.12.0 trim behavior.

DLPX-84081 Fixed an issue where the Continuous Compliance Engine environment
revisionHash changes on profile job execution, even though there was no change
in inventory.

DLPX-84230 Fixed an issue where support for moving data from DB tables to delimited files
was inoperable.

DLPX-84463 Swagger-UI minor version upgrade for bug fixes done in library.

DLPX-84525 Inventory page fails to load on Continuous Compliance Engine when there are
more than 32,767 masked columns on the engine.

3.2.13 Release 7.0.0.0

Bug Number Description

DLPX-76693 Added an execution-event and a log error message showing the missing column
names, when custom SQL is used in the ruleset and some columns are not
specified in the query.

Continuous Compliance – Continuous Compliance Home

Release notes – 83

Bug Number Description

DLPX-79530 Continuous Compliance Engine environment revisionHash changes frequently due
to execution of masking and tokenization jobs.

DLPX-80124 Column name is checked if it contains a space, if a true rename of the column
name is set to false, so that the column name is not renamed. Note, this change is
only for column names having whitespace and not for columns having special
characters.

DLPX-81503 Fixed an issue when wrong environment link was getting generated on Monitor
page.

DLPX-82950 Fixed an issue where Filter By in the Inventory page on the UI was intermittently
working for File inventories.

DLPX-83035 In case of Job failures, Error details will be displayed in Status/Logs dialog on the
Execution details page.

DLPX-83566 Fixed an issue when connection to NFS mount failed after the NFS server was
restarted.

DLPX-83593 Fixed an issue where unnecessary locking can cause slowdowns and possibly
deadlocks.

DLPX-83659 An update was made to the DB2 license upload script to make it compatible with
all Continuous Compliance versions 6.0.14.0 and later.

DLPX-83804 Fixed an issue where assigning Dataset File Formats using the API was not
working for some formats.

DLPX-83809 Fixed an issue causing random job failures when masking SQL Server tables that
have columns of date/time data type as part of the PK.

DLPX-83817 Fixed an issue where non-admin users can submit a inventory change for approval
workflow without approval inventory permission.

DLPX-83930 Fixed an issue that caused some environment sync import operations to fail with
PersistentObjectException.

Continuous Compliance – Continuous Compliance Home

Release notes – 84

3.2.14 Release 6.0.17.0

Bug Number Description

DLPX-46230 Fixed an issue where tables with a Primary Key column of datatype RAW would
cause an error when selected for masking.

DLPX-55224 Search using wildcards and substrings is now allowed on search boxes across
multiple pages.

DLPX-69096 Email addresses are case sensitive when SSO is enabled.

DLPX-69501 User defined domains cannot be deleted when assigned to profiler expressions.

DLPX-76315 Display of field level redefine fields have been applied in the Inventory screen.

DLPX-76696 Audit logs being displayed is not limited to 1000 entries, all the logs recorded will
be displayed with a pagination of 50 rows per page. API of audit logs is modified to
include all search and filter parameters used in UI.

DLPX-77069 Fixed an issue where using regex for File Name Patterns in xmlfile Rule Sets would
succeed but give an error.

DLPX-80496 Removed extraneous link to the job's execution log from the monitor screen for
profiling jobs.

DLPX-80539 Fixed an issue where some failures detected during file masking job generation are
not correctly reported via an execution event.

DLPX-80540 Fixed an issue where some failures during file masking job generation leave a job
in running status indefinitely.

DLPX-80984 Fixed negative row counts when custom SQL includes column name that contains
SQL reserved word.

DLPX-81311 A generic DB error message will now be shown to users for fetching and creating
rule set.

DLPX-81725 Fixed a bug that could cause the masking engine to run out of memory processing
results from large jobs.

Continuous Compliance – Continuous Compliance Home

Release notes – 85

Bug Number Description

DLPX-82064 Fixed MSSQL masking performance issue when using Kerberos authentication and
masked columns that are unicode, but primary keys are non-unicode.

DLPX-82289 Fix provided to support backslashes and other special characters that might be
required to form a valid regular expression.

DLPX-82310 User's first and last names are now redacted in the support bundle.

DLPX-82579 Improved performance to prevent GUI lag when navigating across pages.

DLPX-82864 Error message for invalid LDAP authentication attempt has been updated to
prevent username harvesting.

DLPX-82925 Fixed an issue where the Profile Results screen breaks due to a database error.

DLPX-83026 Fixed an issue causing the DateShiftDiscrete algorithm to not be assigned a new
random key when an engine is deployed.

DLPX-83086 Upgraded Swagger UI to enhance the security and usability of the swagger API
Client.

DLPX-83200 Fixed scale issues related to storing job logs in the product's internal database.

DLPX-83232 Added an option to the Secure Lookup algorithm to disable whitespace cleanup
when the lookup file is loaded.

DLPX-83354 Updated the profile expression 'Full_Name_V2' to reduce the number of false
positive results. This change only applies to newly deployed Continuous
Compliance Engines.

DLPX-83427 Fixed Directory Travel vulnerability for the export inventory UI.

DLPX-83431 Upgraded Apache Commons to 1.10.0.

DLPX-83576 Fixed an issue where the Support bundle process did not collect the /etc/hotfix file.

Continuous Compliance – Continuous Compliance Home

Release notes – 86

3.2.15 Release 6.0.16.0

Bug Number Description

DLPX-49116 Data truncation when masking CHAR(n) using Segment Mapping to mask short
numeric segments

DLPX-73539 Pdf for Audit log does not contain Status column

DLPX-77777 View only connector privilege user will be able to see connection details and test
connection using Masking UI

DLPX-77929 Algorithm API: Add mask_type attribute in the Api response for component type
algorithm.

DLPX-78474 Able to validate algorithm from: Algorithms > edit extended instance > "validate
configuration" button

DLPX-79358 Monitor page UI Start and End Date Filters do not work as expected

DLPX-79607 Show a better user friendly error message when creating full name algorithm with
invalid input

DLPX-79743 User will not be logged out, after performing an operation for which they have
insufficient privilege. API will be throwing 403 status code, instead of 401.

DLPX-80304 isIdentity has been added to the GET /column-metadata API response that
indicates whether the table column is an identity column

DLPX-80668 For Job execution steps, icon for last event step "Job completed" will be aligned to
final status of the job. (1) If job is success - Green tick icon (2) If job has failure -
Red failed icon, (3) If job was cancelled - Red cancelled icon

DLPX-80784 Addition of new application setting group to drive strict content security policy

DLPX-81058 Saving File/Copybook field properties on Inventory screen will now retain the
ruleset selected

DLPX-81422 Updated Job Monitor page with small UI fixes. Page position will remain same
after page refresh. Renamed job execution events.

Continuous Compliance – Continuous Compliance Home

Release notes – 87

Bug Number Description

DLPX-81730 Segment Mapping pads short numeric input even when not masked

DLPX-81807 Fixed an issue that can very rarely cause the masking service to fail with a stack
overflow during startup

DLPX-81895 Data profiling results are not shown under job -> monitor page -> results tab for
delimited, fixed and XML files

DLPX-81897 Internal error when GET syncable-objects API is called with object_type=LOOKUP

DLPX-81935 Profiling regex with escaped double-quotes fails in compiling javascript

DLPX-81946 Allow masking of dates containing month values in all-upper character case

DLPX-82025 Setting pseudo column as ROWID in the Logical Key of the Ruleset is possible

DLPX-82057 GET /file-uploads API endpoint returns a 500 error when plugins exist on the
engine

DLPX-82086 From this change, all the timestamps on Masking UI will be as per user timezone.
Logs, search filter on Job monitor and Audit page will be in UTC Timezone. User
won’t be able to change timezone on UI. It will be by default as per their browser
timezone.

DLPX-82166 Segment Mapping v2 UI cannot specify SPACE as an ignore character

DLPX-82186 Clicking outside connector dialog will not dismiss the dialog

DLPX-82337 Segment Mapping algorithm with CONSTANT segment should not be allowed in
Tokenization job

DLPX-82355 Fixes an internal server error that occurred when attempting to import a legacy
Secure Lookup algorithm of type LOOKUP.

DLPX-82491 From this change, User can hover on the time displayed on UI and will able to
identify timezone offset related information.

DLPX-82627 Fix an incorrect check preventing the Segment Mapping Algorithm from running in
REIDENTIFY mode

Continuous Compliance – Continuous Compliance Home

Release notes – 88

3.2.16 Release 6.0.15.0

Bug Number Description

DLPX-77088 Fixed an issue causing the Full Name Algorithm to fail masking when a single non-
alphanumeric char is present, one of the input words is in the particles file, and the
'Last-First-Middle' convention is used.

DLPX-79547 Fixed an issue causing: MSSQL Masking Job

XmlArtistFailureException: Input has a cycle and cannot be

used with XML Artist .

DLPX-80123 Non-conforming Data is now reported when a mapping algorithm's available
mappings are exhausted.

DLPX-80225 A new interface has been developed in the masking SDK for SingleOperationTask.

DLPX-80603 Fixed an issue causing read-only multi-column fields to be upgraded incorrectly.

DLPX-80604 Fixed an issue where records are truncated if the field length is not '0' in the fixed
width file format, and 'whole file masking' selected.

DLPX-80732 Fixed incorrect text in an error message that occurs while exporting a
profile_typed_expression.

DLPX-80788 Added a check to validate same site cookies transfer.

DLPX-80837 Fixed an issue where a copybook with a file name more then 24 characters fails
loading: "String field too long".

DLPX-80842 Fixed an issue where the "All Fields" button in database inventory unexpectedly
refreshes inventory for the displayed table.

DLPX-80922 Changed the version for the extensibility API to 1.10.0.

DLPX-81067 Cleaned up some stale build properties.

DLPX-81110 Fixed an issue where the filter on the Job Wizard Inventory screen was missing.

Continuous Compliance – Continuous Compliance Home

Release notes – 89

Bug Number Description

DLPX-81128 Fixed an issue of being unable to create/edit a profile set from the GUI.

DLPX-81175 Fixed an issue with Tokenization v2 instances where character mapping fallback
and the same character groups produced the same results within a job, and
inconsistent results across jobs.

DLPX-81259 Removed the 256 character limit on masking copybook redefine conditions.

DLPX-81261 Fixed an issue where masking VSAM with different Algorithms causes:
IndexOutOfBoundsException: Index: 0, Size: 0 .

DLPX-81330 Permanent file upload is now available for files that are not explicitly associated
with a JDBC driver, algorithm, driver support plugin, or connection properties.

DLPX-81397 Fixed an issue where the JOB ID was not displayed in Job Monitor Processing or
Waiting tabs.

DLPX-81512 Fixed an issue where sync bundles from releases prior to 6.0.15.0 could not be
imported into 6.0.15+ releases.

DLPX-81666 Fixed an issue where sync exports of environments/jobs/connectors using non-
default driver support settings were unusable. This happened due to failures of
jobs/edits on the system where they are imported, where the non-default driver
support settings are used.

3.2.17 Release 6.0.14.0

Bug Number Description

DLPX-56200 Stopped execution.job.jobId logs from spamming the log files.

DLPX-77999 The Legal disclaimer and description of the framework on the Algorithm GUI now
appear.

DLPX-78560 The issue with sync compatibility for multiple headers and footers is now fixed.

DLPX-78671 Added pagination for Syncable objects with the object_type LOOKUP.

Continuous Compliance – Continuous Compliance Home

12 https://support.delphix.com/Support_Policies_and_Technical_Bulletins/Technical_Bulletins/
TB098_Arbitrary_Code_Execution_May_Be_Performed_When_Configuring_Masking_Environments

Release notes – 90

Bug Number Description

DLPX-78850 Fixed an issue where the mainframe file format delete fails with
NoSuchFileException if the format file is not present on disk.

DLPX-79160 Fixed an issue that could cause sync import to fail due to inconsistent multi-
column algorithm assignments in the sync document.

DLPX-79472 Fixed an issue that prevented the saving of multi-column algorithm masking
assignments in file inventories.

DLPX-79608 Fixed an issue causing SLv2 to fail when the lookup file contains just spaces.

DLPX-79720 Fixed an issue where DriverSupport logs stopped printing after switching to the
next log file due to file size limit.

DLPX-79865 Improvements have been made to the Forgotten Password API error message.

DLPX-79966 PostgreSQL driver updated from 42.2.23 to 42.3.2 version.

DLPX-79986 The expression_name field in the profile-type-expression endpoint has been
renamed type_expression_name.

DLPX-80386 Column and data level profiler expressions are now tested in a predictable order -
alphabetically, by expression name.

DLPX-80411 Upgraded Spring framework version from 5.2.5 to 5.2.20.

DLPX-80078 The issue while removing files with complex file permissions on EBS is now fixed.

DLPX-81071 HTML escape the inventory notes field.

DLPX-81082 Addresses the issue described in TB09812.

https://support.delphix.com/Support_Policies_and_Technical_Bulletins/Technical_Bulletins/TB098_Arbitrary_Code_Execution_May_Be_Performed_When_Configuring_Masking_Environments
https://support.delphix.com/Support_Policies_and_Technical_Bulletins/Technical_Bulletins/TB098_Arbitrary_Code_Execution_May_Be_Performed_When_Configuring_Masking_Environments

Continuous Compliance – Continuous Compliance Home

Release notes – 91

3.2.18 Release 6.0.13.0

Bug Number Description

DLPX-77075 The issue with masking MSSQL date field that was causing the error "Conversion
failed when converting date and/or time from character string" is now fixed.

DLPX-78363 This release adds support for API to get execution logs.

DLPX-78366 This release adds the new API endpoints to get execution component logs.

DLPX-78472 This release adds the total job time to the Masking job reports.

DLPX-78755 The issue with the failure of async export (if data is huge) with the OOM(Requested
array size exceeds VM limit)error message is now fixed.

DLPX-78948 Previously, the edit user dialog was not opening for non-admin users if SSO is
enabled. This issue is now resolved.

DLPX-79152 Extended algorithm enclosure handling was throwing an NPE when there are too
few fields in a delimited file. This issue is now fixed.

DLPX-79177 The mapping Algorithm was failing in some cases(such as delimited files and
BigInt Column) with error Mapping output value exceeding maximum value length
of 0 characters. This issue is now fixed.

DLPX-79567 Previously drop index was failing if an index with the same name existed on the
masked columns across multiple tables for MSSQL databases. This issue is now
fixed.

DLPX-79627 The issue with the failure of the Masking SQL Server when special characters(such
as] [or ') are used in the table column is now fixed.

DLPX-79632 The issue with the failure of the Masking Oracle DB when special characters are
used in the table or column name is now fixed.

This release renames Delphix Masking to Continuous Compliance.

Continuous Compliance – Continuous Compliance Home

13 https://support.delphix.com/Support_Policies_and_Technical_Bulletins/Technical_Bulletins/
TB095_Log4j_Vulnerabilities_(CVE-2021-44228%2C_CVE-2021-45046%2C_CVE-2021-45105%2C_CVE-2019-17571%2C
_CVE-2021-4104)

14 https://delphixdocs.atlassian.net/wiki/spaces/CD/pages/4227213/Delphix+product+security
15 https://support.delphix.com/Support_Policies_and_Technical_Bulletins/Technical_Bulletins/

TB095_log4j_Vulnerabilities_(CVE-2021-44228%2C_CVE-2021-45046%2C_CVE-2021-45105%2C_CVE-2019-17571%2C_
CVE-2021-4104)

16 https://delphixdocs.atlassian.net/wiki/spaces/CD/pages/4819106/
Uninstalling+the+Delphix+connector+service+from+the+target+database+servers

17 https://support.delphix.com/Support_Policies_and_Technical_Bulletins/Support_Policies/
Product_Lifecycle_Policies_(KBA1003)

18 https://delphixdocs.atlassian.net/wiki/spaces/CD/pages/4227974/Product+security

Release notes – 92

•
•
•
•

Bug Number Description

DLPX-79803 The issue with the failure of the Masking with MSSQL database if table name
contains '[' is now fixed.

DLPX-79804 The issue with the failure of the Masking with MSSQL database if table name
contains '\' is now fixed.

3.2.19 Release 6.0.12.0

3.2.19.1 Log4j updates

Based on detailed testing and analysis, all the currently supported products are not susceptible to known
log4j vulnerabilities. Please refer to TB095 Technical Bulletin13 for more information. All instances of log4j in
currently supported Delphix products are updated to log4j 2.17.1 as of this release.

Delphix keeps you updated on the latest developments and keeps releasing hotfixes, procedures, and
workarounds for such critical vulnerabilities. For more information on how Delphix supports our product and
customers in such cases, see Delphix Product Security.14

For more information, refer to the following pages:

TB095 log4j Vulnerabilities15

Uninstalling the Delphix Connector Service from the Target Database Servers16

Delphix Product Lifecycle Policies17

Product Security18

https://support.delphix.com/Support_Policies_and_Technical_Bulletins/Technical_Bulletins/TB095_Log4j_Vulnerabilities_(CVE-2021-44228%2C_CVE-2021-45046%2C_CVE-2021-45105%2C_CVE-2019-17571%2C_CVE-2021-4104)
https://delphixdocs.atlassian.net/wiki/spaces/CD/pages/4227213/Delphix+product+security
https://support.delphix.com/Support_Policies_and_Technical_Bulletins/Technical_Bulletins/TB095_log4j_Vulnerabilities_(CVE-2021-44228%2C_CVE-2021-45046%2C_CVE-2021-45105%2C_CVE-2019-17571%2C_CVE-2021-4104)
https://delphixdocs.atlassian.net/wiki/spaces/CD/pages/4819106/Uninstalling+the+Delphix+connector+service+from+the+target+database+servers
https://support.delphix.com/Support_Policies_and_Technical_Bulletins/Support_Policies/Product_Lifecycle_Policies_(KBA1003)
https://delphixdocs.atlassian.net/wiki/spaces/CD/pages/4227974/Product+security
https://support.delphix.com/Support_Policies_and_Technical_Bulletins/Technical_Bulletins/TB095_Log4j_Vulnerabilities_(CVE-2021-44228%2C_CVE-2021-45046%2C_CVE-2021-45105%2C_CVE-2019-17571%2C_CVE-2021-4104)
https://delphixdocs.atlassian.net/wiki/spaces/CD/pages/4227213/Delphix+product+security
https://support.delphix.com/Support_Policies_and_Technical_Bulletins/Technical_Bulletins/TB095_log4j_Vulnerabilities_(CVE-2021-44228%2C_CVE-2021-45046%2C_CVE-2021-45105%2C_CVE-2019-17571%2C_CVE-2021-4104)
https://delphixdocs.atlassian.net/wiki/spaces/CD/pages/4819106/Uninstalling+the+Delphix+connector+service+from+the+target+database+servers
https://support.delphix.com/Support_Policies_and_Technical_Bulletins/Support_Policies/Product_Lifecycle_Policies_(KBA1003)
https://delphixdocs.atlassian.net/wiki/spaces/CD/pages/4227974/Product+security

Continuous Compliance – Continuous Compliance Home

Release notes – 93

3.2.19.2 Fixed Issues

Bug Number Description

DLPX-48506 The issue with the VSAM masking job failing with an error message, "Multiple
entries with the same key: FILLER" is now fixed.

DLPX-64060 For the "Define Fields" popup in File Inventory, the previously saved algorithm is
now displayed as selected. If domain and algorithm were not assigned, then
selecting a domain will not select the respective default algorithm in the algorithm
field.

DLPX-67419 The issue with the generation of the Generic Security Services API exception when
performing data-level profiling on a Kerberized database is now fixed.

DLPX-69263 The issue with the failure of masking Hana DB using an extended connector when
binary columns are masked or present for OTF jobs is now fixed.

DLPX-75726 The issue with the clearing of the file format configurations when modifying the
file masking pattern is now fixed.

DLPX-76752 Time format now includes seconds on the Monitor page for a better user
experience.

DLPX-77036 The issue with setting Null for owner_id on referenced objects when deleting a
user and resulting in NPEs is now fixed.

DLPX-77145 The issue with being unable to run any jobs - NPE in
getTotalXmxOfRunningExecutions is now fixed.

DLPX-77166 Extended algorithms that support tokenization are now available to assign as the
tokenization algorithm in domains.

DLPX-77233 PostgreSQL JDBC driver is upgraded to version 42.2.23.

DLPX-77258 This release fixes a bug in Data Level profiling when the specified schema is not
the user's default schema.

DLPX-77401 The issue with not being able to extract the unmasked fields using API is now
fixed.

Continuous Compliance – Continuous Compliance Home

Release notes – 94

Bug Number Description

DLPX-77502 This release now adds an end-point (POST) for file-field-metadata API.

DLPX-77503 Inventory GUI now uses a POST API end-point.

DLPX-77506 The issue with the failure of Data level profiling if the EnableDataLevelCount
application is set to True is now fixed.

DLPX-77521 The masking engine now bars multiple headers and trailers for the record type.

DLPX-77524 This release adds filters to the table-metadata API.

DLPX-77594 The issue with a regular user not being able to submit an inventory change is now
fixed.

DLPX-77629 This release changes the field labels from 'Prescript' and 'Postscript' to 'Pre SQL
Script' and 'Post SQL Script' respectively in the Masking Job UI.

DLPX-77636 Job execution API now provides a job status filter to enhance the user experience.

DLPX-77688 The Character Mapping Algorithm's non-editable preserve range when editing the
algorithm is now fixed.

DLPX-77718 Users will now be able to associate a new parameter 'Whole File Masking' for any
files listed on the Fixed File Rule Set page.

DLPX-77720 The issue with the displaying of an error message,
"java.lang.NumberFormatException" when using Save & View option during the
environment copy operation is now fixed.

DLPX-77767 Previously, the Delphix Masking engine used the incorrect HTML response code
of 400 (Bad Request) for objects that could not be manipulated because they
were currently in use. This release changes that to code 409 (Conflict).

DLPX-77786 This release blocks the creation of multiple header/trailer record types.

Continuous Compliance – Continuous Compliance Home

Release notes – 95

Bug Number Description

DLPX-77869 The issue where DESC order indexes were not being dropped and re-created as
part of the Oracle Drop Indexes task has now been resolved. Functional indexes,
including DESC order indexes, are now dropped and re-created on Oracle tables
that contain any masked columns.

DLPX-77931 This release adds a translator to support Backward compatibility for PUT /file-
field-metadata/

DLPX-77962 Users will now be unable to update fields like position and length for a fixed-width
file if the 'Whole File Masking' feature is enabled.

DLPX-77963 For any Fixed-Width file, if the 'Whole file masking' option is selected, then Kettle
Reads the complete content of the file and passes it as one single record to the
configured algorithm.

DLPX-77976 This release replaces all the "NULL" values for the user_id column of the algorithm
table by the ID of a Delphix internal user called 'deleted-user'.

DLPX-78105 Users will now see a proper error message when creating/updating the
mainframe field if the provided date format is invalid.

DLPX-78116 This release adds an 'istokenizationSupported' flag in the Algorithm API response.

DLPX-78161 Created a function that uploads files bypassing tomcat's /tmp directory.

DLPX-78422 The issue with the logical key not being added to the table in Rule Set via GUI if
the user is not the schema owner is now fixed.

DLPX-78615 The issue with masking job throwing an exception while logging certain
messages from plugin algorithms or driver support modules (This issue resulted
in job deadlock during cleanup) is now fixed.

DLPX-78680 This release performs a clean-up of an obsolete lookup file attachment after
making the import of an FTR-v2 algorithm.

DLPX-78740 The issue with the changing of an algorithm key when making the import of an
FTR-v2 algorithm is now fixed. This release keeps the algorithm key unchanged.

Continuous Compliance – Continuous Compliance Home

Release notes – 96

Bug Number Description

DLPX-78743 This release updates all the masking dependencies on the Apache log4j library to
version 2.15.0.

DLPX-78864 This release updates Log4j to version 2.0.17.

DLPX-78943 This release updates the log4j version to 2.17.1.

3.2.20 Release 6.0.11.0

Bug Number Description

DLPX-55595 The issue where the Edit job dialog closes and leaves the screen greyed out with
no errors while jobs are running has now been resolved.

DLPX-55595 The issue where the Edit job dialog closes and leaves the screen greyed out with
no errors while jobs are running has now been resolved.

DLPX-65971 The issue where Cancel Masking job fails with "Execution status must be
RUNNING, but is SUCCEEDED" has now been resolved.

DLPX-67558 The issue where a Masking job appears to hang when masked columns are
unicode, but the primary keys are non-unicode, has now been resolved.

DLPX-69778 SAML response should no longer be logged on successful SSO login.

DLPX-70104 Enhanced the date format validation for file-field-metadata and mainframe-
dataset-field-metadata API.

DLPX-70499 The Monitor Page will now show an informative message if no jobs are returned.

DLPX-72196 The issue when editing column properties for a file based inventory with no value
selected for the ID Method field causing no validation to show has now been
resolved.

Continuous Compliance – Continuous Compliance Home

Release notes – 97

Bug Number Description

DLPX-73326 There was an issue where when copying an environment, a dialog box shows a
message that passwords will not be saved for connectors, but in the copied
environment, the password information is present and Test Connection succeeds
without any change. This issue has now been resolved.

DLPX-74245 The issue with inconsistent deletion behavior for a referenced database, file, and
dataset connectors has now been resolved.

DLPX-74745 The DEFAULT_MULTIPHI_ALGORITHM application setting has been renamed to

DEFAULT_MULTIPLE_PROFILER_EXPRESSION_ALGORITHM .

DLPX-75948 The issue showing inconsistent breadcrumbs for the VSAM/Mainframe Inventory
screen has now been resolved.

DLPX-76365 The issue where the Trans Level Info table grows without bound has now been
resolved.

DLPX-76574 The issue causing a failure to retrieve the ERROR or Warning column type has now
been resolved.

DLPX-76678 Added validation to disallow null values in the logical key columns at the time of
create or update.

DLPX-76707 The issue where update algorithm shows an error with, "installed by the plugin
[plugin name], cannot be modified independently" has now been resolved.

DLPX-76847 The issue where Masking PK on Oracle adds ROWID to SELECT but uses PK in
UPDATE has now been resolved.

DLPX-76931 The issue where the Masking UI strips extra characters from connector hostname
when hostname exceeds max character limit has now been resolved.

DLPX-77056 The ruleset deletion validation message has been updated.

DLPX-77075 The issue where masking an MSSQL date filed caused the error, "conversion
failed when converting date and/or time from character string" has now been
resolved.

Continuous Compliance – Continuous Compliance Home

Release notes – 98

Bug Number Description

DLPX-77103 The issue where mixing extensible algorithms and mapplets in a VSAM jobs
causes the job to crash has now been resolved.

DLPX-77138 The issue where the use of Carriage return \r breaks the inventory page when
used in mainframe redefine condition has now been resolved.

DLPX-77139 The issue where V2021_04_05_2__fix_algorithm_plugin_metadata
migration may fail with a "FileNotFound" exception has now been resolved.

DLPX-77159 The issue with VSAM Unmasked fields being truncated when redefines are
present and an algorithm returns non-null results for null input has now been
resolved.

DLPX-77267 The issue where an XML masking job can hang when GSSAPIAuthentication is
enabled on the sftp server has now been resolved.

DLPX-77542 The issue where an extended connector SQL count fails when the column name
contains the word 'FROM_DATA' in custom SQL has now been resolved.

DLPX-77544 The issue where deleting a masking user causes the deletion of the masking
users' objects (meaning potential loss of important information, including
historical information) has now been resolved.

DLPX-77710 The issue with a missing index on an Oracle DB after a successful masking job
run has now been resolved.

3.2.21 Release 6.0.10.0

Bug Number Description

DLPX-59886 You can now set a timeout for the FTP connections.

DLPX-70680 The issue with the increasing of the JobLogs without bounds has now been
resolved.

DLPX-71259 Masking Oracle LONG RAW length is now set to 0 characters.

Continuous Compliance – Continuous Compliance Home

Release notes – 99

Bug Number Description

DLPX-71993 The need for the 'Repository' on the Masking Monitor page is now removed.

DLPX-73059 The issue with the Masking Engine throwing the 'Unsupported Property Error' in
application logs for properties that differ in the case from the actual properties'
has now been resolved.

DLPX-74740 Masking File Format Import error now shows the list of invalid special characters
present in the file name.

DLPX-74760 The issue with the failure of the POST /import with "Unknown document version
UNRECOGNIZED" when the source engine version is newer than the destination
engine version has now been resolved.

DLPX-75441 The issue withmaskedObjectNamenot populating the execution events when
masking files have now been resolved.

DLPX-75487 The issue withDMS_ROW_IDas a column name in the Masking Rule Set causing
jobs to fail has now been fixed.

DLPX-75712 The "About" page now lists the correct patent number.

DLPX-75868 The issue with the DataLevel Profiling resulting in an abort with "TypeError:
Cannot find function getInteger in object false" has now been resolved.

DLPX-76009 The issue with the failure of the 'File format id greater than a specific number'
when trying to update the file format ruleset via the API only has now been
resolved.

DLPX-76063 The issue with the failure of the DateShift Algorithm when masking the VSAM
(Mainframe) numeric data type has now been resolved.

DLPX-76068 Masking now allows passwords that are longer than 12 characters.

DLPX-76134 The issue with the Welcome screen displaying "User can launch 'Create Job'
wizard" when they are not able to have now been resolved.

DLPX-76352 Delimited File masking no longer truncates white-space only fields.

Continuous Compliance – Continuous Compliance Home

Release notes – 100

Bug Number Description

DLPX-76405 Multi-column algorithms now display a better error message when logical fields
are missing.

DLPX-76428 For masking operation, the Advanced Oracle Connector now rounds decimal
numbers to integers.

DLPX-76450 The Payment Card framework UI now permits configuring
minimumMaskedPositions to 0.

DLPX-76493 The issue with the MSSQL instance name property not being passed by default
when connecting has now been resolved.

DLPX-76541 The issue with the file masking job failure using a pattern with a Windows-based
FTP server has now been resolved.

DLPX-76566 The issue with the profiling Job failure with the 'Couldn't get row from result set'
error due to conversion unsupported has now been resolved.

DLPX-76608 The plugin's authorization to delete files in the temp directory is now granted.

DLPX-76610 The issue with the IP SFTP Masking failure to delete the file has now been
resolved.

DLPX-76670 The issue with the masking Job failure with the 'Conversion failed from string to
uniqueidentifier data type' error has now been resolved.

DLPX-76821 The issue with the throwing ofJSchExceptionfor pattern-based SFTP masking
with file count > 10 has now been resolved.

3.2.22 Release 6.0.9.0

Bug Number Description

DLPX-57961 Inventory export fails silently when a dataFile has fileFormats = NULL.

DLPX-64329 v5 API: Create an endpoint to copy environment objects in the same/different
environment.

Continuous Compliance – Continuous Compliance Home

Release notes – 101

Bug Number Description

DLPX-68807 DateShift algorithm example should exclude invalid entries in the UI pop-up.

DLPX-69728 The active CIFS/NFS mount is getting disconnected after the upgrade.

DLPX-72383 Masking job hangs due to "Unable to acquire lock for job removal before
timeout.".

DLPX-73344 Internal server error when importing invalid delimited or fixed-width file format.

DLPX-74409 Masking Engine: Upgrade slf4j-ext-1.7.25.jar to slf4j-ext-1.7.30.jar.

DLPX-74415 Masking Engine: Upgrade Guava version to 30.1-jre.

DLPX-74882 Masking's SFTP client no longer compatible with SolarWinds and Goanyware
SFTP servers.

DLPX-74913 Inventory exports do not include the notes field.

DLPX-74941 Create a sync state on export for syncable objects that have null sync states.

DLPX-75005 Importing the COMPONENT type algorithm does not change the sync state object
type.

DLPX-75202 Batch Masking and Failed kettle jobs may fail to terminate.

DLPX-75235 Secure lookup GUI: Add support to specify remote file URI.

DLPX-75244 Extensible driver test fails "Parameter 'directory' is not a directory" for the
removed driver.

DLPX-75296 Sync import fails for an object having files with space in the filename.

DLPX-75307 Multi-column algorithm assignment details are missing from CSV inventory
export.

DLPX-75308 SQLFeatureNotSupportException method not supported ...getSchema().

Continuous Compliance – Continuous Compliance Home

Release notes – 102

Bug Number Description

DLPX-75311 Debug message with %s logged when using Regex Decomposition Algorithm.

DLPX-75437 LastNameSeparator text box is not disabled for default dlpx-core:FullName
algorithm.

DLPX-75440 XML masking job fails with "Sequencer step still had unwritten rows!".

DLPX-75468 Upgrade MySQL driver org.mariadb.jdbc:mariadb-java-client from 2.4.1 to latest
available version 2.7.2.

DLPX-75516 Updated Masking Web API version to 5.1.9.

DLPX-75520 Fixed an issue that could cause XML masking jobs to stall or fail with the error
"Sequencer step still had unwritten rows!".

DLPX-75644 Added new "UserDirIsRoot"flag to the SFTP type connector.

DLPX-75768 Row limiter can still deadlock jobs in some failure cases.

DLPX-76267 Sync export fails with insufficient memory available in JVM error.

3.2.23 Release 6.0.8.0

Bug Number Description

DLPX-66147 Environment errors occur after deleting a referenced Mainframe connector.

DLPX-71318 Transformation - SQL check for CREATE and DROP IDENTITY Column is not
using Schema.

DLPX-71489 Masking plugin API does not include the plugin author from Jar metadata.

DLPX-72581 Masking usernames and emails not redacted in support bundles.

DLPX-72653 Masking Job "Row Limit" UI shows 20 to be the lowest limit - This has been fixed
to reflect 100 as the lowest.

Continuous Compliance – Continuous Compliance Home

Release notes – 103

Bug Number Description

DLPX-73207 Table name for MSSQL with single quote appears incorrectly on inventory page.

DLPX-73328 Incorrect tooltip text displayed for Admin link in footer.

DLPX-74152 Unable to edit ruleset from UI after adding tab (4 space) as an "End Of Record" in
file ruleset.

DLPX-74190 Sync import of global settings fails with NullPointerException in an extended
algorithms tearDown method.

DLPX-74426 PostgreSQL driver got updated from 42.2.10 to 42.2.19 version.

DLPX-74612 Oracle Masking Job fail with FanManager - unable to create ONS subscriber.

DLPX-74638 Bad example format in Date Algorithm GUI.

DLPX-74844 Algorithm UI breaks with JSON special characters in the algorithm extension
JSON.

DLPX-74849 Adding a new field to a record type via the GUI incorrectly always sets the field to
be masked.

DLPX-74875 Importing pre/post script into the same environment with the same file name
and job name deletes the file.

DLPX-74881 Certain algorithm plugins causes minor breakage in Algorithm Settings Screen.

DLPX-74967 New Date Shift algorithms do not allow for any time zone specifiers in the date
format.

DLPX-74974 InvalidKeyException "No installed provider supports this key: (null)".

DLPX-74990 Specifying Backspace character("\b") as enclosure for delimited files via API
does not throw an error, but crashes UI.

DLPX-75246 Mask Value Range for Segment Mapping (legacy) not getting saved from GUI.

DLPX-75290 Cannot use MSSQL or JTDS driver in SDK as extensible framework.

Continuous Compliance – Continuous Compliance Home

Release notes – 104

3.2.24 Release 6.0.7.0

Bug Number Description

DLPX-45399 Improve masking test connector errors.

DLPX-57910 Control character field delimiters are replaced incorrectly in delimited file
masking.

DLPX-67246 The UI and the API should have the possibility to LOCK a user account.

DLPX-70837 Update MDS "All Privileges" role to have correct privileges.

DLPX-70844 End of Record options for file masking is misleading.

DLPX-70885 Masking API to submit update password request with forgot password token.

DLPX-71125 Masking Bundle generation is very slow.

DLPX-72036 UI sync operations initiate but fail; no evidence in MDS or logs.

DLPX-72121 Algorithm description field limit on UI should be same as new API limit i.e 8192.

DLPX-72424 String masking algorithm results in null values when masking oracle LONG(0)
columns.

DLPX-72501 Regression in delimited file allowed Delimiters.

DLPX-72509 DateShift cast of DATE to DATETIME is not range cognizant.

DLPX-72551 FreeTextRedactionExtension translator does not properly set profileSetId when
API version is v5.1.3 or less.

DLPX-72731 Incorrect handling end-of-record (EOR) character embedded in an enclosure.

DLPX-72734 The plugin VIEW privilege is no longer required to add, update, or delete a plugin.

Continuous Compliance – Continuous Compliance Home

Release notes – 105

Bug Number Description

DLPX-72878 Migration V2019.04.11.0 wrongly assumes role with role_id==1 always present.

DLPX-72879 Extensible algorithm numeric to string conversion is inconsistently producing
input String with scientific notation.

DLPX-73068 Fixed an issue that causes numeric algorithms using the extensibility framework
to fail when applied to fixed-width files.

DLPX-73157 Masking job queued failing immediately as unable to get the execution ID.

DLPX-73187 Custom sql inside the ruleset is not getting auto-generated in case the custom
property file is used.

DLPX-73302 Remove GUI validation to support multiple characters for the delimiter.

DLPX-73327 Job with multiple tables/files that differs only by case run indefinitely.

DLPX-73384 Special characters in mysql database instance names are not properly escaped.

DLPX-73441 Masking IP on DB2 using 'Direct Row Access' with ROWID is failing with
conversion error.

DLPX-73477 Prevent locked user accounts from logging in when SSO is enabled.

DLPX-73599 Fixed an issue that causes loss of sub-millisecond precision when processing
MS SQL Server datetime types.

DLPX-73671 Uploading Hive driver on the masking engine is failing with
InsufficientJvmPermissionException.

DLPX-73702 Extended Connector Profile Job fails with FilePermission required for "target": "/
tmp/jtds2094637632459524041.tmp" with "action": "write".

DLPX-73805 Masking UI: SM editor spins when create 4 * alpha-numeric segments.

DLPX-73886 Upgrade Masking API version to v5.1.7.

DLPX-74055 Allow masking admin users to have api access rights revoked.

Continuous Compliance – Continuous Compliance Home

Release notes – 106

Bug Number Description

DLPX-74135 Empty string delimited inside of enclosures results in masking job failure.

DLPX-74185 Character Mapping algorithms with more than 3 characterGroups do not display
correctly in UI.

DLPX-74188 Masking connector properties API/UI needs to redact passwords.

DLPX-74292 Custom property file is getting ignored for the source connector in case of OTF
job resulting in job failure.

3.2.25 Release 6.0.6.0

Bug Number Description

DLPX-59842 Fixed an issue causing jobs to fail with out of memory or stack overflow
exceptions when the number of tables exceeded a threshold of approximately
800 per stream. It should no longer be necessary to set job streams greater than
1 to avoid this issue.

DLPX-64493 The Roles API is missing elements for the following categories: Custom
Algorithms, Diagnostic, Inventory Report, and Approve Inventories.

DLPX-71396 Settings link is missing from footer for user without setting permissions

DLPX-71397 Settings link in footer redirects to profilerSettings.do instead of default
jdbcDriver.do

DLPX-71830 Database Tokenize/re-identify job's commit size is not set to default post-
upgrade

DLPX-72079 MSSQL JDBC Urls should accept 'database' as a valid parameter

DLPX-72095 Some extended connectors db drivers - throw errors for connection properties
they don't understand

DLPX-72311 Exposed DEFAULT_MULTIPHI_ALGORITHM setting via API.

Continuous Compliance – Continuous Compliance Home

Release notes – 107

Bug Number Description

DLPX-72385 Edit Custom Algorithm - Name of Previously Uploaded File No longer Visible.

DLPX-72460 Large environment export hangs.

DLPX-72564 "Add Application" option should be on top inside the action dropdown list.

DLPX-72704 Expanded LK table text limit 1024 characters.

DLPX-72867 Mssql driver is not working with the extended connector in case the
instanceName is given in the JDBC url.

DLPX-73082 Unable to assign algorithm to XML fields which contain special characters.

DLPX-73212 Copying an environment that contains a profile or tokenization job causes the
environment export to fail with NullPointerException.

DLPX-73338 XSS attack is getting executed on the environment overview page.

DLPX-73502 OTF job with generic connector is failing.

3.2.26 Release 6.0.5.0

Bug Number Description

DLPX-62372 API authorization token used by the UI expires before the UI login session.

DLPX-70685 Removal of format installation via FTP, SFTP, and mount for XML and
Mainframe File Format.

DLPX-71387 Editing recordType to change recordTypeQualifier results in empty JSON.

DLPX-71540 Added Application option is not displayed to the user without copy environment
permission.

DLPX-71686 Deleting all mountFilesystem objects nor rebooting does not stop the running
portmapper and auxiliary NFS RPC services.

Continuous Compliance – Continuous Compliance Home

Release notes – 108

Bug Number Description

DLPX-50282 Masking support for Oracle XMLType.

DLPX-71666 Characters in Ignore Characters causes Non-Conforming error in Segment
Mapping.

DLPX-71758 Propagated SSL related system properties set in Tomcat to Kettle.

DLPX-71734 Masking SQL Server datatype datetime2 generate conversion error.

DLPX-71824 DB-To-FIle masking job failure.

DLPX-71159 Uploading copybook file format fails if a filename contains multiple full stops.

DLPX-71915 Segment mapping doesn't mask and reports success when positions are
misconfigured.

DLPX-71531 Extended algorithm internal conversion of numeric to string types produces
unexpected results.

DLPX-72003 Newline characters in the description of an extended algorithm break the
Algorithm Settings UI.

DLPX-72028 Using Algm-SDK 1.1 on Windows, algm builds fail w/ 'Illegal char <:> at index 2:'.

DLPX-72128 Overly aggressive quoting of Oracle usernames breaks proxy users.

DLPX-72194 Upgraded MSSQL driver to latest version 8.4.1.

DLPX-72267 Made default API version configurable through application settings.

DLPX-72263 Domain value is not retained on defining a file field causing NPE while job
execution.

DLPX-72308 RPC serviceUser can delete an active mount which resulted in active RPC
services.

DLPX-72367 Null Pointer Exception when applying a String type extended algorithm or non-
legacy Secure Lookup to numeric type columns.

Continuous Compliance – Continuous Compliance Home

Release notes – 109

3.2.27 Release 6.0.4.0

Bug Number Description

DLPX-69407 Hybrid jobs are not syncable.

DLPX-69476 File connector sync throws an error for missing passwords.

DLPX-69834 The user without permission can access UI components using a direct URL.

DLPX-70053 VSAM job performance still poor when file wildcards are used due to flaw in
DLPX-68780 fix.

DLPX-70265 NPE along with 'problem-saving mapplet' pop-up is displayed for invalid
filereferenceId.

DLPX-70412 OTF Masking SYBASE could not mask 2 tables with the same name but different
owners.

DLPX-67886 Updated the SAP ASE (Sybase) JDBC Driver.

DLPX-70567 Implemented a job queue to regulate memory consumption.

DLPX-70642 Copy Ruleset performance improvement.

DLPX-69699 VSAM Masking - Inventory blank after Copy Rule Set fails to copy and corrupts
Rule Set and File Format.

DLPX-67501 Fixed an issue that caused Delimited and Fixed-width data level profiling jobs
with an FTP or SFTP connector to hang on large files.

DLPX-63065 Updated jquery.js library for Masking to 1.12.0d.

DLPX-69124 Fixed an issue discovering column metadata for Oracle databases that could
result in incorrect column lengths and masking jobs failing on update because
values are not trimmed correctly.

DLPX-70651 application_nm is not trimmed automatically during an upgrade.

Continuous Compliance – Continuous Compliance Home

Release notes – 110

Bug Number Description

DLPX-70878 Fixed an issue where an on-the-fly Masking job with the disable constraints
feature on attempted to use null as the database password.

DLPX-63491 File Masking OTF jobs create the file at the end of the job instead of
continuously writing masked rows.

DLPX-59952 OutOfMemory in File Masking when masking large or many files.

DLPX-70395 Renamed Delphix FT algorithm properties "Blacklist" and "Whitelist" to "Denylist"
and "Allowlist".

DLPX-70807 Removed Row Types for Database Inventory.

DLPX-70662 Removed Scheduler from Masking.

DLPX-71000 Fixed an issue where CLOB and NCLOB masked values were being incorrectly
truncated on Oracle. Refresh the ruleset for the fix to take effect.

DLPX-70982 Masking LDAP user is locked locally when LDAP auth fails.

DLPX-71235 In the monitor screen, all tables show failed if any tables are failed.

DLPX-71320 Removed/hid the environment export checkbox from the roles page.

DLPX-71310 The profiling job fails if a profiler set matches all columns of a table using
column profiling.

DLPX-71424 Disable triggers, drop constraints, drop indexes, prescripts and postscripts
target source database with OTF jobs and advanced connectors.

DLPX-71530 Unmasked values with only spaces result in (null) masked value.

Continuous Compliance – Continuous Compliance Home

Release notes – 111

3.2.28 Release 6.0.3.0

Bug Number Description

DLPX-63874 ExecutionComponent status for unwritable files was incorrect when masking
over SFTP.

DLPX-68123 Masking Engine does not re-read Kerberos config dynamically.

DLPX-68725 Upgraded tomcat to 9.0.31 or later.

DLPX-69655 loginid did not support '@' when creating connectors.

DLPX-69492 MSSQL driver requires java.net.socketpermission to accept permission which is
not present in MDS.

DLPX-69493 Execution event is not getting generated for profile job in case of missing
permission.

DLPX-69761 Masking Jobs, fail to save added Pre-Scripts.

DLPX-69766 Masking GUI: Remove any script from masking job dialog removes both the
scripts.

DLPX-69782 Export/Import Environment using engine sync API.

DLPX-69780 UI based Export Global Object using engine sync API.

DLPX-46853 Switch from jTDS to Microsoft SQL Server JDBC driver.

DLPX-65380 Masking Jobs with commit size>=340 are getting failed on Azure Managed SQL
instance.

DLPX-69815 Secure_shuffle algorithm fails for decimal data type using extended connector.

DLPX-69806 Inventory UI is susceptible to URL based XSS attack.

DLPX-69779 Mapplet's input and output fields are susceptible to XSS attack.

Continuous Compliance – Continuous Compliance Home

Release notes – 112

Bug Number Description

DLPX-69832 Import Environment using sync API.

DLPX-69833 UI: Import Global Object using sync API.

DLPX-69861 Define Fields 'Field Name' input is susceptible to XSS attack.

DLPX-69888 XSS script in file pattern is getting executed.

DLPX-69960 Unable to Edit File format if the Enclosure is set to " (double quote).

DLPX-69671 Delimited File Masking with delimiter inside enclosure is handled incorrectly.

DLPX-69922 Inventory UI is susceptible to XSS attack using malicious column names.

DLPX-69941 Error report on job monitor page is susceptible to XSS attack.

DLPX-69989 dateFormat field of date algorithms is susceptible to XSS attack.

DLPX-69920 Import/Upload file UI is susceptible to iframe based XSS attack, throughout the
application.

DLPX-69919 Redaction value input field of Free Text Redaction algorithm is vulnerable to XSS
attack.

DLPX-69917 Export Inventory UI is susceptible to URL based XSS attack.

DLPX-70055 Masking - Inventory for oracle always picking up NUMBER (22) instead of real
NUMBER definition.

DLPX-70046 OTF job with decimal data type and secure shuffle algorithm is changing the last
digit after the decimal point of the unmasked column in case of Hana database.

DLPX-70050 CSV and XML file masking performance improvements.

DLPX-70074 Copying an environment does not create a sync state.

DLPX-69851 Masking jobs fail to set fetch size large enough in the input step query.

Continuous Compliance – Continuous Compliance Home

Release notes – 113

Bug Number Description

DLPX-69672 Delimited File Masking and Segment Mapping is not ignoring delimiter if
specified as ignore character.

DLPX-69954 Delimited file masking row parsing incorrect when a field contains multiple
enclosure characters and a delimiter.

DLPX-70178 Delimited Files: Improve validation for delimiter and enclosure from API.

DLPX-70182 Improved validation for delimiter and enclosure from GUI.

DLPX-70217 "Max number of jobs" Setting on masking engine should be API accessible.

DLPX-70379 For the multi-tenant job, the source connector dropdown doesn't show the
connector in the list if the connector instance name contains the space in
between.

DLPX-70558 searchEnvironment parameter in URL is vulnerable to XSS attack.

DLPX-70557 Copy Ruleset has a scale performance issue with a large number of tables/
columns.

DLPX-70641 Unmasked data logged in the support bundle logs when using extended
connector with enable_logger functionality on

3.2.29 Release 6.0.2.0

Bug Number Description

DLPX-65833 Removed unnecessary error out on passwords being provided for file
connectors using the mount mode.

DLPX-65319 New API endpoint for mainframe-dataset-record-type.

DLPX-68153 If creating a mapping algorithm in the Masking UI fails, the failure is now
properly reported to the user.

DLPX-67882 Upgrade the PostgreSQL JDBC driver to version 42.2.10.

Continuous Compliance – Continuous Compliance Home

Release notes – 114

Bug Number Description

DLPX-58184 List rule sets alphabetically on the inventory page.

ES-662 Added Sync support for data set connectors.

ES-664 Added Sync support for mainframe data set formats

ES-671 Added Sync support for Mainframe data set jobs

ES-665 Added Sync support for Mainframe data set rule sets.

DLPX-68786 Masking job misreported successful tables as 0 rows masked.

DLPX-67517 Added support for on-the-fly jobs from a database to a delimited file.

DLPX-68842 Jobs slowed down over time - after running many jobs.

DLPX-68985 A memory leak occurred for Informix/oracle database on every test connection
using an extended connector.

DLPX-68780 VSAM Input step performance was negatively affected by the number of
unmasked fields.

DLPX-67886 Sybase jConnect driver failed when a batch contains string parameters of
different sizes and HOMEGENOUS_BATCH=true.

DLPX-65841 Fixed an issue where a REST API call to GET /syncable-objects?
object_type=MASKING_JOB would fail after environment copy.

DLPX-69156 Test Connection always returned connection succeeded in case of wrong jdbc
url with extended connector.

DLPX-69238 Secure Shuffle algorithm, when used with extended connectors, left data
unmasked but reports success.

DLPX-69244 Importing a 5.3.x Masking Environments into 6.0.1 ME, the Application Name is
converted to numeric.

DLPX-69154 Fixed an issue where setup could fail if the DNS Domain is empty.

Continuous Compliance – Continuous Compliance Home

Release notes – 115

Bug Number Description

DLPX-69622 Data level profiling jobs fail with "Couldn't find field 'XYZ' in row!"

3.2.30 Release 6.0.1.0

Bug Number Description

DLPX-64530 Allow a JDBC URL to contain a single quote (') character.

DLPX-65302 Add a status column to the audit log page to report each recorded action's result
(success/failure).

DLPX-65622 Fix an issue where an in-place, multi-tenant XML file masking job that used file
patterns did not have an execution component.

DLPX-65974 Updated log statements in the file masking job logs to reflect that file
connectors may use mounts in addition to FTP and SFTP.

DLPX-66127 Fixed a job monitoring issue when counting the rows in table with more than 2+
billion (2,147,483,647) rows.

DLPX-62130 Fixed an issue with the XML file inventory GUI that prevented users from
assigning algorithms to both a tag and its attribute(s).

DLPX-66272 Fixed an issue where an on-the-fly job using generic connectors used an
incorrect database password.

DLPX-66600 Removed the requirement to restart the Masking service after changing email
settings.

DLPX-66328 Fixed an issue with file masking jobs using multiple record types that could
cause the job to fail or corrupt the output.

DLPX-66557 Added support to the Date Shift algorithm for numeric data types.

DLPX-66517 Enhanced the GET /file-field-metadata endpoint to return the full XML XPath for
an XML field.

Continuous Compliance – Continuous Compliance Home

Release notes – 116

Bug Number Description

DLPX-66102 "Drop Indexes" checkbox now handles compound indices correctly for Sybase.

DLPX-66967 Fixed a Job Scheduler issue that caused a periodic job to only running once.

DLPX-67318 Prevent reordering of the XML file inventory GUI when an algorithm is assigned

DLPX-67317 On the XML file inventory GUI, open the algorithm assignment dialogue box with
a single mouse click

DLPX-66076 Added API endpoints for file recordTypes and recordTypeQualifiers

DLPX-65855 Optimize the performance of EngineSync import, export, and get syncable object
for large database rule sets.

DLPX-65987 Fixed an issue that caused data level profiling of a database to fail when a
column name was a special JavaScript word.

DLPX-67747 Fixed an issue that caused some delimited or fixed file masking jobs with
multiple record types of different lengths to fail.

DLPX-67470 Fixed delimited file masking to treat double quote (") characters in fields as
normal characters.

DLPX-67765 Updated the Sybase JDBC driver.

DLPX-67838 Fixed an issue that prevented XML File masking jobs from scaling above a few
thousand files.

DLPX-67832 Non-administrators can no longer regenerate the engine encryption key.

DLPX-67960 Make username searches on the Audit page case insensitive.

DLPX-68148 Fix an issue that caused an XML file masking job to run out of memory when
masking very large XML input files.

DLPX-46220 Import of extremely large object sets via the GUI XML feature is handled
inefficiently.

Continuous Compliance – Continuous Compliance Home

Release notes – 117

3.2.31 Release 6.0.0.0

Bug Number Description

DLPX-42385 Added a job execution event with information on how to resolve an Oracle
deadlock error (ORA-00060), see https://www.delphix.com/masking-help/
knowledge-base/KBA1853.

DLPX-47004 Added a job execution event with information on how to resolve an Oracle
snapshot too old error (ORA-01555), see https://www.delphix.com/masking-
help/knowledge-base/KBA1827.

DLPX-47662 Test connector detects that a file/mainframe connector targets a single file
instead of a directory and fails.

DLPX-52151 Fixed copy rule set to prevent leading/trailing spaces in a new rule set's name.

DLPX-55478 Correctly display file patterns, including escape characters, throughout the user
interface.

DLPX-55739 Fixed the disable constraint feature to support an Oracle constraint (a) created
by a different database user than the Masking job's database user and (b) using
a validation setting of "NOT VALIDATED".

DLPX-58958 Added support for LDAPS (LDAP over TLS/SSL).

DLPX-59060 Attach the correct PDF report to all job execution emails.

DLPX-59111 When editing a large rule set in the GUI, do not reset to the first page after editing
and saving a modification to a rule set component.

DLPX-59807 If a failure occurs during job generation, do not attempt to execute the job.

DLPX-60200 When uploading an SSH key, return an error if the name contains one of the
following restricted characters: \ (backslash), ; (semi-colon), % (percent), ?
(question mark), or : (colon).

DLPX-61630 Improved the performance for appending new mapping values to a mapping
algorithm.

https://www.delphix.com/masking-help/knowledge-base/KBA1853
https://www.delphix.com/masking-help/knowledge-base/KBA1827

Continuous Compliance – Continuous Compliance Home

Release notes – 118

Bug Number Description

DLPX-62214 Fixed PDF report download URLs.

DLPX-62593 Fixed creation of a PDF audit report on the Audit tab of the user interface.

DLPX-63365 Removed leading/trailing spaces from Masking object names on upgrade. For
naming rules, see the Getting Started > Naming Requirements section in the
documentation.

DLPX-63706 Fixed the XML file inventory GUI to show an algorithm edit button for a tag with
the same name as its parent.

DLPX-64691 Added support in the user interface for Cobol copybooks with a redefine
condition at level 01.

DLPX-64707 Improved the file record types user interface to (a) remove the unnecessary
length input and (b) clarify that the qualifier may be a regular expression.

DLPX-65274 Improved the performance of the copy environment feature.

DLPX-65314 Fixed an issue in the copy environment feature that removed file format
assignments from the source environment.

DLPX-65632 Fixed an issue in the segment mapping algorithm that caused duplicate
mappings if a minimum value was specified for the real values range.

DLPX-65860 For mainframe file masking, add support for a redefine condition on a field name
that contains a - (dash) followed by a digit.

DLPX-65866 Fixed an issue with the rule set GUI when displaying table names longer than 50
multi-byte characters.

Continuous Compliance – Continuous Compliance Home

Release notes – 119

3.3 Known issues

3.3.1 Release 16.0.0.0

Key Summary Workaround

DLPX-87283 Compliance Engine is unable to
mask a large dataset present in
Mainframe MVS storage.

In the case of in-place jobs with
large size datasets (i.e. more
size than the configured system
default size), users should
manually create the dataset with
the same name as the input
dataset, with a .msk extension at
the end. Allocate the newly
created dataset with more size
than the input dataset before the
job execution to resolve the
issue.

DLPX-87707 In very rare cases, the
Continuous Compliance Engine’s
storage can be filled with
masking job and inventory PDF
reports. This issue might be
encountered after generating
hundreds of thousands of
reports over multiple years.

None

DLPX-87852 Sorting the
monitorJobsDBCompleted

grid by the Status/Logs column
does not sort the rows that have
non-conforming data with the
Success status.

Users can set to “fail with non-
conformant data”, then sorting
works for success and failure
records.

Continuous Compliance – Continuous Compliance Home

Release notes – 120

DLPX-88335 Rapid scrolling through the
inventory tables in the presence
of a sluggish API response can
lead to an infinite loop of API
calls, resulting in the grid
becoming unresponsive and
stuck in a perpetual loading
state.

The problem occurs exclusively
during high-speed scrolling
within the grid. Upon
encountering this issue,
triggering a manual refresh will
restore the grid to the most
recently successfully loaded
page. However, in scenarios
where users continue to scroll
even after the page has become
unresponsive, a grid refresh may
not recover the previous state. In
such instances, a complete page
refresh is required.
To mitigate these issues, users
are encouraged to mitigate the
problem by using filters to
narrow down the grid data.

3.3.2 Release 15.0.0.0

Key Summary Workaround

DLPX-87283 Compliance Engine is unable to
mask a large dataset present in
Mainframe MVS storage.

In the case of in-place jobs with
large size datasets (i.e. more
size than the configured system
default size), users should
manually create the dataset with
the same name as the input
dataset, with a .msk extension at
the end. Allocate the newly
created dataset with more size
than the input dataset before the
job execution to resolve the
issue.

DLPX-87535 Copy privileges for custom roles
are not getting updated via the
Continuous Compliance UI and
API.

Users can duplicate this role,
uncheck copy privileges, and
save it via the UI. Or create a new
role via the API/UI. Updating the
role with API for copy privilege
will also give the same issue.

Continuous Compliance – Continuous Compliance Home

Release notes – 121

DLPX-87707 In very rare cases, the
Compliance Engine storage can
be filled with masking job and
inventory PDF reports. This issue
might be encountered after
generating hundreds of
thousands of reports over
multiple years.

None

DLPX-87852 Sorting the
monitorJobsDBCompleted

grid by 'Status/Logs' column
does not sort the rows that have
non-conforming data with the
“success” status.

The user can set to fail with non-
conformant data, then sorting
works fine for success and
failure records.

3.3.3 Release 14.0.0.0

Key Summary Workaround

DLPX-87283 Compliance Engine is unable to
mask a large dataset present in
Mainframe MVS storage.

In the case of In-place jobs with
large size data sets i.e. more size
than the configured system
default size, Users should
manually create the dataset with
the same name as the input
dataset with a .msk extension at
the end. Allocate the newly
created dataset with more size
than the input dataset before the
job execution to resolve the
issue.

3.3.4 Release 13.0.0.0

Key Summary Workaround

DLPX-85469 JSON file masking does not support the use of multi-
column algorithms on (a) Fields in two or more
different arrays (b) Fields at different levels in a single
multi-dimensional array.

None

Continuous Compliance – Continuous Compliance Home

Release notes – 122

•
•

•
•

3.3.5 Release 12.0.0.0

Key Summary Workaround

DLPX-85469 JSON file masking does not support the use of
a multi-column algorithms on

Fields in two or more different arrays.
Fields at different levels in a single multi-
dimensional array.

No workaround.

3.3.6 Release 11.0.0.0

Key Summary Workaround

DLPX-86196 Segment Mapping algorithms exported
using Engine Synchronization from releases
6.0.15.0 to 10.0.0.0 are not validated upon
import to 11.0.0.0.

View the imported algorithm
configuration in the UI and click
save.

DLPX-84875 User with create/edit permissions is not
able to create or edit the classifier

Assign domain view role to user.

DLPX-85469 JSON file masking does not support the
use of a multi-column algorithms on

Fields in two or more different arrays.
Fields at different levels in a single
multi-dimensional array.

No workaround.

DLPX-85560 Salesforce on the fly jobs fail with latest
CDATA driver, with a license error.

No workaround.

Continuous Compliance – Continuous Compliance Home

Release notes – 123

•
•

3.3.7 Release 10.0.0.0

Key Summary Workaround

DLPX-85469 JSON file masking does not support the use
of a multi-column algorithms on

Fields in two or more different arrays.
Fields at different levels in a single multi-
dimensional array.

No workaround.

DLPX-85560 Salesforce on the fly jobs fail with latest
CDATA driver, with a license error.

No workaround.

DLPX-84875 Unable to create/edit the classifier/
expression using the user with create/edit
permission of profiler role

Assign domain view role to user.

DLPX-85867 Incorrect non-conforming data count across
all the tables of a job, if at least one table has
non-conforming data.

No workaround.

3.3.8 Release 9.0.0.0

Key Summary Workaround

DLPX-84875 Unable to create or edit classifiers/
expressions as a user with create/edit
permission of the Profiler role.

Assign the domain view role to
user.

DLPX-85867 Incorrect non-conforming data count across
all the tables of a job, if at least one table
has non-conforming data.

No workaround.

Continuous Compliance – Continuous Compliance Home

Release notes – 124

3.3.9 Release 8.0.0.0

Key Summary Workaround

DLPX-84141 Masking Engine environment revisionHash
changes on profile job execution even though
there is no change in inventory

No workaround.

DLPX-85867 Incorrect non-conforming data count across all
the tables of a job, if at least one table has non-
conforming data.

No workaround.

3.3.10 Release 7.0.0.0

Key Summary Workaround

DLPX-84141 Continuous Compliance Engine
environment revisionHash changes on
every profile job execution even if there is
no inventory change.

No workaround.

DLPX-84525 Inventory Page fails to load on
Continuous Compliance Engines when
there are more than 32,767 masked
columns.

A possible workaround is to reduce the
number of masked columns on the
Engine to less than 32,765.

DLPX-85867 Incorrect non-conforming data count
across all the tables of a job, if at least
one table has non-conforming data.

No workaround.

3.3.11 Release 6.0.17.0

No known issues in this release.

Continuous Compliance – Continuous Compliance Home

Release notes – 125

3.3.12 Release 6.0.16.0

Bug Number Description Workaround

DLPX-82517 Issues w/ DB2 iSeries Connector License
Installation

No workaround.

3.3.13 Release 6.0.15.0

Bug Number Description Workaround

DLPX-81895 Data Profiling results are not shown at Job ->
Monitor page -> Results tab, in the case of
delimited, fixed, and XML files.

No workaround.

DLPX-82517 Issues w/ DB2 iSeries Connector License
Installation

No workaround.

3.3.14 Release 6.0.14.0

Bug Number Description Workaround

DLPX-82517 Issues w/ DB2 iSeries Connector License
Installation

No workaround.

3.3.15 Release 6.0.13.0

No known issues in this release.

Continuous Compliance – Continuous Compliance Home

Release notes – 126

3.3.16 Release 6.0.12.0

Bug Number Description Workaround

DLPX-78478 Reidentification of CM numeric
algorithm on decimal data is failing.

When the field is long enough, use the
Tokenization algorithm instead of CM
tokenization.

DLPX-78659 CM Numeric is not producing unique
results for the floating-point numbers.

Use an algorithm other than CM
Numeric algorithm for masking floating-
point numbers stored in a numeric field.

DLPX-79567 Drop index fails if an index with the
same name exists on the masked
columns across multiple tables for
MSSQL databases.

No workaround.

DLPX-79803 Masking with MSSQL database fails if
table name contains '['.

No workaround.

DLPX-79804 Masking with MSSQL database fails if
table name contains '\'.

No workaround.

3.3.17 Release 6.0.11.0

Bug Number Description Workaround

DLPX-78009 The masking job fails when masking
the primary key column if Drop
Indexes are not enabled along with
the Disable Constraints.

In addition to Drop Indexes, you must enable
Disable Constraints when masking primary
keys using built-in driver support functionality.
Advanced users who are not satisfied by
some limitations of the built-in Oracle support
for masking primary keys may also create
custom pre and post-scripts to perform both
drop indexes and disable constraints
operations.

DLPX-79803 Masking with MSSQL database fails
if table name contains '['.

No workaround.

Continuous Compliance – Continuous Compliance Home

Release notes – 127

Bug Number Description Workaround

DLPX-79804 Masking with MSSQL database fails
if table name contains '\'.

No workaround.

3.3.18 Release 6.0.10.0

No known issues in this release.

3.3.19 Release 6.0.9.0

No known issues in this release.

3.3.20 Release 6.0.8.0

Bug Number Description Workaround

DLPX-74882 Masking's SFTP client no longer compatible
with SolarWinds and Goanyware SFTP servers

No workaround.

3.3.21 Release 6.0.7.0

No known issues in this release.

3.3.22 Release 6.0.6.0

No known issues in this release.

3.3.23 Release 6.0.5.0

No known issues in this release.

3.3.24 Release 6.0.4.0

No known issues in this release.

3.3.25 Release 6.0.3.0

No known issues in this release.

Continuous Compliance – Continuous Compliance Home

Release notes – 128

3.3.26 Release 6.0.2.0

Bug Number Description Workaround

DLPX-69638 Masking job created on engine 6.0.1.1
or prior is failing after the upgrade to
version 6.0.2.0 or later

Masking jobs created in 6.0.1.x using a
HANA JDBC driver will need to be
updated to grant the following
permission

3.3.27 Release 6.0.1.0

No known issues in this release.

3.3.28 Release 6.0.0.0

Bug Number Description Workaround

DLPX-60397 If a mapping algorithm is included in
multiple jobs, only one job should be run
at a time. If multiple jobs are run at the
same time, then the mapping algorithm
might contain multiple mappings to the
same value or the jobs might deadlock.

Only run one job at a time.

DLPX-61405 Masking operation should wait for zfs
delete queue to drain

Replication may send more data than
expected if masking involves dropping
large DBF files.

DLPX-74882 Masking's SFTP client no longer
compatible with SolarWinds and
Goanyware SFTP servers

No workaround.

DLPX-64493 V5 API /roles endpoint missing certain
items

View and set these privileges through
the GUI

DLPX-66973 Date format is changed after importing
the environment

Either (a) use the GUI import feature and
then review the imported date formats
for correctness or (b) use EngineSync to
export/import jobs, which will not alter
the date format.

Continuous Compliance – Continuous Compliance Home

Release notes – 129

•

•

•

•

3.4 Deprecated and end-of-life features

3.4.1 Release 15.0.0.0

3.4.1.1 Deprecated features

Legacy Profiler
The legacy profiler for databases is now deprecated. It will reach End of Life and be removed from
Delphix Continuous Compliance in twelve months.

3.4.2 Release 11.0.0.0

3.4.2.1 Deprecated features

Job wizard UI page
The job wizard is deprecated as of this release. The job wizard offers a simplified job creation
experience, but only for a limited set of data platforms. We are incrementally upgrading the existing
Continuous Compliance UI pages with new, reactive interfaces and improved user experiences. As
part of that process, the job wizard's capabilities will be incorporated into the product's standard
workflows, which makes them available for all data sources.

3.4.2.2 End-of-Life features

ESXi 6.0 support

3.4.3 Release 10.0.0.0

3.4.3.1 Deprecated features

ESXi 6.5 and 6.7 VMware's end of technical guidance for ESXi is on 11/15/2023. To align our
support, Delphix will end support of ESXi 6.5 and 6.7 in version 15.0.0.0 (November 2023 release).

Continuous Compliance – Continuous Compliance Home

19 https://www.oracle.com/us/assets/lifetime-support-technology-069183.pdf
20 https://community.delphix.com/blogs/david-wells/2022/06/10/delphix-6015-continuous-compliance-important-infor
21 https://delphixdocs.atlassian.net/wiki/spaces/CD/pages/3480605/Tested+browser+and+operating+systems
22 https://www.oracle.com/us/assets/lifetime-support-technology-069183.pdf

Release notes – 130

•

•

•

•

•

•

3.4.4 Release 6.0.17.0

3.4.4.1 End-of-life features

Oracle 11.1 and 12.1 Details of the Oracle database end-of-life can be found in the Oracle Lifetime
Support Policy19.

3.4.5 Release 6.0.15.0

3.4.5.1 End-of-life features

Legacy algorithms & mapplets: The last algorithm migrations have completed in this version (6.0.15),
Legacy Algorithms are now EOL. For more information, see this Delphix Community Post20.

3.4.6 Release 6.0.12.0

3.4.6.1 End-of-life features

Legacy Secure Lookup: Legacy Secure Lookup has been removed and only the extensible version is
supported. Previous secure lookup instances have been moved to the extensibility framework.
Internet Explorer 11 support: Internet Explorer 11 is no longer supported by Delphix. Users are
requested to refer to the list of Supported browsers21.

3.4.7 Release 6.0.11.0

3.4.7.1 Deprecated features

Oracle 11.1 and 12.1: Details of the Oracle database end-of-life can be found in the Oracle Lifetime
Support Policy22.
TLS 1.0 and 1.1 These versions of TLS are known to be vulnerable, enterprise use is heavily
discouraged.

https://www.oracle.com/us/assets/lifetime-support-technology-069183.pdf
https://community.delphix.com/blogs/david-wells/2022/06/10/delphix-6015-continuous-compliance-important-infor
https://delphixdocs.atlassian.net/wiki/spaces/CD/pages/3480605/Tested+browser+and+operating+systems
https://www.oracle.com/us/assets/lifetime-support-technology-069183.pdf
https://www.oracle.com/us/assets/lifetime-support-technology-069183.pdf
https://community.delphix.com/blogs/david-wells/2022/06/10/delphix-6015-continuous-compliance-important-infor
https://delphixdocs.atlassian.net/wiki/spaces/CD/pages/3480605/Tested+browser+and+operating+systems
https://www.oracle.com/us/assets/lifetime-support-technology-069183.pdf

Continuous Compliance – Continuous Compliance Home

23 https://community.delphix.com/blogs/michael-torok/2021/08/12/delphix-end-of-life-notice-legacy-masking-algorith
24 https://community.delphix.com/blogs/sonali-sharma/2021/06/30/legacy-custom-algorithm-mapplet-end-of-life

Release notes – 131

•
•

•

•

•

•

•

3.4.7.2 End-of-life features

Oracle 10g support: 6.0.10.0 is the last release supporting Oracle 10.1 and 10.2.
Create/update of legacy secure lookup algorithms via UI: The ability to create and update legacy
secure lookup algorithms has been removed from the UI. This feature is still accessible through the
API endpoints.

3.4.8 Release 6.0.10.0

3.4.8.1 End-of-life features

Ruleset Edit: The Table Suffix, Add Column, Join Table, and List options were deprecated in the
6.0.3.0 release. These options have reached the end of life in the 6.0.10.0 release and have been
completely removed from the product. These options are the rarely used feature that can be achieved
using the following alternatives:

If you were using the Table Suffix functionality, you can achieve the same results with a series
of API calls (/table-metadata and /column-metadata endpoints).

For Add Column, Join Table, and List, you need to convert these settings to the equivalent
Custom SQL configuration before upgrading to 6.0.10.0 release.

3.4.9 Release 6.0.9.0

3.4.9.1 Deprecated features

Delphix has been creating new and improved versions of our existing algorithms, thus, Delphix would like to
provide formal notice of deprecation and planned End-of-Life (EoL) for the older algorithm versions. This is to
inform our customers that planning should start for their transition to these updated algorithms. For more
information and details on the transition, see Delphix Community Post - Legacy Mapping Algorithm23.

3.4.10 Release 6.0.8.0

3.4.10.1 End-of-life features

Legacy Custom Algorithm (Mapplet). For more information, see Delphix Community Post - Mapplet
EoL24.
SAP ASE (Sybase) 15.0.3 support

https://community.delphix.com/blogs/michael-torok/2021/08/12/delphix-end-of-life-notice-legacy-masking-algorith
https://community.delphix.com/blogs/sonali-sharma/2021/06/30/legacy-custom-algorithm-mapplet-end-of-life
https://community.delphix.com/blogs/michael-torok/2021/08/12/delphix-end-of-life-notice-legacy-masking-algorith
https://community.delphix.com/blogs/sonali-sharma/2021/06/30/legacy-custom-algorithm-mapplet-end-of-life

Continuous Compliance – Continuous Compliance Home

Release notes – 132

•
•

•

•

•

•

•

3.4.11 Release 6.0.7.0

3.4.11.1 End-of-life features

ESX 5.5 support
Masking Connectors: Db2 LUW and zOS v9, Db2 LUW and zOS v10, SQL Server 2005, 2008, 2008 R2

3.4.12 Release 6.0.4.0

3.4.12.1 Deprecated features

FTP, SFTP, and mount upload for XML and Cobol formats FTP/SFTP/Mount-based format import
were the original modes for XML and Cobol files, since then, Delphix has added the ability to upload a
format file, which is simpler to set up. After the introduction of “upload”, there has been a dramatic
shift away from the legacy import modes in favor of the simplicity of “upload”.
Row type feature Originally geared for limiting masking to subsets of rows within a column, this
feature was seldom used. The functionality, if desired, can still be replicated via the Custom SQL
feature.
Redundant settings for ‘edit table’ under rule sets Table Suffix, Add Column, Join Table, and List -
These settings are redundant and can be replicated with the Custom SQL setting.
‘HAVING’ clause from Masking API Deprecating due to low use. This feature, if desired, can be
replicated with Custom SQL.

3.4.12.2 End-of-life features

Job Scheduler As of this release, Delphix has removed the Job Scheduler feature. The introduction of
Masking’s REST API several releases ago allowed customers to schedule job executions using their
preferred job scheduler. As a result, the integrated scheduler is seldom used.

3.4.13 Release 6.0.3.0

3.4.13.1 End-of-life features

In this release, the deprecated XML import/export functionality has been removed. If you used the XML
import/export feature in previous releases, you'll find the new Sync Environment feature to be a more robust
and complete solution with complete API support in addition to being available in the UI.

Continuous Compliance – Continuous Compliance Home

Release notes – 133

•

•

•
•
•
•

•

•

3.4.14 Release 6.0.0.0

3.4.14.1 End-of-life features

Native XML CLOB masking: After the upgrade, columns masked as XML CLOBs will have the NULL SL
algorithm assigned.
Excel files can still be masked by first converting them to Delphix-supported file types (CSV, etc).
Also, XML CLOBs can be masked by extracting their values into a table (for example - using
extractValue in Oracle).
DB2 9.1, 9.5, and other 9.x versions of LUW & Z/OS
“Create target” job option: After upgrading jobs using “create target” will be removed.
“Bulk data” job option: After the upgrade, jobs using “bulk data” will be turned into non-bulk data jobs.
Native Microsoft Excel Masking: After the upgrade, MS Excel connectors, rulesets, and jobs will be
removed.

3.5 Licenses and notices
The Delphix Dynamic Data Platform includes licensed, third-party products from the following companies.
These products are copyrighted and all rights are reserved by the respective companies:

Highcharts, © Highsoft

The Delphix Masking engine includes licensed, third-party products from the following companies. These
products are copyrighted and all rights are reserved by the respective companies:

Kendo UI, © Telerik

Starting with 6.0.3.0, the license info is available via a CLI/API on the engine when logged in as a system
administrator.

engine> cd license
engine license> getLicense
engine license getLicense *> commit

Access to the source code of such third party open source components may be permitted or required in
certain instances under the applicable open source licenses by sending an email to mailto:open-
source@delphix.com.

mailto:open-source@delphix.com

Continuous Compliance – Continuous Compliance Home

Getting started – 134

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

4 Getting started
This section covers the following topics:

Introduction to Delphix Masking (see page 134)

Data source support (see page 137)

Installation (see page 152)

Naming requirements (see page 199)

Users and roles (see page 204)

Best practices for defining masking roles (see page 222)

Audit logs (see page 225)

Kerberos configuration (see page 227)

Password vault configuration (see page 241)

DB2 connector license installation (see page 244)

Continuous Compliance Engine icon reference (see page 246)

Delphix masking terminology (see page 247)

Changing the IP address of the Delphix Engine (see page 254)

Stopping and starting the containerized Continuous Compliance Engine (see page 256)

Stopping, starting, and restarting the continuous compliance engine (see page 258)

Upgrading the Continuous Compliance Engine (see page 260)

Utilization (see page 261)

4.1 Introduction to Delphix Masking

4.1.1 Challenge

With data breach incidents regularly making the news and increasing pressure from regulatory bodies and
consumers alike, organizations must protect sensitive data across the enterprise. Contending with insider
and outsider threats while staying compliant with mandates such as HIPAA, PCI, and GDPR is no easy task—
especially as teams simultaneously try to make their organizations more agile.

To tackle the problem of protecting sensitive information, companies are increasingly scrutinizing the tools
they’ve deployed. Instead of reactive perimeter defenses, security-minded organizations must focus on
proactively protecting the interior of their systems: their data. Moreover, while mainstay approaches such as
encryption may be effective for securing data-in-motion or data resident in hard drives, they are ill-suited for
protecting non-production environments for development, testing, and reporting.

4.1.2 Solution

The masking capability of the Delphix DevOps Data Platform represents an automated approach to
protecting non-production environments, replacing confidential information such as social security numbers,
patient records, and credit card information with fictitious, yet realistic data.

Continuous Compliance – Continuous Compliance Home

25 https://delphixdocs.atlassian.net/wiki/spaces/CD

Getting started – 135

•

•

•

•

•

•

•

Unlike encryption measures that can be bypassed through schemes to obtain user credentials, masking
irreversibly protects data in downstream environments. Consistent masking of data while maintaining
referential integrity across heterogeneous data sources enables Delphix masking to provide superior
coverage compared to other solutions—all without the need for programming expertise. Moreover, the
Delphix DevOps Data Platform seamlessly integrates masking with data delivery capabilities, ensuring the
security of sensitive data before it is made available for development and testing, or sent to an offsite data
center or the public cloud.

Delphix Masking is a multi-user, browser-based web application that provides complete, secure, and scalable
software for your sensitive data discovery, masking, and tokenization needs while meeting enterprise-class
infrastructure requirements. The Delphix DevOps Data Platform has several key characteristics to enable
your organization to successfully protect sensitive data across the enterprise:

End-to-End masking — The Delphix platform automatically detects confidential information,
irreversibly masks data values, then generates reports and email notifications to confirm that all
sensitive data has been masked.
Realistic data — Data masked with the Delphix platform is production-like in quality. Masked
application data in non-production environments remain fully functional and realistic, enabling the
development of higher-quality code.
Masking integrated with Virtualization — Most masking solutions fail due to the need for repeated,
lengthy batch jobs for extracting and masking data and a lack delivery capabilities for downstream
environments. The Delphix DevOps Data Platform seamlessly integrates data masking with data
virtualization25, allowing teams to quickly deliver masked, virtual data copies on-premises or into
private, public, and hybrid cloud environments.
Referential integrity — Delphix masks consistently across heterogeneous data sources. To do so,
metadata and data are scanned to identify and preserve the primary/foreign key relationships
between elements so that data is masked the same way across different tables and databases.
Algorithms/Frameworks — Eighteen algorithm frameworks allow users to create and configure
algorithms to match specific security policies. Over twenty-five out-of-the-box, preconfigured
algorithms help businesses mask everything from names and addresses to credit card numbers and
text fields. Moreover, the Delphix platform includes prepackaged profiling sets for healthcare and
financial information, as well as the ability to perform tokenization: a process that can be used to
obfuscate data sent for processing, then reversed when the processed data set is returned.
Ease of use — With a single solution, Delphix customers can mask data across a variety of platforms.
Moreover, businesses are not required to program their own masking algorithms or rely on extensive
administrator involvement. Our web-based UI enables masking with a few mouse clicks and little
training.
Automated discovery of sensitive data — The Delphix Profiler automatically identifies sensitive data
across databases and files, and the time-consuming work associated with a data masking project is
reduced significantly.

4.1.3 High-level platform architecture

The Delphix DevOps Data Platform is made up of 4 main services each of which plays a very important part
in delivering fresh secure data to anybody that needs it. These include:

https://delphixdocs.atlassian.net/wiki/spaces/CD
https://delphixdocs.atlassian.net/wiki/spaces/CD

Continuous Compliance – Continuous Compliance Home

Getting started – 136

•

•

•

•

Virtualize —Delphix compresses the data that it gathers, often to one-third or more of the original
size. From that compressed data footprint, Delphix virtualizes the data and allows operators to create
lightweight, virtual data copies. Virtual copies are fully readable/writable and independent. They can
be spun up or torn down in just minutes. And they take up a fraction of the storage space of physical
copies -- 10 virtual copies can fit into the space of one physical copy.
Identify and secure — The Delphix platform continuously protects sensitive information with
integrated data masking. Masking secures confidential data -- names, email addresses, patient
records, SSNs -- by replacing sensitive values with fictitious, yet realistic equivalents. Delphix
automatically identifies sensitive values and then applies custom or predefined masking algorithms.
By seamlessly integrating data masking and provisioning into a single platform, Delphix ensures that
secure data delivery is effortless and repeatable.
Manage — Data operators can now quickly provision secure data copies -- in minutes -- to users in
their target environments. The Delphix platform serves as a single point of control to manage those
copies. Data operators maintain full control and visibility into downstream environments. They can
easily audit, monitor, and report against access and usage.
Self-service— Provides developers, testers, analysts, data scientists, or other users with controls to
manipulate data at will. Users can refresh data to reflect the latest state of production, rewind
environments to a prior point in time, bookmark data copies for later use, branch data copies to work
across multiple releases, or easily share data with other users.

4.1.4 How Delphix identifies sensitive data

Our platform helps you quickly identify your organization’s sensitive data. This sensitive data identification is
done using two different methods, column-level profiling, and data-level profiling.

Column-level profiling

Column-level profiling uses REGEX expressions to scan the column names (metadata) of the selected data
sources. There are several dozen pre-configured profile expressions (like the one below) designed to identify
common sensitive data types (SSN, Name, Addresses, etc). You also have the ability to write/import your
own profile expressions.

Data-level profiling

Continuous Compliance – Continuous Compliance Home

Getting started – 137

•

Data level profiling also uses REGEX expressions, but to scan the actual data instead of the metadata.
Similar to column-level profiling, there are several dozen pre-configured expressions (like the one below) and
you can write/import your own.

For both column and data level profiling, when data is identified as sensitive, Delphix recommends/assigns
particular algorithms to be used when securing the data. The platform comes with several dozen pre-
configured algorithms which are recommended when the profiler finds certain sensitive data.

4.1.5 How Delphix secures your sensitive data

Delphix strives to make available multiple methods for securing your data, depending on your needs. The two
secure methods Delphix currently supports are masking (anonymization) and tokenization
(pseudonymization).

Masking

Data masking secures your data by replacing values with realistic yet fictitious data. Seven out-of-the-box
algorithm frameworks help businesses mask everything from names and social security numbers to images
and text fields. Algorithms can also be configured or customized to match specific security policies.

Tokenization

Tokenization uses reversible algorithms so that the data can be returned to its original state. Tokenization is
a form of encryption where the actual data – such as names and addresses – are converted into tokens that
do not convey any meaning (with regard to appearance and formatting).

4.2 Data source support
The Continuous Compliance service supports profiling, masking, and tokenizing a variety of different data
sources including distributed databases, mainframes, PaaS databases, and files. At a high level, Continuous
Compliance breaks up support for data sources into two categories:

Delphix connectors: These are data sources that the Delphix Engine can connect to directly using
built-in connectors that have been optimized to perform masking, profiling, and tokenization. Delphix
Connectors are available as Standard Connectors and Select Connectors. Standard Connectors are

Continuous Compliance – Continuous Compliance Home

26 https://cd.delphix.com/docs/latest/select-connectors-matrix

Getting started – 138

•

•
•
•

•

bundled with the Continuous Compliance Engine. Select Connectors are an add-on to the Delphix
engine and require a separate installation and configuration process.
FEML sources: FEML (File Extract Mask and Load) is a method used to mask and tokenize data
sources that do not have dedicated Delphix Connectors. FEML uses existing APIs from data sources
to extract the data to a file, masks the file, and then uses APIs to load the masked file back into the
database.

4.2.1 Standard connectors

The Delphix Engine has standard masking connectors for the following data sources:

Distributed database: DB2 LUW, Oracle, MS SQL, MySQL, SAP ASE (Sybase), PostgreSQL, MariaDB
Mainframe/Midrange: DB2 Z/OS, DB2 iSeries, Mainframe data sets
Files: Fixed Width, Delimited, XML

For a detailed view of all the versions, features, etc. Delphix supports each data source - see the sections
below.

4.2.2 Select connectors

The Delphix Engine has Select masking connectors for the following data sources:

Distributed database: Salesforce, CockroachDB, and SAP HANA 2.0

For a detailed view of all the versions, features, etc. Delphix supports each data source - see the Select
connector support matrix26 page.

4.2.3 DB2 LUW connector

Introduction

DB2 for Linux, UNIX, and Windows is a database server product developed by IBM. Sometimes called DB2
LUW for brevity, it is part of the DB2 family of database products. DB2 LUW is the "Common Server" product
member of the DB2 family, designed to run on the most popular operating systems. By contrast, all other
DB2 products are specific to a single platform.

Support matrix

Platforms Versions Feature Availability

Unix 11.1 TLS/SSL Available

Linux 11.5 Password Vault Unavailable

Windows Kerberos Unavailable

https://cd.delphix.com/docs/latest/select-connectors-matrix
https://cd.delphix.com/docs/latest/select-connectors-matrix

Continuous Compliance – Continuous Compliance Home

Getting started – 139

Platforms Versions Feature Availability

In-place Masking Mode

Multi-tenant Available

Streams/Threads Available

Batch Update Available

Drop Indexes Available

Drop Triggers Available

Drop Constraints Available

Identity Column Support Available

On-the-fly Masking Mode

Restart Ability Available

Truncate Available

Drop Triggers Available

Drop Constraints Available

Profiling

Multi-tenant Available

Streams Available

Continuous Compliance – Continuous Compliance Home

27 https://delphixdocs.atlassian.net/wiki/spaces/CD/pages/4392940/TrustStore+settings

Getting started – 140

1.

2.

3.

4.2.3.1 TLS/SSL setup

Add the database’s certificate in the setup application using instructions in the Adding a certificate
section, in the TrustStore settings27 article.

Restart the Compliance engine.

Create a DB2 connector in Continuous Compliance with the relevant parameters. Upload a properties
file for the connector with the following:
sslConnection = True

4.2.4 Oracle connector

Introduction

Oracle Database (commonly referred to as Oracle RDBMS or simply as Oracle) is a multi-model database
management system produced and marketed by Oracle Corporation.

Support matrix

Platforms Versions Feature Availability

Unix 11.2 TLS/SSL Available

Linux 12c Password Vault Available

Windows 12cR Kerberos Available

AWS RDS 18c In-place Masking Mode

OCI DBaaS on Bare Metal 19c Multi-tenant Available

OCI DBaaS on VM 21c Streams/Threads Available

Batch Update Available

Drop Indexes Available

Disable Triggers Available

https://delphixdocs.atlassian.net/wiki/spaces/CD/pages/4392940/TrustStore+settings
https://delphixdocs.atlassian.net/wiki/spaces/CD/pages/4392940/TrustStore+settings

Continuous Compliance – Continuous Compliance Home

28 https://delphixdocs.atlassian.net/wiki/spaces/CD/pages/4392940/TrustStore+settings

Getting started – 141

1.

2.

3.

Disable Constraints Available

Identity Column Support Available

On-the-fly Masking Mode

Restart Ability Available

Truncate Available

Disable Triggers Available

Disable Constraints Available

Profiling

Multi-tenant Available

Streams Available

4.2.4.1 TLS/SSL setup

Add the database’s certificate in the setup application using instructions in the Adding a certificate
section, in the TrustStore settings28 article.

Restart the Compliance engine.

Create an Oracle connector in Continuous Compliance with JDBC URL, similar to below examples,
depending upon the Oracle database and certificate configuration.
Note: SSL connection with BASIC Oracle connector is not supported.

jdbc:oracle:thin:@(DESCRIPTION=(ADDRESS=(PROTOCOL=tcps)(HOST=servername)
(PORT=2484))(CONNECT_DATA=(SERVICE_NAME=servicename)))
jdbc:oracle:thin:@(DESCRIPTION=(ADDRESS=(PROTOCOL=tcps)(HOST=servername)
(PORT=2484))(CONNECT_DATA=(SID=SID_NAME)))
jdbc:oracle:thin:@(DESCRIPTION=(ADDRESS=(PROTOCOL=tcps)(HOST=servername)
(PORT=2484))(CONNECT_DATA=(SID=SID_NAME))
(SECURITY=(SSL_SERVER_CERT_DN="CN=<certificate cn_name>")))

https://delphixdocs.atlassian.net/wiki/spaces/CD/pages/4392940/TrustStore+settings
https://delphixdocs.atlassian.net/wiki/spaces/CD/pages/4392940/TrustStore+settings

Continuous Compliance – Continuous Compliance Home

Getting started – 142

4.2.5 MS SQL connector

Introduction

Microsoft SQL Server is a relational database management system developed by Microsoft. As a database
server, it is a software product with the primary function of storing and retrieving data as requested by other
software applications—which may run either on the same computer or on another computer across a
network (including the Internet).

Support matrix

Platforms Versions Feature Availability

Unix 2012 TLS/SSL Available

Linux 2014 Password Vault Unavailable

Windows 2016 Kerberos Available

AWS RDS 2017 In-place Masking Mode

Azure SQL 2019 Multi-tenant Available

Azure Managed Instance 2022 Streams/Threads Available

Azure SQL Data
Warehouse

Batch Update Available

Google Cloud SQL Server Drop Indexes Available

Disable Triggers Available

Disable Constraints Available

Identity Column Support Available

On-the-fly Masking Mode

Restart Ability Available

Continuous Compliance – Continuous Compliance Home

29 https://delphixdocs.atlassian.net/wiki/spaces/CD/pages/4392940/TrustStore+settings

Getting started – 143

1.

2.

3.

Platforms Versions Feature Availability

Truncate Available

Disable Triggers Available

Disable Constraints Available

Profiling

Multi-tenant Available

Streams Available

4.2.5.1 TLS/SSL setup

Add the database’s certificate in the setup application using instructions in the Adding a certificate
section, in the TrustStore settings29 article.

Restart the Compliance engine.

Create a MSSQL connector in Continuous Compliance with the relevant parameters. Upload a
properties file for the connector with the following:

encrypt = true
trustServerCertificate = false / true <—---- Depending upon whether to directly
accept the database certificate without checking certificate common-name
hostNameInCertificate = 10-110-229-143.qa-ad.delphix.com <—---- This property
is only required in case trustServerCertificate is set to false

4.2.6 PostgreSQL connector

Introduction

PostgreSQL, often simply Postgres, is an object-relational database management system (ORDBMS) with an
emphasis on extensibility and standards compliance. PostgreSQL is developed by the PostgreSQL Global
Development Group, a diverse group of many companies and individual contributors. It is free and open-
source, released under the terms of the PostgreSQL License, a permissive software license.

Support matrix

https://delphixdocs.atlassian.net/wiki/spaces/CD/pages/4392940/TrustStore+settings
https://delphixdocs.atlassian.net/wiki/spaces/CD/pages/4392940/TrustStore+settings

Continuous Compliance – Continuous Compliance Home

Getting started – 144

Platforms Versions Feature Availability

Unix 9.2 TLS/SSL Available

Linux 9.3 Password Vault Available

Windows 9.4 Kerberos Unavailable

AWS RDS 9.5 In-place Masking Mode

AWS Aurora 9.6 Multi-tenant Available

Azure Database for
PostgreSQL

10 Streams/Threads Available

Google Cloud SQL PostgreSQL 11 Batch Update Available

12 Drop Indexes Available

13 Disable Triggers Available

14 Drop Constraints Available

Enterprise DB Identity Column Support Available

On-the-fly Masking Mode

Restart Ability Unavailable

Truncate Available

Disable Triggers Available

Drop Constraints Available

Profiling

Multi-tenant Available

Continuous Compliance – Continuous Compliance Home

30 https://delphixdocs.atlassian.net/wiki/spaces/CD/pages/4392940/TrustStore+settings

Getting started – 145

1.

2.

3.

Platforms Versions Feature Availability

Streams Unavailable

4.2.6.1 TLS/SSL setup

Add the database’s certificate in the setup application using instructions in the Adding a certificate
section, in the TrustStore settings30 article.

Restart the Compliance engine.

Create a PostgreSQL connector in Continuous Compliance with the relevant parameters. Upload a
properties file for the connector with the following:

ssl=true
sslmode=verify-full
sslfactory=org.postgresql.ssl.DefaultJavaSSLFactory

Note: To use the verify-full setting (highest security), the PostgreSQL database certificate’s Common
Name (CN) field must match the hostname. To check the CN value in the certificate: openssl x509

-in server.crt -text -noout

4.2.7 MySQL / MariaDB connector

Introduction

MySQL is an open-source relational database management system (RDBMS). MySQL was owned and
sponsored by a single for-profit firm, the Swedish company MySQL AB. MySQL is now owned by Oracle
Corporation.

MariaDB is a community-developed fork of the MySQL relational database management system intended to
remain free under the GNU GPL. Development is led by some of the original developers of MySQL, who
forked it due to concerns over its acquisition by Oracle Corporation.

A MySQL Connector may be used to connect to either a MySQL or MariaDB database instance.

MySQL support matrix

Platforms Versions Feature Availability

Unix 5.5 TLS/SSL Available

Linux 5.6 Password Vault Unavailable

https://delphixdocs.atlassian.net/wiki/spaces/CD/pages/4392940/TrustStore+settings
https://delphixdocs.atlassian.net/wiki/spaces/CD/pages/4392940/TrustStore+settings

Continuous Compliance – Continuous Compliance Home

Getting started – 146

Platforms Versions Feature Availability

Windows 5.7 Kerberos Unavailable

AWS RDS 8 In-place Masking Mode

AWS Aurora Multi-tenant Available

Azure Database for MySQL Streams/Threads Available

Google Cloud SQL MySQL Batch Update Available

Drop Indexes Available

Disable Triggers Unavailable

Disable Constraints Unavailable

Identity Column Support Available

On-the-fly Masking Mode

Restart Ability Unavailable

Truncate Available

Disable Triggers Unavailable

Disable Constraints Unavailable

Profiling

Multi-tenant Available

Streams Available

MariaDB support matrix

Continuous Compliance – Continuous Compliance Home

Getting started – 147

Platforms Versions Feature Availability

Unix 10 TLS/SSL Available

Linux Password Vault Unavailable

Window Kerberos Unavailable

AWS RDS In-place Masking Mode

AWS Aurora Multi-tenant Available

Azure Database for MariaDB Streams/Threads Available

Batch Update Available

Drop Indexes Available

Disable Triggers Unavailable

Disable Constraints Unavailable

Identity Column Support Available

On-the-fly Masking Mode

Restart Ability Unavailable

Truncate Available

Disable Triggers Unavailable

Disable Constraints Unavailable

Profiling

Multi-tenant Available

Continuous Compliance – Continuous Compliance Home

31 https://delphixdocs.atlassian.net/wiki/spaces/CD/pages/4392940/TrustStore+settings

Getting started – 148

1.

2.

3.

Platforms Versions Feature Availability

Streams Available

4.2.7.1 TLS/SSL setup

Add the database’s certificate in the setup application using instructions in the Adding a certificate
section, in the TrustStore settings31 article.

Restart the Compliance engine.

Create a MySQL/MariaDB connector in Continuous Compliance with the relevant parameters. Upload
a properties file for the connector with the following:

useSSL=True
trustServerCertificate=false
keyStore=file:/var/delphix/server/etc/.truststore
keyStoreType=JKS

4.2.8 SAP ASE (Sybase) connector

Introduction

SAP ASE (Adaptive Server Enterprise), originally known as Sybase SQL Server, and also commonly known as
Sybase DB or Sybase ASE, is a relational model database server product for businesses developed by Sybase
Corporation which became part of SAP AG.

Support matrix

Platforms Versions Feature Availability

Unix 15.5 TLS/SSL Unavailable

Linux 15.7 Password Vault Unavailable

Windows 16 Kerberos Available

In-place Masking Mode

Multi-tenant Available

https://delphixdocs.atlassian.net/wiki/spaces/CD/pages/4392940/TrustStore+settings
https://delphixdocs.atlassian.net/wiki/spaces/CD/pages/4392940/TrustStore+settings

Continuous Compliance – Continuous Compliance Home

Getting started – 149

Platforms Versions Feature Availability

Streams/Threads Available

Batch Update Available

Drop Indexes Available

Disable Triggers Available

Disable Constraints Available

Identity Column Support Available

On-the-fly Masking Mode

Restart Ability Available

Truncate Available

Disable Triggers Available

Disable Constraints Available

Profiling

Multi-tenant Available

Streams Available

4.2.9 DB2 z/OS and iSeries connectors

Introduction

DB2 for z/OS and iSeries are relational database management systems that run on IBM Z (mainframe) and
IBM Power Systems.

Support matrix

Continuous Compliance – Continuous Compliance Home

Getting started – 150

iSeries z/OS Feature Availability

7.1 11 TLS/SSL Available

7.2 12 Password Vault Unavailable

7.3 Kerberos Unavailable

7.4 In-place Masking Mode

Multi-tenant Available

Streams/Threads Available

Batch Update Available

Drop Indexes z/OS: Unavailable
iSeries: Available

Disable/Drop Triggers z/OS: Available
iSeries: Available v7.2+

Drop Constraints Available

Identity Column Support Available

On-the-fly Masking Mode

Restart Ability Unavailable

Truncate Available

Disable/Drop Triggers z/OS: Available
iSeries: Available v7.2+

Drop Constraints Available

Profiling

Continuous Compliance – Continuous Compliance Home

32 https://www.ibm.com/support/knowledgecenter/zosbasics/com.ibm.zos.zconcepts/zconc_datasetintro.htm

Getting started – 151

iSeries z/OS Feature Availability

Multi-tenant Available

Streams Available

4.2.10 Files connector

Introduction

Data stored in a variety of different formats may be masked using the same algorithms available for other
data sources.

Support matrix

File type/format Supported encodings Support level

Fixed Width ASCII, UTF-8 Supported

Delimited ASCII, UTF-8 Supported

XML ASCII, UTF-8 Supported

JSON ASCII, UTF-8 Supported

4.2.11 Mainframe data set connector

Introduction

In addition to databases and files, the Continuous Compliance Engine can process data stored in Mainframe
data sets commonly found on the IBM z/OS operating system. For more information on data sets, see this
IBM knowledge center article32.

Support matrix

The Continuous Compliance Engine requires that data be encoded in EBCDIC rather than something like
ASCII or UTF-8. EBCDIC is the encoding traditionally used on Mainframes.

https://www.ibm.com/support/knowledgecenter/zosbasics/com.ibm.zos.zconcepts/zconc_datasetintro.htm
https://www.ibm.com/support/knowledgecenter/zosbasics/com.ibm.zos.zconcepts/zconc_datasetintro.htm

Continuous Compliance – Continuous Compliance Home

Getting started – 152

•
•
•
•
•
•
•

•
•
•
•
•
•
•
•
•
•
•
•

4.2.12 On-The-Fly masking jobs

Continuous Compliance supports On-The-Fly (OTF) masking jobs where the data is read from a source
location and written to a different target location. Only certain combinations of connector types are
supported for OTF jobs.

OTF jobs with connectors of the same type are supported. For example, masking data from an Oracle source
database to an Oracle target database is supported if both are using the built-in Oracle connector. OTF jobs
using Extended Connectors are supported if both the source and target are using the same Extended Driver
(the same uploaded JDBC driver). Additionally, OTF jobs with a relational database source and a delimited
file target are supported. The following data sources are supported as source connectors for OTF jobs with
delimited file targets.

Oracle
DB2
MS SQL
PostgreSQL
MySQL / MariaDB
SAP ASE (Sybase)
Connectors created as Extended Connectors (see page 311).

For masking flat files (e.g. XML, delimited, etc) in an on-the-fly masking job, it is no longer required to copy or
create empty files on the target. If the file name pattern does not match any file on the source, the execution
will reported as success, although no file is masked.

No other combinations of connector types are supported. For example, an Oracle source with a PostgreSQL
target, or an MS SQL source with a fixed width file target, are unsupported.

4.3 Installation
This section covers the following articles:

Containerized installation (see page 153)

Network connectivity requirements (see page 158)

Prerequisites (see page 161)

First time setup (see page 163)

AWS EC2 installation (see page 166)

Azure installation (see page 171)

Google Cloud platform installation (see page 174)

IBM Cloud platform installation (see page 176)

Hyper-V installation (see page 183)

OCI installation (see page 188)

VMware installation (see page 194)

Naming requirements (see page 199)

Continuous Compliance – Continuous Compliance Home

33 https://download.delphix.com/folder/1926/Delphix%20Product%20Releases/Containerized%20Masking
34 https://opencontainers.org/about/overview/

Getting started – 153

1.

2.

3.

4.3.1 Containerized installation

4.3.1.1 Kubernetes installation for containerized masking

This section describes how to utilize Delphix Kubernetes images to deploy a containerized version of our
Continuous Compliance Engine. Continuous Compliance and Masking are used interchangeably throughout
these documents.

With a few small exceptions, Containerized Masking provides the same functionality and user experience as
when deployed as a Virtual Machine Masking Engine.

4.3.1.2 Obtaining the images

Containerized Masking utilizes 3 integrated containers to deliver essentially the same masking experience as
our Virtual Machine Masking Engine. The containerized form allows for rapid spin up/tear down of
ephemeral engines to handle automated workflow deployments. The 3 containers are delivered in a
compressed archive (.tar.gz) for convenience.

Licensed versions of these bundles are available for download from the download.delphix.com33 site. In the
folder for each version are 2 files. One file is HTML with instructions very similar to this page that can be
downloaded to provide an offline copy of the installation instructions. The second file is the
masking_docker_images.tar.gz bundle which contains the container images.

Docker is employed to build the container images which produces a set of Open Source (OCI) images34 for
each container. The intention is to make the containers as vendor independent as possible.

4.3.1.3 Setup

Containerized Masking is intended to be run as a pod on Kubernetes. The pod consists of three containers:

delphix-masking-app - Serves the application UI and API, and executes masking jobs.

delphix-masking-database - Stores various application configuration.

delphix-masking-proxy - Serves as a reverse proxy handling HTTP and HTTPS traffic for the UI
and API.

The API and UI are served from internal ports 8080 and 8443. When deploying the application, the
kubernetes config must provide a Service which directs external HTTP traffic to port 8080 and HTTPS traffic
to port 8443 as shown in the example kubernetes-config.yaml file.

The pod also requires a single volume per instance. This storage should be attached to both the app
container and the database container.

https://download.delphix.com/folder/1926/Delphix%20Product%20Releases/Containerized%20Masking
https://opencontainers.org/about/overview/
https://download.delphix.com/folder/1926/Delphix%20Product%20Releases/Containerized%20Masking
https://opencontainers.org/about/overview/

Continuous Compliance – Continuous Compliance Home

Getting started – 154

•

•

This volume should be attached to the delphix-masking-database container at location /

var/delphix/postgresql with a subpath of postgresql .

This volume should be attached to the delphix-masking-app container twice. Once at location

/var/delphix/masking/ with a subpath of masking and once at location /var/delphix/

postgresql with a subpath of postgresql .

This volume should have at least 2GB of space for each container, though certain configurations may require
significantly more space.

This storage volume should be created as a persistent volume. If it is not, masking job configurations will
have to be recreated each time the pod is restarted. Also, certain diagnostic information captured in the logs
will be lost when the pod is restarted unless the volume is persistent.

Because this volume is persistent, the pod should be deployed as a StatefulSet.

4.3.1.3.1 Network management

The proxy container has built-in configurations to act as a reverse proxy. It is recommended that the main
nginx.conf file remains unmodified; instead, modify the individual component configuration files that get

incorporated into the main nginx.conf file through include statements (such as proxy.conf for the

reverse proxy-related configs and ssl.conf for HTTPS related configs).

To modify any nginx related files, such as config files or certificates and keys, an external volume should be
bind mounted to the proxy container at /etc/config . During container startup, if the proxy container
detects bind mounted files at the locations listed below, it will ignore the config files that are built into the
proxy container's image and will instead use the mounted files.

4.3.1.3.1.1 HTTPS certificates

If the proxy container does not detect an external certificate in the expected location, it will generate and use
a self-signed certificate.

The expected locations of each file are shown below:

File Description

/etc/config/nginx/nginx.conf main configs file

/etc/config/nginx/proxy.conf reverse proxy configs

/etc/config/nginx/ssl/ssl.conf ssl configs

/etc/config/nginx/ssl/nginx.crt ssl certificate

Continuous Compliance – Continuous Compliance Home

35 https://owasp.org/www-project-csrfguard/

Getting started – 155

File Description

/etc/config/nginx/ssl/nginx.key ssl private key

/etc/config/nginx/ssl/dhparam.pem DH parameters file

4.3.1.3.2 OWASP CSRFGuard

The OWASP CSRFGuard35 product has been employed as part of the protections that are built-in to the
Masking product. The supplied NginX proxy container rewrites a packet's Host header with the contents of
the X-Forwarded-Host header if it exists so that CSRFGuard will accept proxied packets.

This results in a requirement. If the Pod is placed behind a proxy device that re-writes the Host header, that
proxy must add an X-Forwarded-Host header containing the original host value.

4.3.1.3.3 Sample configuration

The following configuration file shows an example of how Containerized Masking might be deployed. Details
will vary based on the use case, environment, and product version.

apiVersion: v1
kind: Service
metadata:
 name: delphix-masking
spec:
 type: NodePort
 selector:
 app: masking
 ports:
 - name: http
 port: 8080
 nodePort: 30080
 - name: https
 port: 8443
 nodePort: 30443

apiVersion: apps/v1
kind: StatefulSet
metadata:
 name: delphix-masking
spec:
 selector:
 matchLabels:
 app: masking

https://owasp.org/www-project-csrfguard/
https://owasp.org/www-project-csrfguard/

Continuous Compliance – Continuous Compliance Home

Getting started – 156

 serviceName: delphix-masking
 template:
 metadata:
 labels:
 app: masking
 spec:
 securityContext:
 runAsUser: 65436 # masking user
 runAsGroup: 50 # staff group
 fsGroup: 50
 #
 # Some volume providers, such as hostProvider, do not support fsGroup.
 # If you are using such a volume provider, use an init container to
 # change the ownership of each volume to 65436:50 and the permissions
 # to 775.
 #
 runAsNonRoot: true
 containers:
 - image: delphix-masking-database:6.0.16.0-c1
 name: mds
 ports:
 - containerPort: 5432
 name: mds
 volumeMounts:
 - name: masking-persistent-storage
 mountPath: /var/delphix/postgresql
 subPath: postgresql
 - image: delphix-masking-app:6.0.16.0-c1
 name: app
 ports:
 - containerPort: 8284
 name: http
 volumeMounts:
 - name: masking-persistent-storage
 mountPath: /var/delphix/masking
 subPath: masking
 - name: masking-persistent-storage
 mountPath: /var/delphix/postgresql
 subPath: postgresql
 startupProbe:
 httpGet:
 scheme: HTTPS
 path: /masking/api/system-information
 port: 8443
 failureThreshold: 30
 periodSeconds: 10
 timeoutSeconds: 10
 livenessProbe:
 httpGet:
 scheme: HTTPS
 path: /masking/api/system-information
 port: 8443

Continuous Compliance – Continuous Compliance Home

Getting started – 157

 initialDelaySeconds: 300
 failureThreshold: 1
 periodSeconds: 10
 timeoutSeconds: 10
 readinessProbe:
 httpGet:
 scheme: HTTPS
 path: /masking/api/system-information
 port: 8443
 initialDelaySeconds: 30
 periodSeconds: 60
 timeoutSeconds: 10
 - image: delphix-masking-proxy:6.0.16.0-c1
 name: proxy
 ports:
 - containerPort: 8080
 name: http
 - containerPort: 8443
 name: https
 volumeClaimTemplates:
 - metadata:
 name: masking-persistent-storage
 spec:
 accessModes:
 - ReadWriteOnce
 resources:
 requests:
 storage: 4Gi

4.3.1.3.4 Deployment

Load the container images obtained from the download site into some Kubernetes container registry, then
deploy the Masking Pod using a config file similar to the example provided above.

kubectl apply -f <path-to-config-file>

4.3.1.4 Debugging

In a support case, a Delphix Support engineer may ask for a support bundle containing diagnostic
information. The preferred method of generating a support bundle is to use the API endpoints as shown in
our document API Call for Generating a Support Bundle (see page 756).

Please see our API Client Documentation (see page 658) for more information regarding using the API Client.

Continuous Compliance – Continuous Compliance Home

Getting started – 158

4.3.1.4.1 Generating and retrieving a support bundle From the command-line

However, if the API endpoints are not functioning properly or there are difficulties accessing them, a support
bundle can be gathered by running the following command-line commands from the Kubernetes layer of the
node hosting the Pod: (Kubernetes admin permissions are required to perform these actions)

The exact name of the tarball created by this command can then be found using kubectl exec . For
example:

$ kubectl exec -it <pod name> -c app -- /bin/bash /opt/delphix/masking/bin/
generate_container_support_bundle.sh

$ kubectl exec delphix-masking-0 -c app -- find /var/delphix/masking/ -name 'dlpx-
support-*'
/var/delphix/masking/dlpx-support-4b3e2af2-1d00-43f5-b45b-c84dba62648a-20211201-18-21-5
3.tar.gz

The tarball can then be copied out of the pod using kubectl cp . For example:

$ kubectl cp delphix-masking-0:/var/delphix/masking/dlpx-support-4b3e2af2-1d00-43f5-
b45b-c84dba62648a-20211201-18-21-53.tar.gz -c app dlpx-support-4b3e2af2-1d00-43f5-
b45b-c84dba62648a-20211201-18-21-53.tar.gz

The tarball can then be provided to the Delphix Support engineer by uploading it to upload.delphix.com and
adding the associated case number in the matching field.

4.3.2 Network connectivity requirements

This topic covers the general network and connectivity requirements, including connection requirements,
port allocation, and firewall and Intrusion Detection System (IDS) considerations.

A security mechanism exists that does not allow the Masking engine to deploy behind a reverse
proxy on the network.



Continuous Compliance – Continuous Compliance Home

Getting started – 159

4.3.2.1 General outbound connections from the virtual machine Delphix Continuous
Compliance Engine

Protocol Port Numbers Use

TCP 25 Connection to a local SMTP server for sending email.

TCP/UDP 53 Connections to local DNS servers.

UDP 123 Connection to an NTP server.

UDP 162 Sending SNMP TRAP messages to an SNMP Manager.

TCP 443 HTTPS connections from the Delphix Engine to the Delphix Support
upload server.

TCP/UDP 636 Secure connections to an LDAP server.

TCP/UDP various Connections to target environments such as databases (JDBC) and files
(FTP, SFTP, NFS, or CIFS).

4.3.2.2 General inbound connections to the virtual machine Delphix Continuous
Compliance Engine

Protocol Port Numbers Use

TCP 22 SSH connections to the Delphix Engine.

TCP 80 HTTP connections to the Delphix GUI (optional).

UDP 161 Messages from an SNMP Manager to the Delphix Engine.

TCP 443 HTTPS connections to the Delphix GUI.

Continuous Compliance – Continuous Compliance Home

Getting started – 160

4.3.2.3 General outbound connections from the containerized Delphix Continuous
Compliance Engine

Containerized Masking is deployed as a Pod on a customer Kubernetes infrastructure rather than being a
self-contained machine like the VM deployments. There is much-underlying infrastructure (NTP, for example)
that the VM deployment must manage, which is unnecessary for a containerized deployment. There are
many features (again using time as one example) that a containerized deployment requires from the
underlying infrastructure, but since they are no longer managed by the Pod itself, they no longer appear in the
list of networking requirements.

Protocol Port
Numbers

Use

TCP 25 Connection to a local SMTP server for sending email.

TCP/UDP 53 Connections to local DNS servers.

TCP/UDP various Connections to target environments such as databases (JDBC) and files
(FTP, SFTP, NFS, or CIFS).

4.3.2.4 General inbound connections to the containerized Delphix Continuous
Compliance Engine

Protocol Port Numbers Use

TCP 8080 HTTP connections to the Delphix GUI (optional).

TCP 8443 HTTPS connections to the Delphix GUI.

The inbound ports shown in the table below are all internal. The kubernetes config defines a
service that routes customer supplied external facing ports to the listed internal ports allowing
the customer to choose any ports that work best for their infra. The example config maps
external port 30080 to internal port 8080 and external port 30443 to internal port 8443, but that
is left entirely to customer discretion.

Continuous Compliance – Continuous Compliance Home

Getting started – 161

•
•
•

4.3.2.5 Firewalls and Intrusion Detection Systems (IDS)

Firewalls can add milliseconds to the latency between servers. Accordingly, for best performance, there
should be no firewalls between the Delphix Masking Engine and the target environments. If the Delphix
Masking Engine is separated from a target environment by a firewall, the firewall must be configured to
permit network connections between the Delphix Masking Engine and the target environments for the
application protocols (ports) listed above.

Intrusion detection systems (IDSs) should also be made permissive to the Delphix Masking Engine
deployment. IDSs should be made aware of the anticipated high volumes of data transfer between the
Delphix Masking Engine and target environments.

4.3.3 Prerequisites

4.3.3.1 VM-based Continuous Compliance Engines

This section will detail the hardware/software requirements needed to deploy the Delphix Engine with the
Masking service. The Delphix Engine is a self-contained operating environment and application that is
provided as a Virtual Appliance. Our Virtual Appliance is certified to run on a variety of platforms including
VMware, AWS, and Azure.

The Delphix Engine should be placed on a server where it will not contend with other VMs for network,
storage, or other computing resources. The Delphix Engine is a CPU and I/O-intensive application, and
deploying it in an environment where it must share resources with other virtual machines can significantly
reduce performance.

To use both Continuous Data (data virtualization) and Continuous Compliance (data masking), they must be
deployed as separate Delphix engines. One Delphix engine is required per service, running both operations on
one engine is not supported.

4.3.3.1.1 Client web browser

The Delphix Engine's graphical interface can be accessed from a variety of different web browsers. The
Delphix Engine currently supports the following web browsers:

Microsoft Edge 40.x or higher
Mozilla Firefox 35.0 or higher
Chrome 40 or higher

4.3.3.1.2 AWS EC2 platform

See AWS EC2 Installation (see page 166) for information about the virtual machine requirements for installation
of a dedicated Delphix Masking Engine on Amazon's Elastic Cloud Compute (EC2) platform.

Continuous Compliance – Continuous Compliance Home

Getting started – 162

4.3.3.1.3 Azure platform

See Azure Installation (see page 171) for information about the virtual machine requirements for the installation
of a dedicated Delphix Masking Engine on the Azure platform.

4.3.3.1.4 Google cloud platform

See Google Cloud Platform Installation (see page 174) for information about the virtual machine requirements
for the installation of a dedicated Delphix Masking Engine on the GCP platform.

4.3.3.1.5 IBM Cloud

See IBM Cloud Installation (see page 176) for information about the virtual machine requirements for the
installation of a dedicated Delphix Masking Engine on the IBM Cloud.

4.3.3.1.6 VMware platform

See VMware installation (see page 194) for information about the virtual machine requirements for the
installation of a dedicated Delphix Masking Engine on the VMware Virtual platform.

4.3.3.2 Container (Kubernetes) based Continuous Compliance Engine

For Containerized Masking, the product is delivered as a set of containers that are deployed as a Pod in the
customer's Kubernetes infrastructure. This Pod provides a very similar set of functionality as the Delphix
Engine VM-based appliance.

Containerized Masking was developed to provide the ability to create ephemeral engines. I.e. small engines
that can be spun up quickly for a specific need and then thrown away once that need is fulfilled.

The customer will need to provide said Kubernetes infrastructure whether on-prem infrastructure (such as
MiniKube or MicroK8s) or cloud-based infrastructure. (such as AWS EKS)

Additionally, some functionality may require additional software to be installed on the Kubernetes node
systems. For example, if the use of NFS-mounted filesystems is planned, each node would need the NFS
client software to allow Kubernetes to perform the desired NFS mounts.

4.3.3.2.1 Differences from VMware-based Engines

The VMware-based Continuous Compliance engine was deployed conjoined with the Continuous Data
product, including its Engine Setup App. The containerized version of Continuous Compliance is fully
divorced from the Continuous Data product which means that some functionality that was provided or
enabled by the Engine Setup App is not available. Some unavailable items are on the roadmap to be re-
introduced to Containerized Continuous Compliance in future releases.

The ways in which the containerized service differs from its VMware-based compatriot are summarized in
the following table.

Continuous Compliance – Continuous Compliance Home

Getting started – 163

Functionality VMware based engine Containerized engine

FTP support for file masking Yes No1

SSL / TLS for connectors Yes2 Yes4

Local file masking via NFS Yes2 Yes4

Local file masking via CIFS Yes2 Yes4

LDAP Yes2 No1

Kerberos Yes2 No1

SSO / OAuth Yes2 No3

Upgrade / upgrade validation Yes2 No

IBM's Custom Db2 Driver Yes No

More information about each of the above can be found in the document sections that deal with their
subject.

4.3.4 First time setup

This section walks you step by step on how to download and install the Delphix Engine software onto your
infrastructure (VMware, AWS EC2, Azure, or GCP).

1.

2.

3.

4.

Roadmap item, not currently supported.

Via the Engine Setup app.

Currently under evaluation.

Via Kubernetes.



Continuous Compliance – Continuous Compliance Home

Getting started – 164

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

4.3.4.1 Setting up network access to the Delphix Engine

Power on the Delphix Engine and open the Console.

Wait for the Delphix Management Service and Delphix Boot Service to come online. This might take
up to 10 minutes during the first boot. Wait for the large orange box to turn green.

Press any key to access the sysadmin console.

Enter sysadmin for the username and sysadmin for the password (when installing a new engine via
AWS AMI, the initial sysadmin password is the AWS Instance ID).

You will be presented with a description of available network settings and instructions for editing.

Configure the hostname. Use the same hostname you entered during the server installation. If you are
using DHCP, this step can be skipped.

Configure DNS. If you are using DHCP, this step can be skipped.

Configure either a static or DHCP address. The static IP address must be specified in CIDR notation
(for example, 192.168.1.2/24).

Configure a default gateway. If you are using DHCP, this step can be skipped.

Commit your changes. Note that you can use the get command prior to committing to verify your
desired configuration.

Check that the Delphix Engine can now be accessed through a Web browser by navigating to the
displayed IP address, or hostname if using DNS.

Exit setup.

4.3.4.2 Setting up the Delphix Engine

Once you setup the network access for your Delphix Engine, enter the Delphix Engine URL in your browser for
server setup. The Unified Setup wizard Welcome screen below will appear for you to begin your Delphix
Engine setup.

Continuous Compliance – Continuous Compliance Home

Getting started – 165

•

•

•

1.

2.

3.

The Welcome page allows you to setup Masking-specific settings such as Masking admin user’s email and
password as well as Masking SMTP settings directly from the setup wizard. It will then redirect the customer
to the corresponding login page based on the engine type selected.

When Masking is selected, the following will be added to the Welcome screen; "admin" with the password
you defined. This will be the Masking administrator responsible for setting up users and other administrative
actions in Masking.

There are limitations to this feature:

Only Masking user settings (email and password) and SMTP settings are supported. Customers will
need to use the API to setup LDAP.
Once set, these settings can only be updated via the Masking API. There are no corresponding
sections in the system dashboard.
Engine Type cannot be modified once set in the Setup Wizard because it has other dependencies
such as SSO.

On the Welcome tab select Masking and then click Next.

In the Masking Password tab enter the current default (out-of-box) password for Masking. (Currently,
the default is Admin-12)

Click Validate or Next. This causes the engine to validate the entered password with the masking
service.

If the wrong password is entered, after 3 times the user will be locked out of the Masking
service.

Continuous Compliance – Continuous Compliance Home

Getting started – 166

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

1.

2.

3.

In the Administrators tab enter System Administrator, Masking Administrator, and Engine
Administrator credentials. Then click Next.

Select an option for maintaining system time. Then click Next.

Note: The Masking engine only works with the UTC time zone. Time zone selection at the time of
engine setup is not applicable for the Masking engine.

Configure your network interfaces and services and then select Next.

Delphix installs certificates signed by the Engines Certificate Authority. You can replace any
certificate. Once you are ready click Next.

The Delphix Engine automatically discovers and displays storage devices. For each device, set the
Usage Assignment to Data and set the Storage Profile to Striped. Then click Next.

Enter the Masking SMTP settings and then click Next.

The Authentication tab allows users to configure Virtualization LDAP settings. But Masking LDAP
settings must be configured via the Masking API.

To enable SAML/SSO, set the Audience Restriction (SP entity ID, Partner’s Entity ID) in the identity
provider to be the Engine UUID. Select Use SAML/SSO.IdP metadata is an XML document which
must be exported from the application created in your IdPCopy and pasted in the IdP Metadata field.
Click Next.

If using Kerberos authentication select Use Kerberos authentication and complete all fields. Then
enter Next.

If the Delphix Engine has access to the external Internet (either directly or through a web proxy), then
you can auto-register the Delphix Engine. If external connectivity is not immediately available, you
must perform manual registration. Copy the Delphix Engine registration code.

Click Next.

The final Summary tab will enable you to review your configuration. Click Submit to acknowledge the
configuration.

4.3.4.3 Logging in to the Delphix Continuous Compliance Engine

Login to a web browser that points to http://masking-engine.example.com/masking .

Enter default username: admin .

Enter default user password: Admin-12 .

4.3.5 AWS EC2 installation

This section covers the virtual machine requirements for installation of a dedicated Continuous Compliance
Engine on Amazon's Elastic Cloud Compute (EC2) platform.

For best performance, the Continuous Compliance Engine and all database/file servers should be in the
same AWS region.

Continuous Compliance – Continuous Compliance Home

Getting started – 167

•
•
•
•
•

The following topics are covered:

Instance Types
Network Configuration
EBS Configuration
General Storage Configuration
Additional AWS Configuration Notes

4.3.5.1 Instance types

The Continuous Compliance Engine can run on a variety of different instances, including large memory
instances (preferred) and high I/O instances. We recommend the following large memory and high I/O
instances:

Requirements Notes

Large Memory Instances:
r5n.2xlarge
r5n.4xlarge
r5n.8xlarge
r5n.16xlarge
r5n.24xlarge
r4.2xlarge
r4.4xlarge
r4.8xlarge
r4.16xlarge

- Larger instance types provide more CPU, which can prevent resource
shortfalls under high I/O throughput conditions.
- Larger instances also provide more memory, which the Delphix
Engine uses to cache database blocks. More memory will provide
better read performance.

High I/O Instances (supported)
i3.2xlarge
i3.4xlarge
i3.8xlarge

On the AWS EC2 platform, the Continuous Compliance Engine must have sufficient memory to
operate when multiple masking jobs are running. Our recommendation is to provide 8 GB of
memory for the Continuous Compliance Engine in addition to any memory that will be used by
running jobs.



Continuous Compliance – Continuous Compliance Home

Getting started – 168

4.3.5.2 Network configuration

Requirements Notes

Virtual Private
Cloud

- You must deploy the Delphix Engine and all of the source and target environments in
a VPC network to ensure that private IP addresses are static and do not change when
you restart instances.
- When adding environments to the Delphix Engine, you must use the host's VPC
(static private) IP addresses.

Static Public IP The EC2 Delphix instance must be launched with a static IP address; however, the
default behavior for VPC instances is to launch with a dynamic public IP address –
which can change whenever you restart the instance. If you're using a public IP
address for your Delphix Engine, static IP addresses can only be achieved by using
assigned AWS Elastic IP Addresses.

Security Group
Configuration

The default security group will only open port 22 for SSH access. You must modify the
security group to allow access to all of the networking ports used by the Delphix
Engine and the various source and target engines.

4.3.5.3 Storage configurations

4.3.5.3.1 EBS configuration

Deploying Delphix on AWS EC2 requires EBS-provisioned IOPS volumes. Since EBS volumes are connected to
EC2 instances via the network, other network activity on the instance can affect throughput to EBS volumes.
EBS-optimized instances provide guaranteed throughput to EBS volumes and are required to provide
consistent and predictable storage performance.

You must always attach a minimum of 2 storage pools to the Delphix Engine; one for rpool and
other for domain0 pool.



Continuous Compliance – Continuous Compliance Home

36 https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ebs-volume-types.html

Getting started – 169

Requirements Notes

EBS Provisioned IOPS
Volumes

- Delphix does not support the use of instance store volumes.
- Use EBS volumes with provisioned IOPs in order to provide consistent and
predictable performance. The number of provisioned IOPs depends on the
estimated IO workload on the Delphix Engine.
- Provisioned IOPs volumes must be configured with a volume size to
provisioned IOPs per the EBS Volume Types36 guidelines.
- I/O requests of up to 256 kilobytes (KB) are counted as a single I/O
operation (IOP) for provisioned IOPs volumes. Each volume can be
configured for up to 4,000 IOPs.

4.3.5.3.1.1 System disk

The minimum recommended storage size for the System Disk is 127 GB.

4.3.5.3.1.2 Metadata disk(s)

The minimum recommended storage size of the Metadata Volume is 50 GB.

4.3.5.3.2 General storage configuration

Requirements Notes

- Allocate initial storage equal to
the size of the physical source
database storage.
- Add storage when storage
capacity approaches 30% free.

- For high redo rates and/or high DB change rates, allocate an
additional 10-20 %.
- Add new storage by provisioning new volumes of the same size.
- This enables the Delphix File System (DxFS) to make sure that its file
systems are always consistent on disk without additional
serialization. This also enables the Delphix Engine to achieve higher I/
O rates by queueing more I/O operations to its storage.

EBS Volume Size and Count
- Keep all EBS volumes the same
size. Maximize Delphix Engine
RAM for a larger system cache
to service reads
- Use at least 4 EBS volumes to
maximize performance.

This enables the Delphix File System (DxFS) to make sure that its file
systems are always consistent on disk without additional
serialization. This also enables the Delphix Engine to achieve higher I/
O rates by queueing more I/O operations to its storage.

All attached
storage
devices must
be EBS
volumes.

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ebs-volume-types.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ebs-volume-types.html

Continuous Compliance – Continuous Compliance Home

37 https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/volume_limits.html
38 https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/volume_constraints.html

Getting started – 170

•
•

•
•

•

•

•

•

•

•

•
•

1.

2.
a.

b.

3.

4.

4.3.5.4 Additional AWS configuration notes

Using storage other than EBS is not supported.
Limits on the number of volumes are dictated by the EBS instance type, and is generally advised that
over 40 can be expected to cause issue on Linux VMs. More information can be found in the AWS
Volume Limits37 and AWS Volume Constraints38 articles. The maximum device limit imposed by AWS
can be handled by the Delphix Engine.
The use of the local SSDs attached to i2 instance types is not supported.
Using fast storage for EBS volumes is supported and recommended, including (in order of decreasing
speed):

Provisioned IOPS (io1) volumes (recommended).

Virtual Machine Requirements for AWS EC2 Platform

General Purpose SSD (gp2) volumes (supported)

Throughput Optimized HDD (st1) volumes (supported)

Cold HDD (sc1) volumes (not supported due to poor performance)

Magnetic (standard) volumes (supported, but use st1 instead where possible)

4.3.5.5 Installing AMI on AWS EC2

The following two methods can be used to install/deploy Continuous Compliance in AWS:

Access Delphix provided AMI through the Delphix download site
Subscribe to Continuous Compliance through the Amazon Marketplace

4.3.5.5.1 Using the Delphix download site to deploy masking

On the Delphix download site, click the AMI you would like to share and accept the Delphix License
agreement. Alternatively, follow a link given by your Delphix solutions architect.

On the Amazon Web Services AccountDetails form presented:
Enter your AWS Account Identifier, which can be found here: https://
console.aws.amazon.com/billing/home?#/account. If you want to use the GovCloud AWS
Region, be sure to enter the ID for the AWS Account which has GovCloud enabled.
Select which AWS Region you would like the AMI to be shared in. If you would like the AMI
shared in a different region, contact your Delphix account representative to make the proper
arrangements.

Click Share. The Delphix Engine will appear in your list of AMIs in AWS momentarily.

Reference the Installation and Configuration Requirements for AWS/EC2 when deploying the AMI.

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/volume_limits.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/volume_constraints.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/volume_limits.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/volume_constraints.html

Continuous Compliance – Continuous Compliance Home

Getting started – 171

5.

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.
a.
b.
c.
d.

11.

Once you have launched your Continuous Compliance EC2 instance and it is accessible via a web
browser (port 80), proceed to First time setup (see page 163) to configure the system.

4.3.5.5.2 Subscribing to Continuous Compliance through the Amazon Marketplace

Sign in to the AWS Console.

Navigate to AWS Marketplace.

Typing Delphix in the search bar will find several Delphix Product offerings. Select Continuous
Compliance for AWS (3TB).

Click Continue to Subscribe.

Click Accept Terms.

Wait for the subscription to be confirmed, then click Continue to Configuration.

Select or verify the correct Region for launch/deployment.

Then click Continue to Launch.

Select either to Launch from Website or Launch through EC2.

For either option you will need to enter the following:
VPC in which to launch the instance.
Subnet on which the instance will reside.
Instance Type (Recommended: r4.2xlarge).
Security Group (Minimal access required: 22, 80, or 443)

Once the Delphix EC2 instance is launched proceed to Setting up the Delphix Engine (see page 163) to
configure the system.

4.3.6 Azure installation

This topic covers the virtual machine requirements, including memory and data storage, for deploying the
Delphix Engine on the Azure public cloud and Government Cloud.

4.3.6.1 Instance types

The Delphix Engine can run on a variety of different Azure instances. We recommend the following instances:

Requirements Notes

 Memory-Optimizes

Continuous Compliance – Continuous Compliance Home

39 https://docs.microsoft.com/en-us/azure/virtual-machines/dv2-dsv2-series
40 https://docs.microsoft.com/en-us/azure/virtual-machines/sizes-previous-gen
41 https://docs.microsoft.com/en-us/azure/virtual-machines/dv2-dsv2-series

Getting started – 172

Requirements Notes

DS14v2
E8S_v3
E16S_v3
E32S_v3

16 CPUs, 112GB, 32 devices
8 CPUs, 112GB, 16 devices
16 CPUs, 244GB, 32 devices
32 CPUs, 448GB, 64 devices

Network bandwidth and IOPS limits are specific to each instance type:
- See DSv2 specifications39 for more details.
- See GS specifications40 for more details.

General Purpose

D16s_v3
D32_v3

Network bandwidth and IOPS limits are specific to each instance type:
- See DSv2 specifications41 for more details.
- See https://docs.microsoft.com/en-us/azure/virtual-machines/dv3-dsv3-series
for more details.

4.3.6.2 Network configuration

Requirements Notes

Azure Virtual
Network (VNet)

The Delphix Engine and all the source and target environments must be accessible
within the same virtual network.

Network
Security Group
(NSG)

You must modify the security group to allow access to all of the networking ports used
by the Delphix Engine and the various source and target platforms.

See Network connectivity requirements (see page 158) for information about specific port configurations.

On the Azure platform, recommendation is to provide 8 GB of memory for the Delphix Masking
Engine in addition to any memory that will be used by running jobs.

https://docs.microsoft.com/en-us/azure/virtual-machines/dv2-dsv2-series
https://docs.microsoft.com/en-us/azure/virtual-machines/sizes-previous-gen
https://docs.microsoft.com/en-us/azure/virtual-machines/dv2-dsv2-series
https://docs.microsoft.com/en-us/azure/virtual-machines/dv2-dsv2-series
https://docs.microsoft.com/en-us/azure/virtual-machines/sizes-previous-gen
https://docs.microsoft.com/en-us/azure/virtual-machines/dv2-dsv2-series
https://docs.microsoft.com/en-us/azure/virtual-machines/dv3-dsv3-series

Continuous Compliance – Continuous Compliance Home

42 https://azuremarketplace.microsoft.com/en-us/marketplace/apps/delphix.delphix_dynamic_data_platform?
tab=Overview

Getting started – 173

1.

2.

3.

4.3.6.3 Storage configuration

We recommend using a total of four disks to run your Delphix Engine. One disk is used for the Delphix File
System (DxFS) to ensure that its file systems are always consistent on disk without additional serialization.
The other three disks will be used for data storage. This also enables the Delphix Engine to achieve higher I/
O rates by queueing more I/O operations to its storage.

Requirements Notes

Azure Premium
Storage

- Premium storage utilizes solid-state drives (SSDs)
- Devices up to 4096GB are supported
- Maximum of 256TB is supported
- I/O requests of up to 256 kilobytes (KB) are counted as a single I/O operation
(IOP) for provisioned IOPS volumes
- IOPS vary based on storage size with a maximum of 7,500 IOPS

System Disk The minimum recommended storage size for the System Disk is 127 GB.

Metadata Disk(s) The minimum recommended storage size of the Metadata Volume is 50 GB.

4.3.6.4 Extensions

Extensions are not currently supported.

4.3.6.5 Installing VHD on AZURE

Use the following steps to install your VHD:

On the Microsoft Azure Marketplace42, search for Delphix. Click GET IT NOW.

Reference the Installation and Configuration Requirements for the Delphix Engine in Azure when
deploying the VHD.

Jump to Setting up the Delphix Engine (see page 163) section to learn how to activate the masking
service now that you have the software installed.

You must always attach a minimum of 2 storage pools to the Delphix Engine; one for rpool and
other for domain0 pool.

https://azuremarketplace.microsoft.com/en-us/marketplace/apps/delphix.delphix_dynamic_data_platform?tab=Overview
https://azuremarketplace.microsoft.com/en-us/marketplace/apps/delphix.delphix_dynamic_data_platform?tab=Overview

Continuous Compliance – Continuous Compliance Home

Getting started – 174

4.3.7 Google Cloud Platform installation

This section covers the virtual machine requirements for the installation of a dedicated Continuous
Compliance Engine on Google Cloud Platform (GCP).

4.3.7.1 Machine types

The following is a list of instance types that are supported to deploy Delphix on GCP. Delphix periodically
certifies new instance types, which will be added to the list here.

Requirements Notes

n2-standard-(16,
32, 64)

Larger instance types provide more CPU, which can prevent resource shortfalls
under high I/O throughput conditions.

n2-highmem-(8,
16, 32, 64)

Larger instances also provide more memory, which the Delphix Engine uses to
cache database blocks. More memory will provide better read performance.

4.3.7.2 Network configuration

Requirements Notes

Virtual Private Cloud You must deploy the Delphix Engine and database/file servers in a VPC network
to ensure that private IP addresses are static and do not change when you restart
instances. When adding connectors to the Masking Engine, you must use the
host's VPC (static private) IP addresses.

Static Public IP The GCP Delphix instance must be launched with a static IP address; however, the
default behavior for VPC instances is to launch with a dynamic public IP address
– which can change whenever you restart the instance.

Security Group
Configuration

The default security group will only open port 22 for SSH access. You must
modify the security group to allow access to all of the networking ports used by
the Delphix Engine and the various source and target engines.

Premium
Networking

It is recommended to use GCP Premium Tier Networking.

Continuous Compliance – Continuous Compliance Home

Getting started – 175

•

•

1.

2.

3.

•

•

•

•

4.3.7.3 Storage configuration

4.3.7.3.1 System disk

The minimum recommended storage size for the System Disk is 127 GB.

4.3.7.3.2 Metadata disk(s)

The minimum recommended storage size of the Metadata Volume is 50 GB.

4.3.7.4 Additional GCP configuration notes

Delphix supports both Zonal and Regional SSD persistent disks.

4.3.7.5 Installing on Google Cloud Platform

This section covers the requirements, including memory and data storage, for deploying the Delphix Engine
on the Google Cloud Platform (GCP).

4.3.7.5.1 Prerequisites to deploying in GCP

A license is required to use the Delphix software. If you are a new customer contact Delphix to get
started.

4.3.7.5.2 Deploying a Delphix Engine in GCP

Log into Google Cloud Marketplace with your account.

Search for Delphix.

Click Launch on Compute Engine.

Machine Type: See the table below for supported configurations.

Boot disk type: SSD Persistent Disk

Boot disk size in GB: 127

Networking interfaces: Configure as appropriate for your environment

You must always attach a minimum of 2 storage pools to the Delphix Engine; one for rpool and
other for domain0 pool.

Continuous Compliance – Continuous Compliance Home

43 https://cloud.ibm.com/docs/security-compliance?topic=security-compliance-getting-started

Getting started – 176

•

4.

5.

IP forwarding: Configure as appropriate for your environment

Click on Deploy.

Once deployed, go to Setting up the Delphix Engine (see page 163) section to learn how to activate the
masking service now that you have the software installed.

4.3.8 IBM Cloud Platform installation

This topic covers the virtual machine requirements, including memory and data storage, for the deployment
of the Delphix Engine on IBM Cloud.

4.3.8.1 Supported profiles

The following is a list of profiles that are supported to deploy Delphix on IBM Cloud.

Requirements Notes

mx2-8x64
mx2-16x128
mx2-32x256
mx2-48x384

- The Delphix Engine most closely resembles a storage appliance and performs
best when provisioned using a storage-optimized profile
- Larger profiles provide more CPU, which can prevent resource shortfalls under
high I/O throughput conditions.
- Larger profiles also provide more memory, which the Delphix Engine uses to
cache database blocks. More memory will provide better read performance.

4.3.8.2 Network configuration

Requirements Notes

Virtual Server
Instances

- You must deploy the Delphix Engine and all of the source and target environments in
the same VPC network.
- When adding environments to the Delphix Engine, you must use the host’s VPC IP
addresses.

Security
Configuration

- The default security group will only open port 22 for SSH access. You must modify
the security group to allow access to all of the networking ports used by the Delphix
Engine and the various source and target engines.
- See Network Performance Configuration Options for information about network
performance tuning.
- See General Network and Connectivity Requirements for information about specific
port configurations.
- Reference: IBM Cloud Security and Compliance documentation43

https://cloud.ibm.com/docs/security-compliance?topic=security-compliance-getting-started
https://cloud.ibm.com/docs/security-compliance?topic=security-compliance-getting-started

Continuous Compliance – Continuous Compliance Home

44 https://cloud.ibm.com/docs/vpc?topic=vpc-block-storage-profiles#tiers-beta/
45 https://cloud.ibm.com/docs/vpc?topic=vpc-expanding-block-storage-volumes/

Getting started – 177

•
•

•

•

•
•
•

4.3.8.3 Storage configuration

Requirements Notes

- Allocate initial
storage equal to
the size of the
physical source
database
storage.
- Add storage
when storage
capacity
approaches 30%
free.

- For high redo rates and/or high DB change rates, allocate an additional 10-20 %.
- Add new storage by provisioning new volumes of the same size. This enables the
Delphix File System (DxFS) to make sure that its file systems are always consistent
on disk without additional serialization. This also enables the Delphix Engine to
achieve higher I/O rates by queueing more I/O operations to its storage.
- A Delphix Engine requires a minimum of three (3) equally sized Block Volumes, in
addition to the Boot volume which was automatically created while creating the
virtual server instance.
- IBM Block Storage Documentation44

4.3.8.4 Additional IBM configuration notes

Resize/expansion of a storage volume
Expandable volume is a beta feature that is available for evaluation and testing purposes. This
feature is available in the US South, US East, London, and France regions. Contact your IBM Sales
representative if you are interested in getting access to Expanding Block Storage45.
After performing an “online” resize/expansion of a storage volume using IBM Cloud tools, then use
the Delphix sysadmin interface to “Expand” the storage device; otherwise, the newly allocated storage
space, from the resize/expansion, will not be used.
Resize/expansion of a storage volume using IBM Cloud is not supported while the Delphix Engine is
in a stopped state.
Removing a storage volume
It should be done while the machine is running.
First, use the Delphix sysadmin CLI interface to “Unconfigure” the storage device, then remove it from
IBM Cloud.

You must always attach a minimum of 2 storage pools to the Delphix Engine; one for rpool and
other for domain0 pool.

https://cloud.ibm.com/docs/vpc?topic=vpc-block-storage-profiles#tiers-beta/
https://cloud.ibm.com/docs/vpc?topic=vpc-expanding-block-storage-volumes/
https://cloud.ibm.com/docs/vpc?topic=vpc-block-storage-profiles#tiers-beta/
https://cloud.ibm.com/docs/vpc?topic=vpc-expanding-block-storage-volumes/

Continuous Compliance – Continuous Compliance Home

46 https://www.delphix.com/company/contact
47 https://cloud.ibm.com/docs/
48 https://cloud.ibm.com/catalog#software/

Getting started – 178

1.

2.

1.

2.

3.

4.3.8.5 Procedure for deploying in the IBM Cloud

4.3.8.5.1 Prerequisites to Deploying in IBM Cloud

You require a license to use Delphix software. If you are a new customer, contact Delphix46 to get
started.

Review IBM’s cloud documentation47 for IBM Cloud-specific information.

4.3.8.5.2 Deploying Delphix in the IBM Cloud

There are two methods for deploying a Delphix Engine in the IBM Cloud using the Software Catalog or
Manually Uploading the Delphix Image.

4.3.8.5.2.1 Deploying from the IBM Software Catalog

Navigate to the IBM Software Catalog48 and search for Delphix.

Select the Delphix Data Masking Tile for the Masking product.

Scroll down to the Deployment Values section and input the specifics for your environment.

Required
Parameters

Description

hostname The name of the VSI you will use to deploy Delphix.

profile Compute profile to be used for deploying Delphix (see recommended profiles).

ssh_key Your public SSH key to be used when provisioning the VSI.

subnet_id The id of the subnet where the VSI will be provisioned.

volumecount Number of block storage volumes.

volumeprofile Block storage profile to use (recommended is >= 10 IOPS/GB

https://www.delphix.com/company/contact
https://cloud.ibm.com/docs/
https://cloud.ibm.com/catalog#software/
https://www.delphix.com/company/contact
https://cloud.ibm.com/docs/
https://cloud.ibm.com/catalog#software/

Continuous Compliance – Continuous Compliance Home

49 https://cloud.ibm.com/docs/account?topic=account-rgs#create_rgs/
50 https://cloud.ibm.com/docs/cloud-object-storage/getting-started.html#gs-create-buckets/

Getting started – 179

1.

2.

1.

2.

3.

4.

5.

Required
Parameters

Description

volumesize Block storage volume size.

vpcname The name of your VPC where the VSI is provisioned.

zone VPC zone to provision your environment.

4.3.8.5.2.2 Manually downloading and deploying the Delphix Image

Downloading the Delphix IImage

Follow the link given to you by your Delphix solutions architect. Download the
Delphix_Verson…._Standard_IBM.qcow2 file and the SHA256SUMS file.

Once both files have finished downloading and assuming both files were downloaded to the same
directory, you can run the following command to verify the download:

$ grep -i IBM.qcow2 ./SHA256SUMS | sed -E 's,Appliance_Images/

(Controlled_Availability/)?,,g' | sha256sum --check

4.3.8.5.2.3 Uploading the Delphix Engine image as an object

Authenticate with the IBM Cloud and navigate to the https://cloud.ibm.com/login/.

Use the navigation menu to reach the Resource List page. The Resource List page can be navigated
from the Dashboard by clicking on Storage within the Resource summary pane.

Expand Storage from the menu and select the appropriate resource group. You should have created a
resource group49 depending on your organization’s strategy for managing IBM resources.

Create a storage bucket50 or select an existing bucket.

Click the blue Upload button and select Files.

Contact your account manager to request access to the IBM variant of the Delphix product.

https://cloud.ibm.com/docs/account?topic=account-rgs#create_rgs/
https://cloud.ibm.com/docs/cloud-object-storage/getting-started.html#gs-create-buckets/
https://cloud.ibm.com/login/
https://cloud.ibm.com/docs/account?topic=account-rgs#create_rgs/
https://cloud.ibm.com/docs/cloud-object-storage/getting-started.html#gs-create-buckets/

Continuous Compliance – Continuous Compliance Home

51 https://cloud.ibm.com/login/
52 https://cloud.ibm.com/docs/account?topic=account-tag
53 https://cloud.ibm.com/login/

Getting started – 180

6.

7.

8.

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

1.

2.

3.

4.

5.

A pop-up menu appears to select the transfer type. Aspera High-Speed Transfer is required for large
files. For this, you will need to install the plugin. It will automatically navigate you through the steps to
install the plugin.

In the Upload Files (objects) window, click on the Select Files (objects) button and choose the IBM
specific QCOW2 file that was previously downloaded.

Click the Upload button.

4.3.8.5.2.4 Creating a custom image

Authenticate with IBM Cloud and navigate to the Dashboard51.

Use the navigation menu to reach the Custom images page for VPC within the VPC infrastructure
(IBM Cloud pull-down menu, upper left, VPC Infrastructure > Custom images).

Click the blue Create button.

In the Import custom image page, specify a unique name for the image.

From the Resource Group drop-down, select your organization’s resource group.

Optional: In the Tags section, provide appropriate tags52 to organize your resources.

Select the appropriate Region.

Select the Cloud Object Storage bucket containing the uploaded image by selecting the appropriate
Cloud Object Storage instances > Location > Bucket from the drop-down menus. The downloaded
QCOW2 image should appear in the pane below the three drop-down menus.

Within the Operating System section, click on the Ubuntu Linux tile and select ubuntu-18-04-amd64
from the drop-down menu.

Once all the parameters are entered, in the right pane click on the blue button to Import custom
image.

4.3.8.5.2.5 Launching the Delphix Engine

Authenticate with IBM Cloud and navigate to the Dashboard53.

Use the navigation menu to reach the Virtual Server Instances page within the VPC Infrastructure
(IBM Cloud pull-down menu, upper left, VPC Infrastructure > Virtual Server Instances). Note: To
maximize performance, deploy the Delphix Engine instance in the same VPC/subnet in which you will
create your virtual databases (VDBs).

Click the blue Create button.

In the New Virtual Server for VPC page, specify a unique name for the VM.

From the Virtual Private Cloud drop-down, select your organization’s VPC.

https://cloud.ibm.com/login/
https://cloud.ibm.com/docs/account?topic=account-tag
https://cloud.ibm.com/login/
https://cloud.ibm.com/login/
https://cloud.ibm.com/docs/account?topic=account-tag
https://cloud.ibm.com/login/

Continuous Compliance – Continuous Compliance Home

54 https://cloud.ibm.com/docs/account?topic=account-tag
55 https://cloud.ibm.com/login/
56 https://cloud.ibm.com/docs/account?topic=account-tag

Getting started – 181

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

1.

2.

3.

4.

5.

6.

7.

8.

From the Resource Group drop-down, select your organization’s resource group.

Optional: In the Tags section, provide appropriate tags54 to organize your resources.

Select the Location of your IBM Cloud resources.

In the Operating System section, click on the Select Custom Image link within the Custom Image
block.

In the pop-menu, select the IBM-specific image you previously uploaded.

Within the Profile section, click on View all profiles. Select one of the supported instance types and
click Save.

You can skip the User Data section.

You can also skip the Boot Volume section since it would already have the default values.

You can create block storage volumes later, so skip that for now. It will be discussed in the next
section.

Continue on to the Network Interfaces section. If you already have a subnet configured in your zone
and VPC, then this section will already have a default network interface. Otherwise, you need to
create a subnet with the appropriate security groups. This part is critical, if the network isn’t specified
correctly, you are likely to run into firewall issues; please consult your IT or DevOps teams. Configure
Network Security Groups (NSGs) for your subnet as required; again, please consult your IT or DevOps
teams.

Click the Create virtual server instance button on the right panel. This will take a couple of minutes.

4.3.8.5.2.6 Creating block storage volumes

Authenticate with IBM Cloud and navigate to the Dashboard55.

Use the navigation menu to reach the Block Storage Volumes within VPC Infrastructure (IBM Cloud
pull-down menu > VPC Infrastructure > Block Storage Volumes).

Click the blue Create button.

In the Block Storage Volume for VPC modal window, specify a unique name for this Block Volume. It
can be helpful if this name is descriptive or identifies the VM it is intended to be attached to and ends
in a sequence number.

From the Resource Group drop-down, select your organization’s resource group.

Optional: In the Tags section, provide appropriate tags56 to organize your resources.

Select the Location of your IBM Cloud resources.

Enter the required IOPS. The recommended supported IOPS is 10/GB.

https://cloud.ibm.com/docs/account?topic=account-tag
https://cloud.ibm.com/login/
https://cloud.ibm.com/docs/account?topic=account-tag
https://cloud.ibm.com/docs/account?topic=account-tag
https://cloud.ibm.com/login/
https://cloud.ibm.com/docs/account?topic=account-tag

Continuous Compliance – Continuous Compliance Home

57 https://cloud.ibm.com/login/

Getting started – 182

9.

10.

11.

1.

2.

3.

4.

5.

6.

7.

8.

1.

2.

Enter the storage size in GB. Set the size of the volume to be sufficiently large, with room for growth,
to support the databases that will be virtualized, or masked, by this Delphix Engine.

For Encryption, you can let it be the default, e.g. Provider Managed.

Click the blue Create Volume button. A Delphix Engine requires a minimum of three (3) equally sized
Block Volumes, in addition to the Boot volume which was automatically created while creating the
virtual server instance. Repeat Steps 3-11 as many times as necessary.

4.3.8.5.2.7 Attaching block storage volumes

Authenticate with IBM Cloud and navigate to the Dashboard57.

Use the navigation menu to reach the Block Storage Volumes within VPC Infrastructure (IBM Cloud
pull-down menu > VPC Infrastructure > Block Storage Volumes).

From the list of pre-existing Block Volumes, identify the volumes you wish to attach to a Delphix
Engine and wait until the volume’s state becomes Available.

Note that the volumes you wish to attach have Attachment Type set as a hyphen.

The right side of the volume row shows an Expandable menu. Click on it and select Attach to
Instance.

In the Attach Virtual Server Instance modal window, select your virtual server instance (Delphix
Engine) from the drop-down menu.

Click on the blue Attach Volume button.

Repeat Steps 3-7 until all associated Block Volume resources have been attached to the Delphix
Engine instance.

4.3.8.5.2.8 Configuring the Delphix Engine

Connect to your running Delphix Engine instance with a web browser. Use the IP address or DNS
name noted in the Instance Description. Upon successful connection, the browser will display a login
prompt to enter the Delphix Setup Page.

Refer to the standard product deployment instructions to complete your Delphix deployment.

4.3.8.5.2.9 Next Steps

Congratulations! You have successfully deployed a Delphix Engine in IBM Cloud.

https://cloud.ibm.com/login/
https://cloud.ibm.com/login/

Continuous Compliance – Continuous Compliance Home

Getting started – 183

•
•

4.3.9 Hyper-V installation

The Delphix Engine is a virtual appliance that runs in a hypervisor. In this section, you’ll find requirements to
run Delphix on Hyper-V including supported versions and instance configurations as well as recommended
configuration parameters for optimal performance.

Contact your Delphix representative to request this capability. Delphix will assist you to review that all Hyper-
V requirements are met to successfully run a Delphix Engine with the most appropriate configuration for your
Use Cases.

If the Delphix Engine competes with other virtual machines on the same host for resources it will result in
increased latency for all operations. As such, it is crucial that your Hyper-V host is not over-subscribed, as
this eliminates the possibility of a lack of resources for the Delphix Engine. This includes allowing a
percentage of CPU resources for the hypervisor itself as it can de-schedule an entire VM if the hypervisor is
needed for managing IO or compute resources.

4.3.9.1 Supported versions

Hyper-V Version: 10.0 and later
Gen 1 only is supported

4.3.9.2 Virtual CPUs

Requirements Notes

8 vCPUs - CPU resource shortfalls can occur both on an over-committed host as well as
competition for host resources during high IO utilization.
- CPU reservations are strongly recommended for the Delphix VM so that Delphix is
guaranteed the full complement of vCPUs even when resources are overcommitted.
- It is suggested to use a single core per socket unless there are specific requirements
for other VMs on the same Hyper-V host.

Never allocate
all available
physical CPUs
to virtual
machines

- CPU for the Hyper-V Server to perform hypervisor activities must be set aside before
assigning vCPUs to Delphix and other VMs.
- We recommend that a minimum of 8-10% of the CPUs available are reserved for
hypervisor operation. (e.g. 12 vCPUs on a 128 vCore system).

Continuous Compliance – Continuous Compliance Home

Getting started – 184

4.3.9.3 Memory

Requirements Notes

128 or higher GB
vRAM
(recommended)
64GB vRAM
(minimum)

- The masking service on the Delphix Engine uses its memory to process database
and file blocks.
- Memory reservations are required for the Delphix VM. The performance of the
Delphix Engine will be significantly impacted by the over-commitment of memory
resources in the Hyper-V Server.
- Reservations ensure that the Delphix Engine will not be forced to swap pages
during times of memory pressure on the host. A swapped page will require orders of
magnitude more time to be brought back to physical memory from the Hyper-V
swap device.

Memory for the
Hyper-V Server to
perform
hypervisor
activities must be
set aside before
assigning memory
to Delphix and
other VMs.

Failure to ensure sufficient memory for the host can result in a hard memory state
for all VMs on the host which will result in a block for memory allocations.

4.3.9.4 Network

Requirements Notes

Virtual ethernet adapter requirements. - SR-IOV recommended for all virtual ethernet adapters
that will be used for Delphix data IO.
- Jumbo frames recommended.
- A 10GbE NIC in the Hyper-V Server is recommended.

If the network load in the Hyper-V Server
hosting the Delphix engine VM is high,
dedicate one or more physical NICs to the
Delphix Engine.

- Adding NICs only works if VMs are discovered using
different interfaces.

Continuous Compliance – Continuous Compliance Home

58 https://docs.microsoft.com/en-us/windows-server/administration/performance-tuning/role/hyper-v-server/storage-io-
performance

Getting started – 185

4.3.9.5 SCSI Controller

Requirements Notes

LSI Logic Parallel - Per Hyper-V Storage I/O Performance Tuning Guidelines58, it is recommended
that you attach multiple disks to a single virtual SCSI controller and create
additional controllers only as they are required to scale the number of disks
connected to the virtual machine. For example, a VM with 3 virtual disks should
distribute the disks across the single SCSI controller as follows:
- IDE Controller 1 - Boot Drive
- SCSI Controllers - Disk 1, Disk 2, Disk 3

4.3.9.6 Storage configuration

Requirements Notes

Storage used for Delphix must
be provisioned from storage
that provides data protection.

For example, using RAID levels with data protection features, or
equivalent technology.
The Delphix Engine does not protect against data loss originating at
the hypervisor or SAN layers.

4.3.9.6.1 Delphix storage operations

There are three types of data that Delphix stores on disk, which are:

For load purposes, we generally focus on the DB storage and ignore
the controller placement of the system disk.

You must always attach a minimum of 2 storage pools to the Delphix Engine; one for rpool and
other for domain0 pool.

https://docs.microsoft.com/en-us/windows-server/administration/performance-tuning/role/hyper-v-server/storage-io-performance
https://docs.microsoft.com/en-us/windows-server/administration/performance-tuning/role/hyper-v-server/storage-io-performance

Continuous Compliance – Continuous Compliance Home

Getting started – 186

1.

2.

Delphix VM Configuration Storage: stores data related to the configuration of the Delphix VM. VM
Configuration Storage includes the Hyper-V configuration data as well as log files.

Delphix Engine System Disk Storage: stores data related to the Delphix Engine system data, such as
the Delphix .ova settings.

4.3.9.6.1.1 Delphix VM configuration storage

The Delphix VM configuration must be stored on an NTFS volume(s).

Requirements Notes

The volumes should have
enough available space to hold
all Hyper-V configuration and log
files associated with the Delphix
Engine.

If a memory reservation is not enabled for the Delphix Engine (in
violation of memory requirements stated above), then space for a
paging area equal to the Delphix Engine's VM memory must be added
to the volumes containing the Delphix VM configuration data.

4.3.9.6.1.2 Delphix Engine system disk storage

Requirements Notes

The Delphix
Engine disks
must be stored
on NTFS
volume(s).

The volume for the Delphix Engine System Disk Storage is often created on the same
volume as the Delphix VM definition. In that case, the volume must have sufficient
space to hold the Delphix VM Configuration, the virtual disk for the system disk, and
a paging area if a memory reservation was not enabled for the Delphix Engine.

The Delphix .vhdx
file is configured
for a 128GB
system drive.

The volume where the .vhdx is deployed should, therefore, have at least 128GB of
free space prior to deploying the .vhdx.

4.3.9.6.1.3 Metadata disk(s)

In addition to making sure the latest Hyper-V patches have been applied, check with your hardware vendor
for updates specific to your hardware configuration. VHDXs (virtual machine disks).

Continuous Compliance – Continuous Compliance Home

Getting started – 187

1.

2.

3.

4.

5.

Requirements Notes

A minimum of 4 VHDXs should be
allocated for database storage.

Allocating a minimum of 4 VHDXs for database storage
enables the Delphix File System (DxFS) to make sure that
its file systems are always consistent on disk without
additional serialization. This also enables the Delphix
Engine to achieve higher I/O rates by queueing more I/O
operations to its storage.

If using VHDXs:
- Each VHDX should be the only VHDX on
its NTFS volume
- The VHDX volumes should be assigned to
dedicated physical LUNs on redundant
storage.
- The VHDXs should be created as the
Fixed Size type.

Provisioning VHDXs from isolated volumes on dedicated
physical LUNs:
- Reduces contention for the underlying physical LUNs
- Eliminates contention for locks on the volumes from other
VMs and/or the Hyper-V Server Console

The quantity and size of VHDXs or RDMs
assigned must be identical across all 4
controllers.

If the underlying storage array allocates physical LUNs by
carving them from RAID groups, the LUNs should be
allocated from different RAID groups. This eliminates
contention for the underlying disks in the RAID groups as
the Delphix engine distributes IO across its storage
devices.

The physical LUNs used for NTFS volumes
and RDMs should be of the same type in
terms of performance characteristics such
as latency, RPMs, and RAID level.

The total number of disk drives that comprise the set of
physical LUNs should be capable of providing the desired
aggregate I/O throughput (MB/sec) and IOPS (Input/Output
Operations per Second) for all virtual databases that will be
hosted by the Delphix Engine.

The physical LUNs used for NTFS volumes
can be thin-provisioned in the storage
array.

If the storage array allocates physical LUNs from storage
pools comprising dozens of disk drives, the LUNs should
be distributed evenly across the available pools.

4.3.9.7 Installing Hyper-V

Download the image from Delphix’s Download site and copy it to your VM directory.

Start the Hyper-V Manager and specify Name and Location and then select Next.

Specify the Generation, configure memory, and then select Next. Memory: 64 GB (minimum), 128 GB
(recommended)

Set up Networking by selecting vNIC then select Next.

Attach the downloaded image as a boot disk. Create a unique boot disk for each image.

Continuous Compliance – Continuous Compliance Home

Getting started – 188

•

•

•

6.

7.

•

•

•

•

8.

9.

10.

Note:

Boot disks cannot be shared.

Use an existing virtual hard disk.

Browse to the location of VM.

Select the Image.

Select Finish, the VM will appear in the inventory.

Customize the VM by selecting Settings:

Delphix recommends having the IDE be the first device to boot from (under BIOS setting).

Adjust the number of CPU (min 8)

Add Hard Drive. Use VHDX formatted disks. Recommend Fixed Size.

Note:

Differencing Disk Types are not supported.

128 GB Disk Storage

Repeat step 7 as necessary.

Connect to the console and start the VM.

Once the installation is complete go to Setting up the Delphix Engine (see page 163) section to learn how
to activate the masking service now that you have the software installed.

4.3.10 OCI installation

This topic covers the virtual machine requirements for deploying the Continuous Compliance Engine on
Oracle Cloud Infrastructure (OCI).

4.3.10.1 Supported databases

Oracle databases up to version 19c are supported. Please reference the Oracle Support Matrix (see page 137)
for the detailed list.

4.3.10.2 Compute image types

Delphix distributes product images, for OCI, using the QCOW2 image type. Compute Images must be
imported into OCI using the Paravirtualized launch mode; currently, images using the Emulated launch mode
are not supported.

4.3.10.3 Supported shapes

The following is a list of shapes that are supported to deploy Delphix on OCI.

Continuous Compliance – Continuous Compliance Home

59 https://docs.cloud.oracle.com/en-us/iaas/Content/Network/Concepts/securityrules.htm#Security_Rules

Getting started – 189

Requirements Notes

Large Memory Instances
(perferred)
VM.Standard2.8
VM_Standard2.16
VM_Standard2.24

The Delphix Engine most closely resembles a storage appliance and performs
best when provisioned using a storage-optimized shape.
Larger shapes provide more CPU, which can prevent resource shortfalls under
high I/O throughput conditions.
Larger shapes also provide more memory, which the Delphix Engine uses to
cache database blocks. More memory will provide better read performance.

4.3.10.4 Network configuration

Requirements Notes

Virtual Cloud
Network (VCN)

You must deploy the Delphix Engine and all of the source and target environments in
a VCN to ensure that private IP addresses are static and do not change when you
restart instances.
By default, OCI subnets are considered public. When defining a subnet, we
encourage configuring it as private. Unless required by your environment, your VCN
should not include a Public Subnet.
When adding environments to the Delphix Engine, you must use the host's VCN
(static private) IP addresses.

Static Private IP The Delphix instance should be launched with a static private IP address. For
security reasons, it is encouraged to avoid configuring your engine with a Public IP
address; but, in some cases, it may be ok to use a dynamic Public IP address in
addition to a static Private IP address if your environment requires such access.

Security Rules
Configuration

OCI allows two firewall features: Network Security Groups (NSGs) and Security Lists.
Oracle recommends the use of NSGs over Security Lists because “NSGs let you
separate the VCN's subnet architecture from your application security
requirements59.”
However, a VCN will use a Security List to define default rules. By default, the
security list will only open port 22 for SSH access. You must modify the security list,
or create NSGs, to allow access to all of the networking ports used by the Delphix
Engine and the various source and target engines.
This dual implementation of firewall, or security, rules may be different from other
clouds. Please see OCI documentation for best practices.
See Network Connectivity Requirements (see page 158) for information about specific
port configurations.

https://docs.cloud.oracle.com/en-us/iaas/Content/Network/Concepts/securityrules.htm#Security_Rules
https://docs.cloud.oracle.com/en-us/iaas/Content/Network/Concepts/securityrules.htm#Security_Rules

Continuous Compliance – Continuous Compliance Home

Getting started – 190

•

•

•

•

4.3.10.5 Storage configuration

Requirements Notes

Allocate initial storage
equal to the size of the
physical source database
storage.
Attach a minimum of four
(4), equally sized, storage
devices to the Delphix
Engine.
Add storage when storage
capacity approaches 30%
free.
Must use Block Volume for
data storage.
Block Volumes must be
attached using
Paravirtualized mode.

Currently supported Instance Types, or Shapes, only support Block
Volumes; File Storage is not supported.
Paravirtualized block devices are required; currently, iSCSI devices are not
supported.
Elastic Performance Configuration Options (aka Volume Performance
Policy): use Higher Performance.
For high redo rates and/or high DB change rates, allocate an additional
10-20 %.
Add new storage by provisioning new volumes of the same size. This
enables the Delphix Engine to achieve higher I/O rates by distributing load
among devices and queueing more I/O operations to its storage.

4.3.10.6 Additional OCI configuration notes

When running low on storage space, Delphix recommends adding additional equivalently sized block
storage volumes, or devices, instead of resizing existing volumes.
If you must expand existing storage volumes, then this must be done using the “online” resizing
strategy specified in OCI documentation; “offline” storage resizing is not supported and may lead to
unexpected downtime. If an existing storage volume is expanded, then use the Setup, or sysadmin,
interface to expand each storage “device,” or volume. The additional storage, as a result of a resize,
will not be available for use until the storage devices are explicitly instructed to make use of the
additional space.
If expanding storage volumes, it is recommended that all volumes are expanded to the same size.
When storage volumes, or devices, are the same size the Delphix product is able to balance I/O
distribution among the disks for optimal performance.
Hot removal of storage volumes is not supported.

You must always attach a minimum of 2 storage pools to the Delphix Engine; one for rpool and
other for domain0 pool.

Continuous Compliance – Continuous Compliance Home

60 https://console.us-phoenix-1.oraclecloud.com/
61 https://docs.cloud.oracle.com/en-us/iaas/Content/GSG/Tasks/

addingbuckets.htm#Putting_Data_into_Object_Storage

Getting started – 191

1.

2.

3.

1.

2.

3.

4.

5.

6.

7.

1.

2.

3.

4.

4.3.10.7 Installing OCI

4.3.10.7.1 Download and verify the Delphix Engine image

Contact your account manager to request access to the OCI variant of the Delphix product.

Follow the link given by your Delphix solutions architect. Download the
Delphix_6.x.x.x_….Standard_OCI.qcow2 file and the SHA256SUMS file.

Once both files have finished downloading and assuming both files were downloaded to the same
directory, you can run the following command to verify the download: $ grep -i OCI.qcow2 ./

SHA256SUMS | sed -E 's,Appliance_Images/(Controlled_Availability/)?,,g' |

sha256sum --check

4.3.10.7.2 Upload the Delphix Engine image as an object

Authenticate with OCI and navigate to the Infrastructure Console60.

Use the navigation menu to reach the Object Storage Buckets, Core Infrastructure, page (Hamburger
Menu > Object Storage > Object Storage).

Remember to set your List Scope Compartment. This will depend on your organization’s strategy for
managing OCI resources.

Create a storage bucket61 or select an existing bucket.

Click the blue Upload button.

In the Upload Objects modal window, specify an optional prefix and choose the OCI specific QCOW2
file that was previously downloaded.

Click the blue Upload button.

4.3.10.7.3 Creating a custom compute image from an object

Authenticate with OCI and navigate to the Infrastructure Console.

Use the navigation menu to reach the Compute Custom Images, Core Infrastructure, page
(Hamburger Menu > Compute > Custom Images).

Remember to set your List Scope Compartment. This will depend on your organization’s strategy for
managing OCI resources.

Click the blue Image Import button.

https://console.us-phoenix-1.oraclecloud.com/
https://docs.cloud.oracle.com/en-us/iaas/Content/GSG/Tasks/addingbuckets.htm#Putting_Data_into_Object_Storage
https://console.us-phoenix-1.oraclecloud.com/
https://docs.cloud.oracle.com/en-us/iaas/Content/GSG/Tasks/addingbuckets.htm#Putting_Data_into_Object_Storage

Continuous Compliance – Continuous Compliance Home

Getting started – 192

5.

6.

7.

8.

9.

10.

11.

12.

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

In the Import Image modal window, select a suitable compartment in the Create In Compartment
field that conforms to your organization’s strategy on managing OCI resources.

In the Name field enter a unique name to identify the Custom Compute Image. You may want to use
the same, resulting name of the image object from the previous step, Upload the Delphix Engine
Image as an Object.

For Operating System select Linux.

Next, identify an object by specifying its Compartment, Bucket, and Object Name. Or, specify an
Object Storage URL. Note: The Object Details will identify this value as URL Path (URI).

For Image Type select QCOW2.

For Launch Mode select Paravirtualized Mode.

For organizations that have a tagging policy for cloud-based resources, expand the Tagging Options
section, and define tags.

Click the blue Import Image button.

4.3.10.7.4 Launching the Delphix Engine

Authenticate with OCI and navigate to the Infrastructure Console.

Use the navigation menu to reach the Compute Instances, Core Infrastructure, page (Hamburger
Menu > Compute > Instances).

Remember to set your List Scope Compartment. This will depend on your organization’s strategy for
managing OCI resources.

Click the blue Create Instance button.

In the Create Compute Instance window pane, specify a unique name for the VM.

For the Create In Compartment field, select a suitable compartment that conforms to your
organization’s strategy on managing OCI resources.

In the Image or operating system section, click the Change Image button. Switch to the Custom
Images tab. Find the Delphix image that corresponds to the instance you wish to deploy. Click the
blue Select Image button. Note: If the Delphix Custom Image is not visible, look for the Change
Compartment option near the top of the current window pane.

Each Availability Domain has its own quota, it is ok to use AD-1, AD-2, or AD-3 - but, be sure to make
note of which Availability Domain you are using. Note: Compute Instances and attached Storage will
need to be in the same Availability Domain.

In the Shape section click the Change Shape button. For Instance type specify Virtual Machine and
for Shape series use Intel Skylake. Then select an OCI Shape that is supported by Delphix.

Continue on to the Configure networking section. This part is critical, if the network isn’t specified
correctly, you are likely to run into firewall issues; please consult your IT or DevOps teams. If your
organization is using Network Security Groups (NSGs), mark the Use Network Security Groups to
Control Traffic checkbox; again, please consult your IT or DevOps teams. Lastly, select the Do Not

Continuous Compliance – Continuous Compliance Home

Getting started – 193

11.

12.

13.

14.

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

Assign a Public IP Address radio button; if you must deviate from this guidance then you are highly
encouraged to engage your IT or DevOps teams.

You may skip the Boot Volume section.

In the Add SSH Keys select the No SSH Keys radio option. The Delphix product is a closed appliance
and manages users independently.

In general, you can skip all of the Advanced Options. For organizations that have a tagging policy for
cloud-based resources, expand into the Advanced Management section, and look for the Tagging
sub-section to define tags.

Click the blue Create button - wait about 2-5 minutes for the Delphix Engine instance to boot.

4.3.10.7.5 Create block storage volumes

Authenticate with OCI and navigate to the Infrastructure Console.

Use the navigation menu to reach the Block Volumes, Core Infrastructure, page (Hamburger Menu >
Block Storage > Block Volumes).

Remember to set your List Scope Compartment. This will depend on your organization’s strategy for
managing OCI resources.

Click the blue Create Block Volume button.

In the Create Block Volumemodal window, specify a unique name for this Block Volume. It can be
helpful if this name is descriptive or identifies the VM it is intended to be attached to and ends in a
sequence number.

For the Availability Domain, this value MUST be the same Availability Domain used for the Delphix
Engine instance, otherwise, this volume will not be available for use.

In the Volume Size and Performance section, select the Custom option. Set the size of the volume to
be sufficiently large, with room for growth, to support the databases that will be virtualized, or
masked, by this Delphix Engine. And, set the Default Volume Performance to the Higher Performance
setting.

A Backup Policy is not required and can be left blank or No Backup Policy Selected. However,
depending on your organization’s needs, you may consider selecting a Backup Policy.

For Encryption, it is ok to use the default option, Encrypt Using Oracle-Managed Keys. Optionally, if
you want, or need, to manage encryption keys independently then use the Encrypt Using Customer-
Managed Keys option.

For organizations that have a tagging policy for cloud-based resources, expand the Tagging Options
section, and define tags.

Uncheck the checkbox that says View Detail Page After This Block Volume is Created. This will
prevent you from navigating away from the Block Volumes page, because, more often than not, you
will need to create multiple Block Volumes at the same time.

Click the blue Create Block Volume button.

Continuous Compliance – Continuous Compliance Home

Getting started – 194

13.

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

A Delphix Engine requires a minimum of four (4) equally sized Block Volumes. Repeat Steps 4-12 as
many times as necessary.

4.3.10.7.6 Attach block storage volumes

Authenticate with OCI and navigate to the Infrastructure Console.

Use the navigation menu to reach the Block Volumes, Core Infrastructure, page (Hamburger Menu >
Block Storage > Block Volumes).

Remember to set your List Scope Compartment. This will depend on your organization’s strategy for
managing OCI resources.

From the list of pre-existing Block Volumes, identify the resources you wish to attach to a Delphix
Engine and wait until the volume’s state becomes Available.

Select one of the Block Volumes to enter the Block Volume Details page.

On the left-hand side, locate the Resources menu and select Attached Instances.

If the Block Volume has not been previously attached to another VM, then you will be able to click the
blue Attach to Instance button.

In the Attach to Instance modal window, specify the Attachment Type as Paravirtualized. Currently,
iSCSI is not supported.

For Access Type use the READ/WRITE option.

Next, identify a Delphix Engine by selecting an instance, or by specifying an instance OCID. If you
don’t see the Delphix Engine instance in the Select an Instance drop-down menu, you may need to use
the Change Compartment option. Block Volumes can only be attached to VM instances that were
created in the same Availability Domain - if these values do not match, you will need to either re-
provision Block Volumes or the Delphix Engine, in the correct Availability Domain.

Click the blue Attach button.

Repeat Steps 4-11 until all associated Block Volume resources have been attached to the Delphix
Engine instance.

4.3.10.7.7 Configuring masking

Once deployed, go to First Time Setup (see page 163) section to learn how to activate the masking service now
that you have the software installed.

4.3.11 VMware installation

The Delphix Engine is a virtual appliance that runs on a hypervisor. In this section, you’ll find requirements to
run Delphix on VMware including supported versions and instance configurations as well as recommended
configuration parameters for optimal performance.

The Delphix Engine is intensive both from a network and a storage perspective. If the Delphix Engine
competes with other virtual machines on the same host for resources it will result in increased latency for all
operations. As such, it is crucial that your ESXi host is not over-subscribed, as this eliminates the possibility

Continuous Compliance – Continuous Compliance Home

Getting started – 195

of a lack of resources for the Delphix Engine. This includes allowing a percentage of CPU resources for the
hypervisor itself as it can de-schedule an entire VM if the hypervisor is needed for managing IO or compute
resources.

4.3.11.1 Supported ESX versions

Requirements Notes

VMware Cloud
VMware ESX/ESXi 8.0
VMware ESX/ESXi 7.0, 7.0u1, 7.0u2, 7.0 U3c
ESX/ESXi 6.7 U3
VMware ESX/ESXi 6.5 U1, 6.5 U3
VMware ESX/ESXi 6.0

More recent versions of VMware are preferred, such
as ESX/ESXi 6.0 - 7.0 U3c

4.3.11.2 Virtual CPUs

Requirements Notes

8 vCPUs - CPU resource shortfalls can occur both on an over-committed host as well as
competition for host resources during high IO utilization.
- CPU reservations are strongly recommended for the Delphix VM so that Delphix
is guaranteed the full complement of vCPUs even when resources are
overcommitted.
- It is suggested to use a single core per socket unless there are specific
requirements for other VMs on the same ESXi host.

Never allocate all
available physical
CPUs to virtual
machines

- CPU for the ESXi Server to perform hypervisor activities must be set aside
before assigning vCPUs to Delphix and other VMs.
- We recommend that a minimum of 8-10% of the CPUs available are reserved for
hypervisor operation. (e.g. 12 vCPUs on a 128 vCore system).

If a minor release version is listed as supported, then all patch releases applicable to that minor
release are certified.



Continuous Compliance – Continuous Compliance Home

62 https://kb.vmware.com/s/article/1004088

Getting started – 196

4.3.11.3 Memory

Requirements Notes

128 or higher GB
vRAM
(recommended)
64GB vRAM
(minimum)

- The masking service on the Delphix Engine uses its memory to process database
and file blocks.
- More memory can sometimes improve performance. Memory reservation is a
requirement for the Delphix VM.
- Overcommitting memory resources in the ESX server will significantly impact the
performance of the Delphix Engine.
- Reservation ensures that the Delphix Engine will not stall while waiting for the ESX
server to page in the engine’s memory.

Never allocate all available physical memory to the Delphix VM. You must set aside memory for the ESX
Server to perform hypervisor activities before you assign memory to Delphix and other VMs. The default ESX
minimum free memory requirement is 6% of the total RAM. When free memory falls below 6%, ESX starts
swapping out the Delphix guest OS. We recommend leaving about 8-10% free to avoid swapping

For example, when running on an ESX Host with 512GB of physical memory, allocate no more than 470GB
(92%) to the Delphix VM (and all other VMs on that host).

4.3.11.4 Network

Requirements Notes

The ova is pre-
configured to use
one virtual
ethernet adapter
of type VMXNET
3.

- Jumbo frames are highly recommended to reduce CPU utilization, decrease
latency, and increase network throughput. (typically 10-20% throughput
improvement)
- If additional virtual network adapters are desired, they should also be of type
VMXNET 3.

A 10GbE NIC in
the ESX Server is
recommended.

For VMs having only gigabit networks, it is possible to aggregate several physical
1GbE NICs together to increase network bandwidth (but not necessarily to reduce
latency). Refer to the VMware Knowledge Base article NIC Teaming in ESXi and
ESX62. However, it is not recommended to aggregate NICs in the Delphix Engine VM.

Do not allocate all memory to the Delphix VM.

https://kb.vmware.com/s/article/1004088
https://kb.vmware.com/s/article/1004088

Continuous Compliance – Continuous Compliance Home

Getting started – 197

1.

2.

3.

4.3.11.5 Storage

There are three types of data that Delphix stores on disk, which are:

Delphix VM configuration storage: stores data related to the configuration of the Delphix VM. VM
Configuration Storage includes the VMware ESX configuration data as well as log files.

Delphix Engine system disk storage: stores data related to the Delphix Engine system data, such as
the Delphix .ova settings.

Metadata storage: stores metadata used by the Masking service.

4.3.11.5.1 General requirements

Requirements Notes

Storage used for Delphix must
be provisioned from storage
that provides data protection.

For example, using RAID levels with data protection features, or
equivalent technology.
The Delphix engine product does not protect against data loss
originating at the hypervisor or SAN layers.

4.3.11.5.2 Delphix VM configuration storage

The Delphix VM configuration should be stored in a VMFS volume (often called a "datastore").

Requirements Notes

The VMFS volume should have
enough available space to hold
all ESX configuration and log
files associated with the Delphix
Engine.

If a memory reservation is not enabled for the Delphix Engine (in
violation of memory requirements stated above), then space for a
paging area equal to the Delphix Engine's VM memory must be added
to the VMFS volume containing the Delphix VM configuration data.

4.3.11.5.3 Delphix Engine system disk storage

The VMFS volume must be located on shared storage in order to use vMotion and HA features.

Always attach a minimum of 2 storage pools to the Delphix Engine; one for rpool and the other
for domain0 pool.



Continuous Compliance – Continuous Compliance Home

Getting started – 198

•
•
•

1.

2.

3.

Requirements Notes

The Delphix
Engine system
disk should be
stored in a
VMDK.

The VMDK for the Delphix Engine System Disk Storage is often created in the same
VMFS volume as the Delphix VM definition. In that case, the datastore must have
sufficient space to hold the Delphix VM Configuration, the VDMK for the system disk,
and a paging area if a memory reservation was not enabled for the Delphix Engine.

The Delphix .ova
file is configured
for a 127GB
system drive.

The VMFS volume where the .ova is deployed should, therefore, have at least 127GB
of free space prior to deploying the .ova.

4.3.11.5.4 Delphix Engine metadata storage

Shared storage is required in order to use vMotion and HA features. In addition to making sure the latest
VMware patches have been applied, check with your hardware vendor for updates specific to your hardware
configuration. VMDKs (Virtual Machine Disks) or RDMs (Raw Device Mappings) operating in virtual
compatibility mode can be used for data storage.

Requirements Notes

The minimum recommended storage size is 50 GB.

In addition to making sure the latest VMware patches have been applied, check with your hardware vendor
for updates specific to your hardware configuration.

4.3.11.6 Additional VMware configuration notes

Running Delphix inside of vSphere is supported.
Using vMotion on a Delphix VM is supported.
Device passthrough is not supported.

4.3.11.7 Installing OVA on VMware

Download the OVA file from Delphix’s Download site. Note, you will need a support login from your
sales team or a welcome letter. Navigate to “Virtual Appliance” and download the appropriate OVA. If
unsure, use the HWv11 OVA type.

Login using the vSphere client to the vSphere server (or vCenter Server) where you want to install the
Delphix Engine.

In the vSphere Client, click File.

Continuous Compliance – Continuous Compliance Home

Getting started – 199

4.

5.

6.

7.

8.

9.

10.

11.

12.

Select Deploy OVA Template and then browse to the OVA file. Click Next.

Select a hostname for the Delphix Engine. This hostname will be used in configuring the Delphix
Engine network.

Select the data center where the Delphix Engine will be located.

Select the cluster and the ESX host.

Select one (1) data store for the Delphix OS. This datastore can be thin-provisioned and must have
127GB of free space to accommodate the Delphix operating system.

The Delphix VM Configuration Storage requires a minimum of 50GB. The VMFS volume should have
enough available space to hold all ESX configuration and log files associated with the Delphix Engine.
The Delphix Engine system disk should be stored in a VMDK system drive. The VMFS volume must be
located on shared storage in order to use vMotion and HA features.

Select the virtual network you want to use. If using multiple physical NICs for link aggregation, you
must use vSphere NIC teaming. Do not add multiple virtual NICs to the Delphix Engine itself. The
Delphix Engine should use a single virtual network.

Click Finish. The installation will begin and the Delphix Engine will be created in the location you
specified.

Once the Delphix Engine has been created proceed to Setting up the Delphix Engine (see page 163) to
configure the system.

4.4 Naming requirements
This section describes the naming requirements for Masking Engine objects which are allowed to be
created/renamed manually.

4.4.1 Affected configurable objects

configurable objects

algorithm

application

connector

domain

environment

Continuous Compliance – Continuous Compliance Home

Getting started – 200

•
•

configurable objects

file format

job

profiling group

record type

role

rule set

search expression

For all of the above:

Leading/trailing white space is not allowed
The following special characters are not allowed:

Symbol Name

[open bracket

] close bracket

(open parenthesis

) close parenthesis

{ open brace

} close brace

~ tilde

! exclamation mark

Continuous Compliance – Continuous Compliance Home

Getting started – 201

Symbol Name

@ at

pound

$ dollar

% percent

^ carat

* asterisk

" quote

? question mark

: colon

; semi-colon

, comma

/ forward slash

\ back slash

\\ double back slash

` back quote

+ plus

= equal

< less than

Continuous Compliance – Continuous Compliance Home

63 https://masking.delphix.com/docs/latest/masking-api-client

Getting started – 202

Symbol Name

> greater than

' single quote

| pipe

4.4.2 Upgrade

During an upgrade of a Masking Engine to a 6.0 or later release, a name with leading or trailing white space
will be automatically trimmed, and a counter value might be appended to the end of the name to prevent a
naming conflict. For example:

pre-upgrade name post-upgrade name upgrade change

"alg_SecureLookup" "alg_SecureLookup" no change

"
alg_SecureLookup"

"alg_SecureLookup1
"

leading white space trimmed and counter value appended

"alg_SecureLookup
"

"alg_SecureLookup2
"

trailing white space trimmed and counter value appended

If any name from the above-mentioned "configurable entities" table has a restricted special character - an
upgrade will fail with the corresponding error message.

4.4.3 Maximum name lengths

Access the API client63 to find out the maximum name length for a particular object by navigating to
http://YourMaskingEngine.YourDomain.com/masking/api-client to access the API client for

the engine.

https://masking.delphix.com/docs/latest/masking-api-client
https://masking.delphix.com/docs/latest/masking-api-client

Continuous Compliance – Continuous Compliance Home

Getting started – 203

4.4.4 Create/rename

If an attempt is made to create a new entity (or to modify the name of the existing one) with leading or
trailing white space or any of the special characters listed above, the operation will fail on a 6.0 or later
release with a corresponding error message.

4.4.5 Environment export/import

If any entity name exported from a pre-6.0 version contains leading or trailing white spaces or the special
characters listed above, the import operation will fail on a 6.0 or later release with a corresponding error
message.

4.4.6 Sync

If a sync bundle from a pre-6.0 version contains leading or trailing white space or any of the special
characters listed above, then the Sync import operation will fail on a 6.0 or later release, with a corresponding
error message.

Continuous Compliance – Continuous Compliance Home

Getting started – 204

•
•
•
•
•
•
•

4.5 Users and roles
The Delphix Masking Service has a flexible and robust users and roles system that allows you to give users
fine-grain privileges over what environments they have access to and what tasks they can and can not
perform.

4.5.1 What are roles?

A defined role is what is used to give certain users privileges over certain environments and tasks. Roles can
be defined by selecting a subset of actions that can be taken on certain objects.

4.5.1.1 Actions

When defining a role, you can select one or more of the following actions for the role to be able to perform:

View: Be able to view the object and important information about the object.
Add: Be able to add an instance of an object.
Update: Be able to update/edit an instance of an object.
Delete: Be able to delete an instance of an object.
Copy: Be able to create a copy of an object.
Export: Be able to export an object from a Delphix Engine.
Import: Be able to import an exported object into a Delphix Engine

Please note that not all of these actions are available for all objects in the masking service.

4.5.1.2 Objects

When defining a role, permission to perform the above actions can be defined on a per-object basis. These
objects include:

General Jobs Settings Report Approval
Workflow

Environment Profile Job Domains Inventory
Report

Approve
Inventories

Connection Masking Job Algorithms

Ruleset Tokenize Job Plugins

Inventory Re-identify Job Profile Expression

Continuous Compliance – Continuous Compliance Home

Getting started – 205

1.

2.

General Jobs Settings Report Approval
Workflow

Profiler Set

File Format

JDBC Drivers

Password Vault

User

Diagnostic

Refer to Delphix Masking Terminology (see page 247) for definitions of these objects.
View privilege for Plugins and JDBC Drivers should be always true for any type of role.
Environment Export privilege permission is no longer supported.

4.5.1.3 Adding a role

To add a role follow these steps:

Login into the Masking Engine, select the Settings tab and select Roles from the left navigation
panel.

Click the Add Roles button.

Continuous Compliance – Continuous Compliance Home

Getting started – 206

3. A full-screen dialog will appear for adding a new role. Enter a Role Name. The far-left column lists the
items for which you can set privileges.

Continuous Compliance – Continuous Compliance Home

Getting started – 207

4.

5.

Select the checkboxes for the corresponding privileges that you want to apply. If there is no
checkbox, that privilege is not available. For example, if you want this role to have View, Add, Update,
and Run privileges for masking jobs, select the corresponding checkboxes in the Masking Job row.

If you are removing any privileges with dependents selected then, a dialog box will appear asking for
confirmation for removing privileges with all its dependents.
For example, Masking Job [View, Add, Update, Run] depends on Environment - View. So if the user
tries to remove Environment - View then it will ask for confirmation to remove it with the list of
dependents. If users do not wish to remove it then they can select the Cancel or Close icon else can
select OK and move forward with changes.

Continuous Compliance – Continuous Compliance Home

Getting started – 208

6.

1.

2.

3.

4.

5.

When you are finished assigning privileges for this Role, click Save.

4.5.1.4 Role Type

With the 13.0.0.0 release, a New parameter Role type has been added to the product. There are 2 types of
roles. CUSTOM and DEFAULT. All built-in system roles will have a type of DEFAULT and others will be the
type of CUSTOM.

There have been 5 roles added to the product with the role type DEFAULT.

IT Security Analyst

DBA

SME

Operator

Environment Owner

If a role with the name ‘All Privileges’ exists on the product then it will be marked as a DEFAULT role type.

If a role with any of the above names already exists then the role being added will be renamed by appending
sequence number. For example, If ‘DBA’, and ‘DBA 1’ are already present in the system then the role with the
name 'DBA 2' will be added to the product with DEFAULT role type.

4.5.1.5 Recommended roles

While every organization will differ in what users and roles they define, Delphix uses these common/popular
roles. Please note that each defined user can only have one role assigned to them.

Continuous Compliance – Continuous Compliance Home

Getting started – 209

•
•
•
•
•
•
•

•

1.

Administrator — This role is assigned by enabling a user's Administrator setting in either the UI or API. A user
with this role has unrestricted access to all the engine functions. Specifically, the user has all privileges
available through the roles system and the following additional, Administrator-only privileges:

Sync (see page 623)

A User's apiAccess and userStatus setting
Audit Page
Admin > Users Generate Key Button
Admin > Email Notification
Admin > Utilization
Deletion of any object: An Admin can delete any object, such as any Algorithm, Domain, Profile
Expression, or Profile Set. In contrast, a user with the All Privileges role can only delete objects they
created.
Settings > Roles

IT Security analyst — Unrestricted access for all settings functions; access to all application functions
except environment and environment create, delete, update.

All Privileges — Unrestricted access to an application environment; central admin or security analyst will
determine if this role can modify settings.

DBA — Manage connections for the application database, scripting, and scheduling (no settings).

SME/Analyst/Developer — Manage inventories, create, and view jobs.

Operator — All job privileges.

Environment Owner — Approve workflow and inventories, privileges to view for settings and environment.

4.5.1.6 Modifying Roles

Users can perform 4 types of action on roles by selecting action options from the far right of the grid.

View - The user can view the role details. Everything on the dialog form will be disabled in case of
view is selected.

Continuous Compliance – Continuous Compliance Home

Getting started – 210

2.

3.

Edit - The user can edit the privileges of roles. The role name is not allowed to be edited. It will be
disabled.

Duplicate - On selecting a duplicate option, privileges will be pre-selected to the new role screen
dialog, and the user can give a new name and duplicate the role.

Continuous Compliance – Continuous Compliance Home

Getting started – 211

4.

1.

2.

Delete

Role with CUSTOM type can be added, edited, deleted, duplicated, and viewed.

Role with DEFAULT type is not allowed to be added, edited, or deleted. It can be only viewed and duplicated.

To Modify or Add a role using Masking API, follow these steps:

Access the API client on your Masking Engine, from http://

myMaskingEngine.myDomain.com/masking/api-client .

Login into the Masking Engine and select the Role endpoint.

Continuous Compliance – Continuous Compliance Home

Getting started – 212

3.

1.

2.

3.

•

•

•

•

•

•

•

•

•

Execute API requests by providing request parameters and body as mentioned in the example.
(Sample JSON for Add/Update role API (see page 218))

4.5.2 What are users?

Once you have your roles defined, it is time to create users with those roles. We highly recommend creating
independent users for each individual who will have access to the masking service.

4.5.2.1 Adding a user

To create a new user using the Masking UI follow these steps:

Login into the Masking Engine and select the Admin tab.

Click Add User at the upper right of the Users screen.

You will be prompted for the following information:

First Name — (Optional) The user's given name

Last Name — (Optional) The user's surname

User Name — The login name for the user

Email — The user's e-mail address (mailable from the Delphix Masking Engine server for
purposes of job completion e-mail messages)

Password — The password that the Delphix Masking Engine uses to authenticate the user on
the login page. The password must be at least eight characters long, but no longer than 65
characters. It must also contain a minimum of one uppercase character, one unique character
(!@#$%^&*), and one number.

Confirm Password — Confirm the password with double-entry to avoid data entry errors.

Administrator — (Optional) Select the Administrator checkbox if you want to give this user
Administrator privileges. (Administrator privileges allow the user to perform all Delphix
Masking Engine tasks, including creating and editing users in the Delphix Masking Engine.) If
you select the Administrator checkbox, the Roles and Environments fields disappear because
Administrator privileges include all roles and environments.

Role — Select the role to grant to this user. The choices here depend on the custom roles that
you have created. You can assign one role per user name.

Environment — Enter as many environments as this user will be able to access. Granting a
user access to a given environment does not give them unlimited access to that environment.
The user's access is still limited to their assigned role.

Continuous Compliance – Continuous Compliance Home

Getting started – 213

4.

1.

2.

When you are finished, click Save.

To create a new user using the Masking API follow these steps:

Access the API client on your Masking Engine, from http://

myMaskingEngine.myDomain.com/masking/api-client .

Login into the Masking Engine and select the User endpoint.

When a user is created, it's Account Status is Active by default.

Continuous Compliance – Continuous Compliance Home

Getting started – 214

3.

4.

5.

Click Create users at the upper right of /users section and refer to the Example Value for parameters
required for new users.

Enter valid User creation JSON in the body section, refer to sample create users JSON (Sample New
User Create JSON (see page 222))

Click on Execute API Request.

4.5.2.2 Updating a user

To update user information using Masking UI, follow these steps:

Continuous Compliance – Continuous Compliance Home

Getting started – 215

1.

2.

3.

•

•

•

•

•

•

•

•

•

4.

Login into the Masking Engine and select the Admin tab.

Select the Edit icon next to the user you want to edit. The Edit User screen will appear with existing
user details.

The following user information can be modified through the Edit User screen:

First Name

Last Name

Email Address

Password

Administrator Status

Welcome Page Status

Account Status (cannot be changed to Locked)

User Roles (non admin users only)

User Environments (non admin users only)

Continuous Compliance – Continuous Compliance Home

Getting started – 216

1.

2.

3.

4.

5.

1.

2.

When you are finished, click Save.

To update user information using Masking API, follow these steps:

Access the API client on your Masking Engine, from http://

myMaskingEngine.myDomain.com/masking/api-client .

Login into the Masking Engine and select the User endpoint.

click Update user by ID at the upper right of the section and refer to the Example Value for
parameters required for new users.

Enter valid User creation JSON in the body section, refer to sample create users JSON. (Sample User
JSON (see page 222))

Click on Execute API Request.

4.5.2.3 Deleting a user

To delete a user using the Masking UI follow these steps:

Login into the Masking Engine and select the Admin tab.

Select the Delete icon next to the user you want to delete.

User's Account Status will be automatically changed to Locked on multiple invalid login
attempts.

Continuous Compliance – Continuous Compliance Home

Getting started – 217

3.

1.

2.

3.

4.

In the confirmation box select OK.

To delete a user using Masking API follow these steps:

Access the API client on your Masking Engine, from the http://

myMaskingEngine.myDomain.com/masking/api-client .

Login into the Masking Engine and select the User endpoint.

Click Delete a user by ID at the upper right of /users section.

Enter the userID for the user to be deleted

Continuous Compliance – Continuous Compliance Home

Getting started – 218

5.

•
•
•

Click on Execute API Request

4.5.3 Sample JSON

This section contains the following articles:

All privileges (see page 218)

Create new user (see page 221)

User update (see page 222)

4.5.3.1 All privileges

{
 "roleName": "All Privileges",
 "environment": {
 "copy": true,
 "create": true,
 "delete": true,
 "export": true,
 "import": false,
 "run": false,
 "update": true,
 "view": true
 },
 "connector": {
 "copy": false,
 "create": true,
 "delete": true,
 "export": false,
 "import": false,
 "run": false,
 "update": true,
 "view": true
 },
 "ruleset": {
 "copy": true,
 "create": true,
 "delete": true,
 "export": false,
 "import": false,
 "run": false,
 "update": true,
 "view": true
 },
 "inventory": {
 "copy": false,
 "create": false,
 "delete": false,

Continuous Compliance – Continuous Compliance Home

Getting started – 219

 "export": true,
 "import": true,
 "run": false,
 "update": true,
 "view": true
 },
 "profileJob": {
 "copy": false,
 "create": true,
 "delete": true,
 "export": false,
 "import": false,
 "run": true,
 "update": true,
 "view": true
 },
 "maskingJob": {
 "copy": false,
 "create": true,
 "delete": true,
 "export": false,
 "import": false,
 "run": true,
 "update": true,
 "view": true
 },
 "tokenizeJob": {
 "copy": true,
 "create": true,
 "delete": true,
 "export": true,
 "import": true,
 "run": true,
 "update": true,
 "view": true
 },
 "reidentifyJob": {
 "copy": true,
 "create": true,
 "delete": true,
 "export": true,
 "import": true,
 "run": true,
 "update": true,
 "view": true
 },
 "scheduler": {
 "copy": false,
 "create": true,
 "delete": true,
 "export": false,
 "import": false,

Continuous Compliance – Continuous Compliance Home

Getting started – 220

 "run": false,
 "update": true,
 "view": true
 },
 "domain": {
 "copy": false,
 "create": true,
 "delete": true,
 "export": false,
 "import": false,
 "run": false,
 "update": true,
 "view": true
 },
 "algorithm": {
 "copy": false,
 "create": true,
 "delete": true,
 "export": false,
 "import": false,
 "run": false,
 "update": true,
 "view": true
 },
 "jdbcDriver": {
 "copy": false,
 "create": true,
 "delete": true,
 "export": false,
 "import": false,
 "run": false,
 "update": true,
 "view": true
 },
 "passwordVault": {
 "copy": false,
 "create": false,
 "delete": false,
 "export": false,
 "import": false,
 "run": false,
 "update": false,
 "view": false
 },
 "plugin": {
 "copy": false,
 "create": true,
 "delete": true,
 "export": false,
 "import": false,
 "run": false,
 "update": true,

Continuous Compliance – Continuous Compliance Home

Getting started – 221

 "view": true
 },
 "profileExpression": {
 "copy": false,
 "create": true,
 "delete": true,
 "export": false,
 "import": false,
 "run": false,
 "update": true,
 "view": true
 },
 "profileSet": {
 "copy": false,
 "create": true,
 "delete": true,
 "export": false,
 "import": false,
 "run": false,
 "update": true,
 "view": true
 },
 "fileFormat": {
 "copy": false,
 "create": true,
 "delete": true,
 "export": false,
 "import": false,
 "run": false,
 "update": false,
 "view": true
 },
 "user": {
 "copy": false,
 "create": true,
 "delete": true,
 "export": false,
 "import": false,
 "run": false,
 "update": true,
 "view": true
 }
}

4.5.3.2 Create new user

{
 "userName": "DelphixUser1",
 "password": "Password_123",

Continuous Compliance – Continuous Compliance Home

Getting started – 222

 "firstName": "First",
 "lastName": "Last",
 "email": "user@delphix.com",
 "isAdmin": false,
 "showWelcome": true,
 "userStatus": "ACTIVE",
 "nonAdminProperties": {
 "roleId": 1,
 "environmentIds": [
 1
]
 }
}

4.5.3.3 User update

{
 "userName": "DelphixUser1",
 "password": "Password_123",
 "firstName": "First",
 "lastName": "Last",
 "email": "user@delphix.com",
 "isAdmin": false,
 "showWelcome": true,
 "userStatus": "ACTIVE",
 "nonAdminProperties": {
 "roleId": 1,
 "environmentIds": [
 1
]
 }
}

4.6 Best practices for defining masking roles

4.6.1 Introduction

The Delphix Masking Engine contains a role definition capability that enables admins to easily create roles
for users. This section describes the typical roles and privileges that can be granted to users. It is
recommended that the masking administrator implementing these roles consult IT Security and follow
existing policies for data access. Roles are added by clicking the appropriate checkboxes within the add role
function in the Settings tab. A sample RACI document and examples of roles / privileges are located below.

Roles for operating the Delphix Masking Engine are shared primarily between the masking administration
team and the teams that support the applications that will be on-boarded to the Masking Engine. The admin
will manage central functions of the engine including definition of custom domains, profiler expressions,
algorithms, role and user definitions. The masking Engine is flexible enough to enable application teams with

Continuous Compliance – Continuous Compliance Home

Getting started – 223

these functions as well, but it is recommended that these shared functions be managed by the admin team.
The admin team should have an account registered with Delphix Support and be the main interface for
issues and maintenance support from Delphix.

Masking processes can be developed for each application by the central admin team or the individual
application teams, often determined by the volume of applications to be on-boarded. The RBAC model
employed by Delphix Masking can support different implementation models. Your Delphix support team can
assist in constructing roles to meet your needs.

Once roles are defined, they can be assigned to individual user IDs for the environments that those users
have responsibility. Administrators will have access to all masking settings and environments by default.

4.6.2 Sample RACI

Teams: IT Security DM = Data masking admin team Application = App owner/SME DBA = Database admin
QA = QA/Test environment owner PM = project management

Role Description Accounta
ble

Responsi
ble

Consulted Informed

Security
Policy

Determine data types that are
sensitive for the enterprise.

IT Security IT Security DM,
Application

DBA, QA

Program
Manage
ment

Maintain program plan and
implementation schedule, tracking
and reporting.

PM DM,
Applicatio
n

QA, IT
Security

DBA

Inventor
y
Manage
ment

Apply security policy to application
schemas/ files.

Applicatio
n

DM,
Applicatio
n

DBA, QA IT Security

Data
Masking

Build, maintain, schedule masking
processes.

Applicatio
n

DM, DBA QA IT Security

1.

2.

3.

Administrator access provides unlimited access to all functions and environments; this role
should be granted to the central administration team.

All privileges is a default role (predefined) which will provide all functions for each
environment a user is given access to.

Connector access should be controlled and administered by personnel responsible for
database access.

Continuous Compliance – Continuous Compliance Home

Getting started – 224

Role Description Accounta
ble

Responsi
ble

Consulted Informed

Masked
Data
Validatio
n

Review and approve inventories
and masked data.

Applicatio
n

Applicatio
n, DBA, QA

DM IT Security

Masked
Data
Deploym
ent

Deploy masked data to required
environments.

Applicatio
n

Applicatio
n, DBA, QA

DM, QA IT Security

Environ
ment
Audit

Assure applications are compliant
with masking.

IT Security IT Security DM, DBQ,
QA

Application

Masking
Administ
ration

Manage masking tool central
functions, create domains, profiler
expressions, roles, users.

DM DM Application,
IT Security,
DBA

QA

4.6.3 Sample roles for Masking

Role Description *Delphix Masking Functions

Administrator Manages masking server updates
and upgrades; works with IT Security
to update domains, algorithms and
profiler expressions / sets.

Unrestricted access to all the engine
functions. The Admin role is assigned
via the checkbox in the add user page
of the UI.

IT Security Analyst Determines domains to be masked
and high-level method for each
domain and communicates them to
administrator for inclusion in
masking engine, responsible for
masking audit functions.

Unrestricted access for all settings
functions; access to all application
functions except environment and
environment create, delete, update.

Application Roles (per
environment)

Continuous Compliance – Continuous Compliance Home

Getting started – 225

•
•
•
•

Role Description *Delphix Masking Functions

All Privileges Super user for an environment. Unrestricted access for an application
environment; central admin or
security analyst will determine if this
role can modify settings.

DBA Manages user privileges, database
performance and schema definition.

Manage connectors for application
database, scripting and scheduling
(no settings).

SME / Analyst /
Developer

Application subject matter expert,
application developer, data analyst,
application architecture.

Manage inventories, create, view jobs.

 Operations Roles (per
environment)

Operator Schedule jobs, execute jobs, verify
results, run automation scripts.

All job privileges.

Environment Owner Determine workflow, monitor tool
usage for environment.

Approve workflow and inventories,
privileges to view for settings and
environment.

4.7 Audit logs
Delphix helps you keep a record of user actions taken in the UI or directly through our REST APIs. You can
access these audit logs directly from our UI or through our APIs.

4.7.1 Audit log UI page

The Audit Log page can be found in the UI under the Audit tab. This page contains information on what
action occurred, the user that performed the action, and the time at which the action occurred. It also
provides the ability to filter based on:

user
time range
arbitrary search string
action type or action target, or both (create, connector or create a database connector)

Continuous Compliance – Continuous Compliance Home

Getting started – 226

4.7.2 Audit log APIs

With 5.3.2.0, Delphix introduced an endpoint to get all Audit Logs. This endpoint contains the user name,
action type, target, status, start time, and end time. For more information please refer to API
documentation. (see page 658)

4.7.3 What gets logged?

User actions are categorized into the following:

Cancel Create Delete Edit Export Get Get All

Import Lock Login Logout Run Test Unlock

The objects that user actions target are categorized into the following:

Algorith
m

Analytic
s

Application Application Log Async Task Audit Log

Column
Metadat
a

Databas
e
Connect
or

Ruleset
Connector

Database
Ruleset

Domain Encryption
Key

Environment

Executi
on

File
Connect
or

File Download File Field
Metadata

File Format File Metadata File Ruleset

File
Upload

LDAP Mainframe
Dataset
Connector

Mainframe
Dataset Field
Metadata

Mainframe
Dataset
Format

Mainframe
Dataset
Metadata

Mainframe
Dataset
Ruleset

Maskin
g Job

Profile
Expressi
on

Profile Job Profile Set Re
Identificatio
n Job

Role SSH Key

SSO Syncable
Object

System
Information

Table Metadata Tokenizatio
n

User

Continuous Compliance – Continuous Compliance Home

Getting started – 227

4.7.4 Retention policy

The default policy stores the last one million Audit Log entries. Any entries older than the most recent million
are removed daily. Additionally, there is a fail-safe mechanism that prevents an attacker from forcing an
unbounded number of actions to be logged to overload the system's disk space. In the event that such an
attack occurs, Delphix also logs it to the application logs.

4.7.5 Recommendation

If a full record of all Audit Log entries is desired, Delphix recommends using the new API to periodically
retrieve new entries from the Audit Logs.

4.8 Kerberos configuration

4.8.1 Introduction

As of 5.3.0.0, the Continuous Compliance Engine supports Kerberos authentication for Oracle, MS SQL
Server, and Sybase connections. Utilizing this service requires the presence of a Kerberos Key Distribution
Center (KDC) server as well as additional configuration actions to be done on both the Masking Engine and
the database. This document presents configuration instructions for enabling and using Kerberos on the
Continuous Compliance Engine, as well as reference configurations for enabling Kerberos on the Databases.
Although other configurations are possible, the configurations in this document have been validated by
Delphix.

4.8.2 Terminology

Throughout this document, the following example values are used. To recreate these reference
environments, these values must be replaced with real values appropriate for your network environment:
- .bar.com - the DNS domain of the network - BAR.COM - the Kerberos domain - me-host - the hostname of
the Masking Engine - foo-kcd - the hostname KDC server - krbuser - the Kerberos principal to be granted
access to the database for masking

4.8.3 Configuring Kerberos on the appliance

This section details the steps required to configure Kerberos on your appliance.

Launch the Delphix Server Setup UI and perform the following steps to enable Kerberos:

Kerberos is not supported for containerized masking deployments at this time. This is a
roadmap item that is expected to be added for containerized masking at some future point.



Continuous Compliance – Continuous Compliance Home

Getting started – 228

1.

2.

3.

From the Network Authorization widget, click Modify.

Select the checkbox before Use Kerberos authentication to communicate with remote hosts field.

Click the plus symbol to add record(s) for your KDCs, and populate other fields appropriately for your
network environment. Upon pressing Save, your configuration will be tested. If the engine is able to
authenticate to the KDC with the supplied configuration, the configuration is applied immediately.

Continuous Compliance – Continuous Compliance Home

Getting started – 229

4.8.4 Creating masking database connectors using Kerberos

Once the Delphix Appliance is configured for Kerberos, creating Connectors using Kerberos authentication is
simple:

Continuous Compliance – Continuous Compliance Home

Getting started – 230

Assuming you are using the same user principal configured in Server Setup, the keytab will be used and it is
unnecessary to enter a password in the Connector definition.

For Sybase database Connectors, it is necessary to supply the service principal name as an additional
configuration item. For Oracle DB, this value is determined automatically. For MS SQL Server it is determined
based on the reverse DNS mapping of the Server Name (refer to the section on MS SQL Server below).

If any changes are made to the underlying krb5.conf configuration file, these changes will not be
recognized by the engine until after the next database connection attempt. Therefore, expect to
have to hit "Test Connection" twice after making any changes to the krb5.conf file. It does not
matter if the first connection attempt succeeds or fails.

Continuous Compliance – Continuous Compliance Home

Getting started – 231

•
•
•
•

•
•

4.8.5 Reference database configurations

The following is a series of reference Kerberos configuration procedures and troubleshooting notes for the
supported databases. These are meant to serve as examples to be further customized according to the
user's specific network environment and security needs.

4.8.5.1 Oracle database

Overview

This document describes how to set up an Oracle DB instance for Kerberized connections. The following
steps are described:

Creating a service principal and adding it to the DB system
Configuring the database to use Kerberos authentication
Creating DB users identified via Kerberos
Troubleshooting tips

Prerequisites

This document assumes you already have a kerberized network environment with an MIT Kerberos KDC.
These procedures have been tested successfully with Oracle database versions 11.2.0.2, 11.2.0.4 and
12.2.1. Oracle database version 12.1.0.1 did not work in our testing.

You will need the following from your Kerberos environment: - The krb5.conf file - A user principal and
associated password or key tab you'd like to use to log into the database - The ability to create a service
principal for the Oracle DB and retrieve the associated key tab.

This section of the document uses these example values in addition to those mentioned above:

The Oracle database host is: ora-db.bar.com.
The Oracle service name is: oracle

Creating the Oracle Service Principal

The service principal will be named:

Notice that the hostname is whatever the database system thinks its hostname is - that is, the output of
"uname -n" on the database system, rather than the actual DNS name of the database system. Typically,
these values would be the same, but this is not always the case.

On the KDC, run:

kadmin.local

kadmin.local: addprinc -randkey oracle/ora-db@bar.com

kadmin.local: ktadd -norandkey -k /var/tmp/ora-db.keytab oracle/ora-db@bar.com

Copy the resulting keytab file (/var/tmp/ora-db.keytab) to the Oracle DB system at this location: /etc/
v5srvtab

As root on the Oracle DB system, ensure that the keytab has the correct permissions:

chown root:oinstall /etc/v5srvtab

Continuous Compliance – Continuous Compliance Home

Getting started – 232

chmod 440 /etc/v5srvtab

Finally, this is a good opportunity to copy /etc/krb5.conf from the KDC to /etc/krb5.conf on the Oracle DB
system. This file should be readable by all users.

Configuring the Oracle Database for Kerberos

Log into the Oracle DB system as the appropriate use for the database in question.

$ cd $ORACLE_HOME

$ vi network/admin/sqlnet.ora

Add the following for Oracle 11:

SQLNET.KERBEROS5_CONF=/etc/krb5.conf

SQLNET.AUTHENTICATION_SERVICES=(BEQ,KERBEROS5) SQLNET.KERBEROS5_CONF_MIT=true

SQLNET.AUTHENTICATION_KERBEROS5_SERVICE=oracle

Or the following for Oracle 12:

NAMES.DIRECTORY_PATH=(TNSNAMES, EZCONNECT, HOSTNAME) SQLNET.KERBEROS5_CONF=/

etc/krb5.conf SQLNET.AUTHENTICATION_SERVICES=(BEQ,KERBEROS5PRE,KERBEROS5)

SQLNET.KERBEROS5_CONF_MIT=true SQLNET.AUTHENTICATION_KERBEROS5_SERVICE=oracle

If the database is Oracle 11 (not necessary on Oracle 12): $ vi dbs/init.ora Add this line at the end:

OS_AUTHENT_PREFIX=""

Creating a DB User Identified via Kerberos

Log into the Oracle DB system as the appropriate database user and open a database session as the DBA:

$ sqlplus / as sysdba

On Oracle 12, you may wish to alter your session to create the user in one of the PDBs: SQL> alter

session set container=MYPDB;

Create the user that will connect to the DB using kerberos:

SQL> create user krbdbuser identified externally as 'krbuser@BAR.COM';

Grant the user privileges necessary for masking.

This example grants all privileges for the sake of simplicity:

Oracle 11:

SQL> grant all privilege to krbdbuser;

Oracle 12: (Customize permissions as necessary for your environment).

SQL> grant connect,resource to krbdbuser;

SQL> grant create tablespace, drop tablespace to krbdbuser;

Continuous Compliance – Continuous Compliance Home

Getting started – 233

•

•

•

•
•
•
•

SQL> grant create table to krbdbuser;

SQL> grant create sequence to krbdbuser;

SQL> grant select_catalog_role to krbdbuser;

SQL> grant unlimited tablespace to krbdbuser;

SQL> grant select_catalog_role to krbdbuser;

SQL> grant alter system to krbdbuser;

SQL> grant sysoper to krbdbuser;

SQL> grant dba to krbdbuser;

Troubleshooting Tips

Connecting via JDBC with Kerberos authentication from Continuous Compliance involves two steps -
a Kerberos login, followed by JDBC connect. A failure stack with an error in the login function
indicates a misconfiguration on either the engine or KDC - the engine hasn't even attempted to
communicate with the database at that point. Failure stacks are saved in the debugging log for
masking.
Login exceptions that mention a checksum error mean either the password or keytab supplied
doesn't match the expected password/key on the KDC for the principal you're trying to use. Server
Setup verifies that your keytab works at configuration time, but it could stop working if the key for
your principal is updated on the KDC.
Prior to version 12, Oracle databases instances assume they can create/write a particular temporary
file to store Kerberos credentials for the DB. This means if you attempt to run multiple kerberized
instances of Oracle 11 on the same system or VM, and the databases run as different system users,
the first Oracle instance that performs Kerberos auth will create and own this file. Kerberos
authentication will fail to function on all other instances.

4.8.5.2 MS SQL Server

Overview

This is an overview of the step necessary to get your Masking Engine talking to an MS SQL Server database
using Kerberos authentication. Since Active Directory already uses Kerberos for authentication, little or no
additional configuration is need on the MS SQL Database server.

The following steps are described in this section:

Create the necessary SPNs (Service Principal Names) for your MSSQL Database service in AD
Create the DB Connector on the masking engine
Creating a keytab for an AD User
Troubleshooting tips

Prerequisites

Configuring cross-realm trust between Active Directory and an MIT KDC Server is a complex topic, and will
not be described here. In the absence of such a setup, it is possible to make the Delphix Appliance a

Continuous Compliance – Continuous Compliance Home

Getting started – 234

•
•

•

Kerberos client of the Active Directory (AD) Server. In this configuration, no additional KDC in necessary. The
example below assumes this kind of configuration.

This section of the document uses these example values in addition to or instead of those mentioned above:

The MSSQL server database is named mssql-db.bar.com.
The AD user configured for masking access to the MSSQL database is aduser (rather than krbuser in
other examples elsewhere in this document).
The AD user that start the MS SQL Server service on the DB Server is dbuser.

Creating SPNs for the Database Service

MS SQL Server service will typically register several SPNs with AD upon startup. However, there are several
conditions which can cause these SPNs to not be registered successfully, or to be registered with service
names other than those that are expected by the Microsoft JDBC Driver for SQL Server employed by
Continuous Compliance.

The service principal name for an MS SQL Server expected by Continuous Compliance is: MSSQLSvc/

In addition, it is required that a reverse mapping exist in DNS from the IP address of the MS SQL Server
system to the FQDN registered.

The following commands may be run in PowerShell on the MS SQL Server to assist in debugging SPN related
issues:

List all SPNs for dbuser:

setspn -L -U dbuser

Deleting an old SPN associated with dbuser:

setspn -U -D MSSQLSvc/other-server.ad.bar.com:SQL2008R2 dbuser

Here's how to create the SPN describe above:

setspn -U -S MSSQLSvc/mssql-db.bar.com:1433 dbuser

Creating the Database Connector on the Masking Engine

Once the above steps are complete, creating the database connector can be performed using the procedure
above. Enter the username and optionally, password of the AD user in the Connector definition. Be sure that
the AD user has sufficient access to the MS SQL Database for masking.

The password field can be left blank when creating the connector if the user is the same user configured in
Server Setup for the appliance. Since keytabs are not typically used in an AD environment, it may be useful to
create one manually, to avoid having a password in the DB Connector.

Creating a keytab file for an AD user

On a unix or MAC system with MIT Kerberos CLI utilities installed:

ktutil

ktutil: addent -password -p krbuser -k 1 -e arcfour-hmac

<type password for krbuser>

ktutil: addent -password -p krbuser -k 1 -e aes128-cts-hmac-sha1-96

Continuous Compliance – Continuous Compliance Home

Getting started – 235

<type password for krbuser>

ktutil: addent -password -p krbuser -k 1 -e aes256-cts-hmac-sha1-96

<type password for krbuser>

ktutil: write_kt /var/tmp/krbuser.keytab

ktutil: exit

base64 /var/tmp/krbuser.keytab ;# This is string to user for keytab in Server Setup
kerberos configuration

Troubleshooting tips

The client uses the incorrect service name. This will typically manifest an exception mentioning cred, like:

Caused by: org.ietf.jgss.GSSException: No valid credentials provided (Mechanism

level: Fail to create credential. (63) - No service creds)

at sun.security.jgss.krb5.Krb5Context.initSecContext(Krb5Context.java:770)

at sun.security.jgss.GSSContextImpl.initSecContext(GSSContextImpl.java:248)

at sun.security.jgss.GSSContextImpl.initSecContext(GSSContextImpl.java:179)

at

com.microsoft.sqlserver.jdbc.KerbAuthentication.intAuthHandShake(KerbAuthenticat

ion.java:163) ... 101 common frames omitted

Caused by: sun.security.krb5.internal.KrbApErrException: Fail to create

credential. (63) - No service creds at

sun.security.krb5.internal.CredentialsUtil.acquireServiceCreds(CredentialsUtil.j

ava:162)

at sun.security.krb5.Credentials.acquireServiceCreds(Credentials.java:458)

at sun.security.jgss.krb5.Krb5Context.initSecContext(Krb5Context.java:693) ...

104 common frames omitted

Why might this happen: - You're using the JTDS JDBC driver, and your MSSQL Server's IP address doesn't
have a reverse mapping in DNS. In this case, the driver may construct a service name like: MSSQLSvc/ : and
try to use that. Either correct DNS to have a valid reverse mapping for the IP of your SQL server, or manually

kvno doesn't matter when using Kerberos keytabs with AD. The password must match the
active password for the AD user in question

Continuous Compliance – Continuous Compliance Home

Getting started – 236

1.

2.

3.

4.

1.

add an SPN to the active directory for the name the JDBC client is trying to use: - Determine the user that
starts MSSQL Server on your DB machine. - From PowerShell, do: setspn -AU MSSQLSvc/ :1433 Example:
setspn -AU MSSQLSvc/10.43.100.101:1433 AD\dbuser - The database server has multiple DNS names
(FQDNs). In this case, SPNs may be registered only for some of them. It may be necessary to add SPNs for
the other FQDNs as above. - The MS SQL Server didn't automatically register an SPN. There is a limit (in the
thousands) to the number of SPNs that may be registered for a given AD user. It is quite possible to hit this
limit in an environment where many MS SQL Server VMs are actively created and destroyed with the same
configuration.

Note:
In Active Directory, setspn isn't creating a service principal with distinct key as
is typical for services on MIT KDCs - rather it's mapping the service principal to
the key for the AD user in question.

The SPN for the SQL Server is registered to the incorrect AD account

Manifests as an exception with this text: GSS failure: Defective token detected (Mechanism level: AP_REP
token id does not match!)

Resolution: From PowerShell on the MS SQL Server:

PS> setspn -Q <SPN>

This will show what the user has the SPN registered.

PS> setspn -U -D <SPN> <WRONG_ACCT>

This will unregister the SPN from that user

PS> setspn -AU <SPN> <CORRECT_ACCT>

4.8.5.3 Sybase

Creating a principal and corresponding keytab on the KDC

SSH into the KDC as the user with sufficient privileges to run kadmin.local

Run the Kerberos configuration CLI with kadmin.local

Add a new principal you want to authenticate as later with: add_principal <> We’re going to
continue to use krbuser as our example Kerberos principal.

Once you’ve created the principal and provided it a password, we need to generate a keytab for it. Do
so via the following command:

ktadd -norandkey -k v5srvtab krbuser

In this case, v5srvtab is the keytab filename, and it will be placed into whatever directory you’ve invoked
kadmin.local from. Presumably, this will be the home directory of the machine.

You now have everything you need done on the KDC, but you will need your keytab file later as well as
the krb5.conf file that is located in the home directory of the KDC, so consider moving them
somewhere (probably your local machine) that will be convenient for you to access later.

Continuous Compliance – Continuous Compliance Home

Getting started – 237

1.

2.

3.

4.

5.

6.

1.

2.

Configuring the Sybase image for Kerberos

Startup a Sybase database.

Note: Each Sybase database machine may have multiple Sybase instances running on it at a given
point in time. In this case, I am configuring the ASE_1550_S5 instance, but these steps can be done
on any instance so long as you change the $SYBASE_HOME directories accordingly.

Connect to the particular Sybase instance you are working on and invoke the following sql statement:
sp_configure ‘use security services’, 1

Continue to create a user with the same name as the principal name you created previously on the
KDC, in this case krbuser: sp_addlogin krbuser, <password>

Change your $SYBASE environment variable to point to the Sybase directory for whichever instance
you are configuring. In this case, we want to do: export SYBASE=/opt/sybase/15-5

Open the $SYBASE/interfaces file, and find the header for whichever Sybase instance you are
configuring. In our case, it is ASE_1550_S5. You should see something that looks like this:
ASE1550_S5

`master tcp ether 10.43.89.241 5500`
`master tcp ether localhost 5500`
`query tcp ether 10.43.89.241 5500`
`query tcp ether localhost 5500`

You want to add the following line to this:

secmech 1.3.6.1.4.1.897.4.6.6

This line is static, while the other lines in this section are dynamically generated
for your instance. So, your final result should look something like this:

ASE1550_S5

master tcp ether 10.43.89.241 5500 < your numbers will vary

master tcp ether localhost 5500 < your numbers will vary

query tcp ether 10.43.89.241 5500 < your numbers will vary

query tcp ether localhost 5500 < your numbers will vary

Navigate to $SYBASE/OCS-15_0/config. You should see libtcl64.cfg and libtcl.cfg

Change the contents of libtcl64.cfg to be this:

`[DIRECTORY]`
`;ldap=libsybdldap.so ldap://ldaphost/dc=sybase,dc=com`

Continuous Compliance – Continuous Compliance Home

Getting started – 238

2.

3.

1.

1.

`[SECURITY]`
`csfkrb5=libsybskrb64.so secbase=@bar.com libgss=/lib64/libgssapi_krb5.so.2.2

[FILTERS];ssl=libsybfssl.so`

Change the contents of libtcl.cfg to be this:

`[DIRECTORY]`
 `;ldap=libsybdldap.so ldap://ldaphost/dc=sybase,dc=com`
 `[SECURITY]`
 `csfkrb5=libsybskrb.so secbase=@bar.com libgss=/lib64/libgssapi_krb5.so.2.2`
 `[FILTERS]`
 `;ssl=libsybfssl.so`

Note that the @bar.com value is our realm name that is determined by the KDC. Realistically, you
should never have to deal with this, and it should never change, but if for some reason it does, that
value needs to be updated.

Create a directory for those Kerberos config files you created on the KDC in the previous set of steps:

sudo mkdir /krb

Copy into /krb your keytab file v5srvtab and config file krb5.conf that you took off of the KDC earlier.

Head to $SYBASE/ASE-15_0/install and open the RUN_ASE1550_S5 file. We’re going to add
information so that Sybase knows where to find our keytab and our krb5.conf file, so change the
content to look like this:

#!/bin/sh

#

ASE page size (KB) : 4096

Master device path: /opt/sybase/devices/data5/S5_master.dat

Error log path: /opt/sybase/errorlogs/ASE1550_S5.log

Configuration file path: /opt/sybase/15-5/ASE-15_0/ASE1550_S5.cfg

Directory for shared memory files: /opt/sybase/15-5/ASE-15_0

Adaptive Server name: ASE1550_S5

#

export **KRB5_KTNAME**=/krb/v5srvtab

export **KRB5_CONFIG**=/krb/krb5.conf

Continuous Compliance – Continuous Compliance Home

Getting started – 239

1.

2.

1.

/opt/sybase/15-5/ASE-15_0/bin/dataserver \

-kASE1550_S5@bar.com \

-d/opt/sybase/devices/data5/S5_master.dat \

-e/opt/sybase/errorlogs/ASE1550_S5.log \

-c/opt/sybase/15-5/ASE-15_0/ASE1550_S5.cfg \

-M/opt/sybase/15-5/ASE-15_0 \

-sASE1550_S5 \

Reboot the Sybase instance you’re working so that it reads in all of these configuration changes.

Connect to the Sybase instance as the dbo user so that you may give dbo privileges to your Kerberos
authentication login on a particular database within the instance. Below is an example of doing so
with the database potatoes:

>> sql5

1> use potatoes

2> go

1> sp_addalias instructions, dbo

2> go

Alias user added.

(return status = 0)

Now, to access the Sybase instance via Kerberos and confirm success, you can do the following set
of commands (I put these three lines into a script called connect.sh for future convenience):

#!/bin/sh

kinit -k -t /krb/v5srvtab <>

export SYBASE='/opt/sybase/15-5'

/opt/sybase/15-5/OCS-15_0/bin/isql64 -V -SASE1550_S5

Testing by creating a Kerberos connector on the Delphix Engine

Continuous Compliance – Continuous Compliance Home

Getting started – 240

1.

2.

3.

Start by configuring your engine for Kerberos. SSH into the engine as the Delphix user and run the
following command: /opt/delphix/server/bin/jmxtool tunable set

enabled_features KERBEROS true

Log into the Delphix Engine and proceed through the first-time setup.

Once the first-time setup is complete, log into the Delphix Setup page, proceed to Preferences >
Kerberos Configuration. Add the information for your KDC to configure it with the principal name you
created earlier, krbuser. You can get the keytab by running the following command on your keytab
file: base64 v5srvtab

Copy the output as plaintext into the keytab field of the Kerberos configuration box.

Finally, create a Sybase connector with parameters that look like this, and if your “test connection” attempt
succeeds you’re all set!

Continuous Compliance – Continuous Compliance Home

64 https://cd.delphix.com/docs/latest/truststore-settings

Getting started – 241

4.9 Password vault configuration

4.9.1 Introduction

The Continuous Compliance Engine supports the use of HashiCorp and CyberArk password vaults for
connections to DB2, MSSQL, Oracle, PostgreSQL, and Sybase databases. Utilizing this feature requires the
presence of either a HashiCorp or CyberArk vault, as well as additional configuration actions on the
Continuous Compliance Engine.

4.9.2 Configuring a password vault on the appliance

Before attempting to access a password vault, the CA certificate for the vault must first be added to the
Compliance Engine's trust store. Certificates can be managed through the Delphix Server Setup UI and the
steps for doing so can be found on the TrustStore settings64 page.

Currently, password vaults and the associated credential paths can only be configured on the appliance
using the API. The Continuous Compliance Engine's web API includes two endpoints, password-vaults a

nd credential-paths for managing the setup of vaults and credentials.

4.9.2.1 Setting up a password vault

The POST action on the password-vaults endpoint is used to provide information on the type of vault to
be accessed and the location of the server hosting the vault.

For a HashiCorp vault, the body of the request will be similar to:

{
 "name": "HashiVault",
 "vaultType": "HASHICORP",
 "configJson": {
 "host": "123.45.67.89",
 "port": 8200,
 "namespace": "sample/child",
 "authType": "TOKEN",
 "token": "hvs.kvITvwsi4gs"
 },

Password vault authentication is not supported for containerized masking deployments at this
time.



https://cd.delphix.com/docs/latest/truststore-settings
https://cd.delphix.com/docs/latest/truststore-settings

Continuous Compliance – Continuous Compliance Home

Getting started – 242

 "description": "Vault description is optional"
}

To use either AppRole or Certificate based authentication, the following substitutions can be made to the
above example:

"authType": "APPROLE",
 "roleId": "your-role-id",
 "secretId": "your-secret"

or

"authType": "CERTIFICATE",
 "certificate": "-----BEGIN CERTIFICATE-----\nMIa1ZqA=\n-----END CERTIFICATE-----",
 "privateKey": "-----BEGIN RSA PRIVATE KEY-----\nUw9aPq\n-----END RSA PRIVATE
KEY-----",
 "roleName": "sampleRole"

For CyberArk, the request body will be similar to:

{
 "name": "CyberVault",
 "vaultType": "CYBERARK",
 "configJson": {
 "host": "cyberark01.myserver.com",
 "port": 443,
 "appId": "MyApp",
 "authType": "CERTIFICATE",
 "certificate": "-----BEGIN CERTIFICATE-----\nMIa1ZqA=\n-----END CERTIFICATE-----"
 "privateKey": "-----BEGIN PRIVATE KEY-----\nMIa1ZqA=\n-----END PRIVATE KEY-----"
 },
 "description": "Vault description is optional"
}

4.9.2.2 Setting up a credential path

Credential paths are used to specify the location of the credentials within a password vault.

Namespaces are only relevant when using the Enterprise version of the HashiCorp product. If
this field is specified, it should match the namespace being used on the HashiCorp server.



Continuous Compliance – Continuous Compliance Home

Getting started – 243

4.9.2.2.1 HashiCorp

The Continuous Compliance Engine currently supports two types of HashiCorp secrets engines: database

and key-value-v2 .

The request body for a HashiCorp credential path will be similar to:

{
 "credentialPathName": "HashiCredentialPath",
 "description": "Credential path description is optional",
 "passwordVaultId": 1,
 "credentialParameters": {
 "engineType": "KEY_VALUE_V2",
 "engine": "secret-engine-name",
 "path": "secret-path",
 "usernameKey": "username",
 "passwordKey": "password"
 }
}

Database secrets engines support dynamic secrets by generating database credentials based on configured
roles. When using a database secrets engine, set engineType to DATABASE and use role to specify the
name of the role to create credentials against.

"credentialParameters": {
 "engineType": "DATABASE",
 "engine": "database-engine-name",
 "role": "my-role",
 "usernameKey": "username",
 "passwordKey": "password"
 }

4.9.2.2.2 CyberArk

The request body for a CyberArk credential path will be similar to:

{
 "credentialPathName": "CyberCredentialPath",
 "description": "Credential path description is optional",
 "passwordVaultId": 1,
 "credentialParameters": {
 "queryString": "Safe=DevTest;Folder=Root;Object=postgres01"
}

Continuous Compliance – Continuous Compliance Home

Getting started – 244

4.9.3 Configuring the database connector

Database connectors can be configured to use a password vault through either the Continuous Compliance
Engine UI or the APIs.

4.9.4 UI configuration

When creating or editing a DB2, MSSQL, Oracle, PostgreSQL, or Sybase database connector, check the Use
Password Vault option and then select the required credential path from the Credential Path dropdown. If
the “Test Connection” run succeeds then it is complete.

4.9.5 API configuration

CredentialPathId is an optional field when creating a DB2, MSSQL, Oracle, PostgreSQL, or Sybase
database connector via the API. Setting this value to the id of an existing credential path object will result in
the connector using password vaults to retrieve the credential. As an example:

{
 "connectorName": "psql-connector",
 "databaseType": "POSTGRES",
 "environmentId": 1,
 "host": "mpv-psql.mydb.co",
 "port": 5432,
 "databaseName": "postgres",
 "schemaName": "public",
 "credentialPathId": 1
}

4.10 DB2 connector license installation

If you have been licensed to use the Continuous Compliance DB2 Connector for Mainframe or DB2
Connector for iSeries, you will need to obtain the respective DB2 Connector package (tar file) and apply it to
your Masking Engine(s). Each package is intended to be installed and run from a workstation or laptop, not
from the Delphix Appliance. These packages contain a script that must be used in a bash shell and depends
on the availability of the curl and ssh commands to install the respective license on your remote Delphix
Appliance.

Use of IBM's custom driver is disabled in containerized masking. Access to Linux DB2
databases is still possible with the out-of-the-box drivers provided.

Continuous Compliance – Continuous Compliance Home

65 https://download.delphix.com/login?backto=https://download.delphix.com/folder/580/
Delphix%20Product%20Releases/DB2%20Masking%20Mainframe

66 https://download.delphix.com/login?backto=https://download.delphix.com/folder/585/
Delphix%20Product%20Releases/DB2%20Masking%20i-Series

Getting started – 245

1.

2.

3.

4.

1.

2.

3.

4.10.1 Applying DB2 connector for mainframe

Go to the Delphix Download site65 and download DB2MaskingMainframe.tar

Extract its contents using tar -xvf DB2MaskingMainframe.tar

cd db2-license

./installdb2license.sh -h MASKING_ENGINE_HOST -P MASKING_ENGINE_PORT -u

MASKING_ENGINE_ADMIN_USERNAME -p MASKING_ENGINE_ADMIN_PASSWORD [-C

MASKING_ENGINE_PUBLIC_KEY_FILE]

Where:

MASKING_ENGINE_HOST is the hostname for where the masking engine is running.

MASKING_ENGINE_PORT is the port for where the masking engine is listening on the
MASKING_ENGINE_HOST (default is port 80).

MASKING_ENGINE_ADMIN_USERNAME is the username for connecting to the masking engine (e.g.,
delphix_admin).

MASKING_ENGINE_ADMIN_PASSWORD is the masking engine password for

MASKING_ENGINE_PUBLIC_KEY_FILE is the optional trusted server certificate (server public key) obtained
from the masking engine.

The script will enable the DB2 Mainframe connector and then recycle the Masking Engine, prompting the
user for the Delphix sysadmin password for to first stop the Masking Engine and then to start it. After the
DB2MaskingMainframe.tar package has been applied to your Masking Engine(s), "Database - MAINFRAME
DB2" will appear in the Connector drop-down of the Masking Engine UI and can be used in the same way as
other Database Connectors to create, profile, mask, certify, and provision rulesets.

4.10.2 Applying DB2 connector for iSeries

Go to the Delphix Download site66 and download DB2MaskingISeries.tar

Extract its contents using tar -xvf DB2MaskingISeries.tar

cd db2-license

To run the enablement script securely, run installdb2license.sh specifying your secure port (e.g.,
8443) and trusted server certificate (server public key) using the -C option.

https://download.delphix.com/login?backto=https://download.delphix.com/folder/580/Delphix%20Product%20Releases/DB2%20Masking%20Mainframe
https://download.delphix.com/login?backto=https://download.delphix.com/folder/585/Delphix%20Product%20Releases/DB2%20Masking%20i-Series
https://download.delphix.com/login?backto=https://download.delphix.com/folder/580/Delphix%20Product%20Releases/DB2%20Masking%20Mainframe
https://download.delphix.com/login?backto=https://download.delphix.com/folder/585/Delphix%20Product%20Releases/DB2%20Masking%20i-Series

Continuous Compliance – Continuous Compliance Home

Getting started – 246

4. ./installdb2license.sh -h MASKING_ENGINE_HOST -P MASKING_ENGINE_PORT -u

MASKING_ENGINE_ADMIN_USERNAME -p MASKING_ENGINE_ADMIN_PASSWORD [-C

MASKING_ENGINE_PUBLIC_KEY_FILE]

Where:

MASKING_ENGINE_HOST is the hostname for where the masking engine is running.

MASKING_ENGINE_PORT is the port for where the masking engine is listening on the
MASKING_ENGINE_HOST (default is port 80).

MASKING_ENGINE_ADMIN_USERNAME is the username for connecting to the masking engine (default is
delphix_admin).

MASKING_ENGINE_ADMIN_PASSWORD is the masking engine password for
MASKING_ENGINE_ADMIN_USERNAME.

MASKING_ENGINE_PUBLIC_KEY_FILE is the optional trusted server certificate (server public key) obtained
from the masking engine.

The script will enable the DB2 iSeries connector and then recycle the Masking Engine, prompting you for the
Delphix sysadmin password to first stop the Masking Engine and then start it. After the
DB2MaskingISeries.tar package has been applied to your Masking Engine(s), "Database - ISeries DB2" will
appear in the Connector drop-down of the Masking Engine UI and can be used in the same way as other
Database Connectors to create, a profile, mask, certify, and provision rulesets.

4.11 Continuous Compliance Engine icon reference
This topic illustrates the icons that appear on the Continuous Compliance Engine graphic user interface and
describes the meaning of each.

Icon Description

Edit

Export

Copy

Delete

To run the enablement script securely, run installdb2license.sh specifying your secure port (e.g.,
8443) and trusted server certificate (server public key) using the -C option.

Continuous Compliance – Continuous Compliance Home

Getting started – 247

Icon Description

Job Success

Job Created

Mask

Run Job

Ruleset Refresh

Ruleset refresh not applicable for file rulesets

Job Running

Cancel Job

Ruleset Refresh in Progress

4.12 Delphix masking terminology
Before getting started with the Continuous Compliance Engine, an overview of universal terms and concepts
will build and unify how different masking components come together. The following provides a brief
overview of the key concepts within the masking service.

4.12.1 High level concepts

These concepts are the high level concepts users run into.

Term Definition

Application An Application is a tag that is assigned to one or more environments. We recommend
using an application name that is the same as the application associated with the
environments.

Connector Connectors are any set of data (database, file, etc) that have been connected to the
Delphix Data Platform. These data sources can be physical or virtualized data sources.

Continuous Compliance – Continuous Compliance Home

Getting started – 248

Term Definition

Domain A domain represents a correlation between various sensitive data categories (social
security numbers) and the way it should be secured.

Environment An environment is a construct that can be used to describe a collection of masking jobs
associated with a group of data sources.

In-place In-place masking is 1 of 2 procedures that can be used to apply masking algorithms to
a data source. By choosing the In-place option, Delphix will read data from the data
source, secure the data in the Engine and then update the data source with the secure
data.

On-the-fly On-the-fly masking is the second procedure that can be used to apply masking
algorithms to a data source. By choosing the On-the-fly option, Delphix will read data
from the data source, secure the data in the Engine and then place the secure data in a
target source (different from the location of the original data source).

Inventory An inventory describes all of the data present in a particular data source and defines the
methods which will be used to secure it. Inventories typically include the table name,
column name, the data classification, and the chosen algorithm.

Profile Profiling uses a variety of different methods to classify data in a data source into
different categories. These categories are known as domains.
The profile process also assigns recommended algorithms for securing the data based
on the the domain.

Ruleset A rule set is group of tables or flat files within a particular data source that a user may
choose to run profile, masking, or tokenization jobs on.

4.12.2 Masking algorithms

The following terminology is around the different Algorithms that users may use to secure their data.

Term Definition

Algorithm
Framework

A type of masking algorithm. One or more usable instances of an algorithm framework
may be created. For example, "FIRST NAME SL" is an instance of the Secure Lookup
algorithm framework.

Algorithm
Instance

A named combination of algorithm framework and configuration values. Algorithm
instances are applied to data fields and columns in the inventory in order to mask data.

Continuous Compliance – Continuous Compliance Home

Getting started – 249

Term Definition

Built-in
Algorithm

An algorithm instance or framework included with the Masking Engine software. This
includes several built-in algorithm instances that provide masking behavior that doesn't
correspond to any built-in algorithm framework.

Non-
conformant
Data

Some masking algorithms require data to be in a particular format. The required format
may vary by the configuration of the algorithm instance. For example, a particular
Segment Mapping algorithm might be configured to expect a 10 digit number. Data which
doesn't fit the pattern expected by an algorithm is called nonconforming data or non-
conformant data. By default, non-conformant data is not masked, and warnings are
recorded for the masking job. Warnings are indicated by a yellow triangle warning marker
next to the job execution in Environment and Job Monitor pages. Whether non-conformant
data results in a warning or failure is configurable for each algorithm instance.

Collision The term collision describes the case where a masking algorithm masks two or more
unique input values to the same output value. For example, a first name Secure Lookup
algorithm might mask both "Amy" and "Jane" to the same masked value "Beth". This may
be desirable, in the sense that it further obfuscates the original data, however collisions
are problematic for data columns with uniqueness constraints.

Secure
Lookup

The most commonly used algorithm framework. Secure lookup works by replacing each
data value with a new value chosen from an input file. Replacement values are chosen
based on a cryptographic hash of the original value, so masking output is consistent for
each input. Secure lookup algorithms are easy to configure and work with different
languages.
When this algorithm replaces real data with fictional data, collisions, described above, are
possible. Because many types of data, such as first or last name, address, etc, are not
unique in real data, this is often acceptable. However, if unique masking output for each
unique input is required, consider using a mapping or segment mapping algorithm,
described below.

Segment
Mapping

This algorithm permutes short numeric or alpha-numeric values to other values of the
same format. This algorithm is guaranteed to not produce collisions, so long as the set of
permissible mask values is at least as large as input or "real" set. The maximum number
of digits or characters in the masked value is 36. You might use this method if you need
columns with unique values, such as Social Security Numbers, primary key columns, or
foreign key columns.

Continuous Compliance – Continuous Compliance Home

Getting started – 250

Term Definition

Mapping Similar to secure lookup, a mapping algorithm allows you to provide a set of values that
will replace the original data. There will be no collisions in the masked data, because each
input is always matched to the same output, and each output value is only assigned to
one input value. In order to accomplish this, the algorithm records, in an encrypted format,
all known input to output mappings.
You can use a mapping algorithm on any set of values, of any length, but you must know
how many values you plan to mask, and provide a set of unique replacement values
sufficient to replace each unique input value.
NOTE: When you use a mapping algorithm, you cannot mask more than one table at a
time. You must mask tables serially.

Binary
Lookup

Replaces objects that appear in object columns. For example, if a bank has an object
column that stores images of checks, you can use binary lookup algorithm to mask those
images. The Delphix Engine cannot change data within images themselves, such as the
name on X-rays or driver’s licenses. However, you can replace all such images with a new,
fictional image. This fictional image is provided by the owner of the original data.

Tokenization The only type of algorithm that allows you to reverse its masking. For example, you can
use a tokenization algorithm to mask data before you send it to an external vendor for
analysis. The vendor can then identify accounts that need attention without having any
access to the original, sensitive data. Once you have the vendor’s feedback, you can
reverse the masking and take action on the appropriate accounts.
Like mapping, a tokenization algorithm creates a unique token for each input such as
“David” or “Melissa.” The Delphix Engine stores both the token and original so that you
can reverse masking later.

Min Max Values that are extremely high or low in certain categories allow viewers to infer
someone’s identity, even if their name has been masked. For example, a salary of $1
suggests a company’s CEO, and some age ranges suggest higher insurance risk. You can
use a min max algorithm to move all values of this kind into the midrange.

Data
Cleaning

Does not perform any masking. Instead, it standardizes varied spellings, misspellings, and
abbreviation for the same name. For example, “Ariz,” “Az,” and “Arizona” can all be
cleaned to “AZ.”

Continuous Compliance – Continuous Compliance Home

Getting started – 251

Term Definition

Free Text
Redaction

Helps you remove sensitive data that appears in free-text columns such as “Notes.” This
type of algorithm requires some expertise to use, because you must set it to recognize
sensitive data within a block of text.
One challenge is that individual words might not be sensitive on their own, but together
they may be. This algorithm uses profiler sets to determine which information it needs to
mask. You can decide which expressions the algorithm uses to search for material such
as addresses. For example, you can set the algorithm to look for “St,” “Cir,” “Blvd,” and
other words that suggest an address. You can also use pattern matching to identify
potential sensitive information. For example, a number that takes the form 123-45-6789 is
likely to be a Social Security Number.
You can use free text redaction algorithm to show or hide information by displaying either
a "deny list” or an “allow list.”

4.12.3 Profile job concepts

The following set of concepts are options available to the user for configuring a profiling job.

Term Definition

Job
Name

A free-form name for the job you are creating. Must be unique.

Multi-
Tenant

Check the box if the job is for a multi-tenant database. This option allows existing rulesets to
be reused to mask identical schemas via different connectors. The connector can be selected
at job execution time.

Rule Set Select a ruleset that this job will execute against.

No. of
Streams

The number of parallel streams to use when running the jobs. For example, you can select two
streams to run two tables in the ruleset concurrently in the job instead of one table at a time.

Min
Memory
(MB)
optional

Minimum amount of memory to allocate for the job, in megabytes.

Max
Memory
(MB)
optional

Maximum amount of memory to allocate for the job, in megabytes.

Continuous Compliance – Continuous Compliance Home

Getting started – 252

Term Definition

Feedba
ck Size
optional

The number of rows to process before writing a message to the log. Set this parameter to the
appropriate level of detail required for monitoring your job. For example, if you set this number
significantly higher than the actual number of rows in a job, the progress for that job will only
show 0 or 100%

Profile
Sets
optional

The name of a profile set, which is a subset of expressions (for example, a subset of financial
expressions).

Comme
nts
optional

Add comments related to this job.

Email
optional

Add email address(es) to which to send status messages. Separate addresses with a comma
(,).

4.12.4 Masking job concepts

These concepts are options available to the user for configuring a masking job.

Term Definition

Job Name A free-form name for the job you are creating. Must be unique across the entire
application.

Masking
Method

Select either In-Place or On-The-Fly.

Multi-Tenant Check the box if the job is for a multi-tenant database. This option allows existing
rulesets to be reused to mask identical schemas via different connectors. The
connector can be selected at job execution time.

Rule Set Select a ruleset for this job to execute against.

Masking
Method

Select either In-place or On-the-fly.

Min Memory
(MB) optional

Minimum amount of memory to allocate for the job, in megabytes.

Continuous Compliance – Continuous Compliance Home

Getting started – 253

Term Definition

Max Memory
(MB) optional

Maximum amount of memory to allocate for the job, in megabytes.

Update
Threads

The number of update threads to run in parallel to update the target database.
For database using T-SQL, multiple update/insert threads can cause deadlock. If you
see this type of error, reduce the number of threads that you specify in this box.

Commit Size The number of rows to process before issuing a commit to the database.

Feedback Size The number of rows to process before writing a message to the logs. Set this
parameter to the appropriate level of detail required for monitoring your job. For
example, if you set this number significantly higher than the actual number of rows in a
job, the progress that job will show 0% or 100%.

Disable Trigger
optional

Whether to automatically disable database triggers. The default is for this check box to
be clear and therefore not perform automatic disabling of triggers.

Drop Index
optional

Whether to automatically drop indexes on columns which are being masked and
automatically re-create the index when the masking job is completed. The default is for
this check box to be clear and therefore not perform automatic dropping of indexes.

Prescript
optional

Specify the full pathname of a file that contains SQL statements to run before the job
starts, or click Browse to specify a file. If you are editing the job and a pre script file is
already specified, you can click the Delete button to remove the file. (The Delete button
only appears if a prescript file was already specified.)

Postscript
optional

Specify the full pathname of a file that contains SQL statements to be run after the job
finishes, or click Browse to specify a file. If you are editing the job and a postscript file
is already specified, you can click the Delete button to remove the file. (The Delete
button only appears if a postscript file was already specified.)

Comments
optional

Add comments related to this masking job.

Email optional Add email address(es) to which to send status messages.

Continuous Compliance – Continuous Compliance Home

Getting started – 254

•

1.

2.

3.

4.

5.

6.

4.13 Changing the IP address of the Delphix Engine
You can change the IP address of the Delphix Engine either from the User Interface or using the Command-
Line Interface.

4.13.1 Pre-requisites

Ensure that no masking jobs are running.

4.13.2 Changing the IP address from the user interface

Perform the following procedure to change the IP address of the Delphix Engine from the UI.

Launch the Delphix Setup application.

Go to System > Server Setup in the Delphix Management interface, or click Server Setup in the
Delphix Engine login screen.

In the Network panel, click Modify.

Under DNS Services, enter the new IP address.

Click Ok.

Refresh all environments by clicking the Refresh option on the Environments screen.

4.13.3 Changing the IP address using CLI

Perform the following procedure to change the IP address of the Delphix Engine using CLI.

1. Log into the Delphix CLI using your sysadmin account.

delphix> network
delphix network> setup
delphix network interface> list
NAME
vmxnet3s0

For Containerized Masking, networking is handled via the underlying kubernetes infrastructure.
There is no interface through the application to change the IP address. Changing the IP address
of a containerized instance requires those changes to happen in kubernetes and its underlying
nameservice. Frequently it is managed by the network proxy that directs traffic to the
containerized instance.

Continuous Compliance – Continuous Compliance Home

Getting started – 255

delphix network interface> select vmxnet3s0
delphix network interface 'vmxnet3s0'> get
 type: NetworkInterface
 name: vmxnet3s0
 addresses:
 0:
 type: InterfaceAddress
 address: 10.1.2.3/24
 addressType: STATIC
 enableSSH: true
 state: OK
 dataNode: DATA_NODE-34
 device: vmxnet3s0
 macAddress: 0:c:29:32:96:a3
 mtu: 1500
 mtuRange: 60-9000
 reference: NETWORK_INTERFACE-vmxnet3s0-DATA_NODE-34
 state: OK

2. Run the update command and update the address to the new IP address for the Delphix Engine.

delphix network interface 'vmxnet3s0'> update
delphix network interface 'vmxnet3s0' update *> edit addresses.0
delphix network interface 'vmxnet3s0' update addresses.0 *> get
Properties
 type: InterfaceAddress
 address: 172.16.151.154/24
 addressType: STATIC
 enableSSH: true

delphix network interface 'vmxnet3s0' update addresses.0 *> set address=10.1.2.4/24
delphix network interface 'vmxnet3s0' update addresses.0 *> get
 type: InterfaceAddress (*)
 address: 10.1.2.4/24 (*)
 addressType: STATIC (*)
 enableSSH: true (*)

3. Commit the operation.

delphix network interface 'vmxnet3s0' update addresses.0 *> commit
delphix network interface 'vmxnet3s0'> get
 type: NetworkInterface
 name: vmxnet3s0
 addresses:
 0:
 type: InterfaceAddress
 address: 10.1.2.4/24
 addressType: STATIC
 enableSSH: true
 state: OK

Continuous Compliance – Continuous Compliance Home

Getting started – 256

 dataNode: DATA_NODE-34
 device: vmxnet3s0
 macAddress: 0:c:29:32:96:a3
 mtu: 1500
 mtuRange: 60-9000
 reference: NETWORK_INTERFACE-vmxnet3s0-DATA_NODE-34
 state: OK

4.14 Stopping and starting the containerized Continuous
Compliance Engine

4.14.1 Overview

This article describes how to stop and start the containerized Delphix Continuous Compliance engine. For
information on performing the tasks for the Virtual Machine Masking Engine, please see the documentation
located in the document Starting, Stopping, and Restarting the Masking Engine (see page 258).

Containerized deployments are dependent on a customer-created configuration file which can be named
anything. For the purposes of this document, the default name of kubernetes-config.yaml will be
used. Also, any command-line examples will assume that this file is in the current directory to simplify the
example.

4.14.2 Starting the containerized Masking Engine

Starting the engine is a simple matter of asking Kubernetes to create the Pod described by the Pod
configuration file. This is done with a single kubectl command.

$ kubectl create -f ./kubernetes-config.yaml

The Pod will take some time to start. The status of the Pod can be verified with another simple kubectl
command.

$ kubectl get pods
NAME READY STATUS RESTARTS AGE
delphix-masking-0 3/3 Running 2 (5d14h ago) 13d

A Containerized Masking Pod consists of 3 containers. The above output demonstrates a Pod where 3/3
containers are READY . This is a Pod that is up and running and ready to accept connections.

Continuous Compliance – Continuous Compliance Home

Getting started – 257

If the Pod STATUS indicates an error or the number of restarts is consistently climbing, that indicates that
there is a problem with the Pod and debugging will need to be done to determine the problem and the
appropriate resolution.

4.14.3 Stopping the containerized Masking Engine

Stopping a running Pod is simple despite some confusing terminology. The Kubernetes terminology for
stopping a Pod is delete , but this command does not delete any of the containers or persistent volumes.
It only stops the running Pod. The command to stop a running pod is of the same form as starting the Pod.

$ kubectl delete -f ./kubernetes-config.yaml

This tells Kubernetes to shut down whatever it previously started. Because the Containerized Masking
Engine is a Stateful application, it has persistent storage. This persistent storage is not deleted when the Pod
is shut down.

If a Pod that was shut down is then restarted, it will attempt to re-attach any persistent storage defined in the
kubernetes-config.yaml file.

4.14.4 Removing persistent volumes / persistent volume claims

If it is necessary to delete any persistent volumes (PVs) and persistent volume claims (PVCs) associated
with the Pod, that will have to be done manually. It is possible to locate any PVs and PVCs that exist with
some simple kubectl commands.

$ kubectl get pv
NAME CAPACITY ACCESS MODES RECLAIM POLICY
STATUS CLAIM STORAGECLASS
REASON AGE
pvc-7fe1d352-de17-4132-b2a1-152f4e9cfefc 20Gi RWX Delete
Bound container-registry/registry-claim microk8s-hostpath
183d
pvc-a7275ce3-b630-4d4c-9712-b5124358cb7f 4Gi RWO Delete
Bound default/masking-persistent-storage-delphix-masking-0 microk8s-hostpath
15d
nfs-pv 500Mi RWO Retain
Bound default/nfs-pvc nfs-storage
13d

It is common for the first 2 containers of the Pod to enter a READY state very quickly and for the
3rd container to take some time to become ready. How long is dependent on a number of
factors including the underlying infrastructure. (how powerful, how busy)

Continuous Compliance – Continuous Compliance Home

Getting started – 258

•
•

•
•

$ kubectl get pvc
NAME STATUS VOLUME
CAPACITY ACCESS MODES STORAGECLASS AGE
masking-persistent-storage-delphix-masking-0 Bound pvc-a7275ce3-b630-4d4c-9712-
b5124358cb7f 4Gi RWO microk8s-hostpath 15d
nfs-pvc Bound nfs-pv
500Mi RWO nfs-storage 13d

To completely remove a Pod (a clean slate) would require the removal of any PVs and PVCs associated with
the Pod. The first step is to shut down the Pod. Once the Pod is no longer running, removing the PVC will
frequently also remove the associated PV.

Removing either the PV or PVC is a simple matter of using the appropriate kubectl command. To
illustrate removing a PVC, simply take note of the name of the object. From the example output above, there
is a PVC named masking-persistent-storage-delphix-masking-0 . To remove it, use the
following command.

$ kubectl delete pvc masking-persistent-storage-delphix-masking-0

4.15 Stopping, starting, and restarting the continuous compliance
engine

4.15.1 Overview

This article describes how to stop, start, and restart the Virtual Machine-based Delphix Continuous
Compliance engine. Use cases, troubleshooting tips before a restart, and steps in the CLI are outlined in the
following sections. For instructions on stopping and starting the Containerized Masking Engine, please see
the document Stopping and Starting the Containerized Masking Engine (see page 258).

4.15.2 Use cases examples

Stopping and starting the Masking Engine may be required when performing:

Masking Engine maintenance work.
Backup and Restore.

Restarting the Masking Engine may be required if:

The Masking Engine is unreachable or unresponsive.
A Masking Job is in an incorrect state.

Stopping and Starting the Masking Engine will terminate all running jobs; this includes Imports,
Inventory Scans, Profiling and Masking Jobs, etc.

Continuous Compliance – Continuous Compliance Home

Getting started – 259

•

1.

2.
a.
b.
c.

3.

4.15.3 Troubleshooting before a restart

If the Masking Engine is unreachable, the following should always be checked before a restart:

Verify that the Engine is reachable over the network using ping.

Using the shell or putty, access the Masking Engine and login using the sysadmin user.

Access CLI using SSH.
ssh sysadmin@<yourEngine>

4.15.4 Using the Command-Line Interface (CLI)

The CLI provides means to access information and execute commands on the Engine without a GUI; one of
which is to stop and start the Continuous Compliance Engine. This is done using the system menu.

At the CLI prompt, type system.

At the system prompt, do one of the following, depending on the desired action:
To enable the engine: type startMasking and then commit.
To disable the engine: type stopMasking and then commit.
To restart the engine: type stopMasking and commit, then startMasking and commit.

To exit the CLI, type exit.

Verify that no jobs are running (unless the job should be terminated). If a root cause
investigation is needed, please open a case with Delphix Support and upload a support bundle.

Containerized Masking functions very differently from the Virtual Machine deployment. For
information on performing these same functions for Containerized Masking, please see the
documentation page for Stoping and Starting the Containerized Masking Engine (see page 258).

The sysadmin password is the password set when the Masking Engine was configured.

Continuous Compliance – Continuous Compliance Home

Getting started – 260

4.15.4.1 Restarting the Masking Engine example

Below is an example of how to restart the Continuous Compliance Engine using the CLI.

$ ssh sysadmin@yourEngine
Password:
yourEngine> system
yourEngine system> ls
startMasking stopMasking
yourEngine system> stopMasking
yourEngine system stopMasking *> commit
yourEngine system> startMasking
yourEngine system startMasking *> commit
yourEngine system> exit
Connection to yourEngine closed

4.16 Upgrading the Continuous Compliance Engine

4.16.1 Upgrades for virtual Compliance Engines

Upgrading Delphix appliances is a multi-step process. This process will affect the availability of the
Compliance Engine administrative interface and virtual datasets during the operation, based on the type of
upgrade chosen.

If the Masking Engine fails to start, it could be worth waiting a few minutes (2 minutes or so)
and then try stopMasking , followed by startMasking again. Startup failure could be the
masking service entering Maintenance Mode. You cannot clear Maintenance Mode by entering
startMasking ; you must use stopMasking , followed by startMasking . If this fails,

Delphix Support needs to investigate why the service failed.

Customers running version 5.3.9 and earlier that are requesting an upgrade to 6.0.0.0 and
above, please contact Delphix Support to help coordinate this upgrade.

Upgrading from 6.0.x to 6.0.x includes pre-checks packaged in the upgrade image, thus,
contacting Delphix Support is not required for this upgrade (e.g. 6.0.0.0 -> 6.0.9.0).

Continuous Compliance – Continuous Compliance Home

67 https://cd.delphix.com/docs/latest/upgrade

Getting started – 261

•
•

•

•

1.

2.

3.

For more information on upgrades and the process, please visit the Upgrading the Delphix Engine67

documentation section. The page is located in the Continuous Data documentation suite, but is relevant to
upgrading Continuous Compliance.

4.16.2 Upgrades for containerized Compliance Engines

Containerized Masking is generally expected to be used in an ephemeral fashion. The general process for
utilizing newer versions is to upload the new set of containers and deploy new engines from them.

There is not currently a certified process by which to upgrade a Containerized Masking Engine in-place. If you
have a need this, please contact your Delphix Representative and inquire about opening an enhancement
request.

4.17 Utilization

4.17.1 Overview

Delphix helps with keeping track of Compliance engine utilization. You can access the utilization reports
from the Admin > Utilization page. This article discusses the UI.

4.17.2 Utilization UI page

The Utilization page can be found in the UI under the Admin tab. This page provides the user the capability to
generate two types of utilization reports in PDF format:

Jobs: The report lists the number of job executions for a specified environment and date range.
Database Size: This report is designed to assist customers on usage based pricing contracts. The
report contains the databases masked and their respective size.

Currently, this information is only gathered for Oracle databases (Oracle 12c or greater).
Support for Oracle 11g and other database platforms will be added in future releases.

There is also an API endpoint to get database usage information. For more information,
please refer to API documentation. (see page 658)

4.17.3 The jobs utilization report

To generate the jobs utilization report:

Select the Utilization Type as Jobs.

Select the Job Environment from the list.

Provide Start Date and End Date.

https://cd.delphix.com/docs/latest/upgrade
https://cd.delphix.com/docs/latest/upgrade

Continuous Compliance – Continuous Compliance Home

Getting started – 262

4.

1.

2.

3.

Click Generate PDF.

4.17.4 The database size report

To generate the database size report:

Select the Utilization Type as Database Size.

Select a Date Range from the predefined list of date ranges. Select Custom to supply a custom Start
Date and End Date.

Click Generate PDF.

4.17.4.1 Support matrix

The Delphix engine supports database size calculation for the following databases:

Continuous Compliance – Continuous Compliance Home

Getting started – 263

4.17.4.1.1 Oracle

Data Source Version Availability Setup Instructions

Oracle Oracle 11g Unavailable

Oracle 12c and later Available Preparing Oracle
Database for Profiling/
Masking (see page 265)

All other data sources Unavailable

Multiple options can be selected.

Continuous Compliance – Continuous Compliance Home

Preparing data – 264

•
•
•
•

•
•
•

•
•
•
•
•
•
•
•
•
•
•
•
•

5 Preparing data
This section includes the following topics:

Database user permissions for executing masking and profiling job (see page 264)

Preparing Oracle database for profiling/masking (see page 265)

Preparing SQL server database for profiling and masking (see page 268)

Preparing Sybase database for profiling and masking (see page 270)

5.1 Database user permissions for executing masking and profiling
job

5.1.1 Introduction

This section provides the recommended list of permissions required for executing Masking and Profiling
jobs on the Continuous Compliance Engine. This page provides general permission recommendations. The
subsequent pages in this section provide detailed recommendations for specific databases.

Delphix recommends that a separate Database user (i.e. named Masking User) be created across all the
databases with the appropriate permissions on the schemas to be masked. If needed create multiple users.
The appropriate permissions for the database Masking User are listed below.

The benefits of having a separate DB Masking User:

Replicating the new user (and privileges) are easier
Access Audits are much easier
Can be created as a central AD user and used at many places simultaneously

5.1.2 List of database entitlements required to run masking jobs

Read data from Tables
Write data to Tables
Update data in tables
Create indexes
Drop indexes
Create triggers
Drop triggers
Disable triggers
Enable triggers
Alter tables add column
Alter table delete column
Create constraints
Delete constraints

Continuous Compliance – Continuous Compliance Home

Preparing data – 265

•
•

•
•

Disable constraints
Enable constraints

5.1.3 List of database entitlements required to run profiling jobs

View Definition (Schema)
Read Data from Tables

5.2 Preparing Oracle database for profiling/masking

5.2.1 Overview

Before masking your data, it is important to prepare your database. This article explains the required
changes, reasons for the changes, and instructions on how to make the changes.

5.2.2 Archive logging

What is Archive Logging?

Oracle Database lets users save filled groups of redo log files to one or more offline destinations, known
collectively as the archived redo log, or more simply the archive log. The process of turning redo log files into
archived redo log files is called archiving. This process is only possible if the database is running in
ARCHIVELOG mode. Users can choose automatic or manual archiving.

Why is it important to make this change?

Archive logging will slow down masking processes and absorb CPU resources that could be used by the
masking process. Furthermore, since masking will change every row in every table being masked logs are
only needed for short term recovery and transaction backout.

The choice of whether to enable the archiving of filled groups of redo log files depends on the availability and
reliability requirements of the application running on the database. If you cannot afford to lose any data in
your database in the event of a disk failure, use ARCHIVELOG mode. The archiving of filled redo log files can
require you to perform extra administrative operations.

How exactly do I make this change? (exact commands, etc).

ALTER DATABASE NOARCHIVELOG;

5.2.3 DB/VDB memory allocation

What is SGA? A system global area (SGA) is a group of shared memory structures that contain data and
control information for one Oracle database instance. If multiple users are concurrently connected to the
same instance, then the data in the instance's SGA is shared among the users. Consequently, the SGA is
sometimes called the shared global area.

An SGA and Oracle processes constitute an Oracle instance. Oracle automatically allocates memory for an
SGA when you start an instance, and the operating system reclaims the memory when you shut down the
instance. Each instance has its own SGA.

Continuous Compliance – Continuous Compliance Home

Preparing data – 266

The SGA is read/write. All users connected to a multiple-process database instance can read the information
contained within the instance's SGA, and several processes write to the SGA during the execution of Oracle.
When automatic SGA memory management is enabled, the sizes of the different SGA components are
flexible and can adapt to the needs of a workload without requiring any additional configuration. The
database automatically distributes the available memory among the various components as required,
allowing the system to maximize the use of all available SGA memory. Make sure the DB/VDB memory
allocation is sufficient for the workload. Delphix’s best practices for sizing a VDB will handle most masking
requirements. If you plan to run many concurrent masking jobs a small memory allocation will negatively
impact the performance of the masking jobs.

Why is it important to make this change?

To assure that masking jobs will perform at an optimum level.

How exactly do I make this change? (exact commands, etc). Set automatic SGA memory management to
enabled. If not allowed set the SGA based on the diagnosis from the AWR report generated during a masking
job. The DBA is best suited to make the appropriate tuning changes to the SGA parameters for the version of
Oracle being masked.

5.2.4 Undo tablespace size and undo retention time:

What is tablespace? Every Oracle Database must have a method of maintaining information that is used to
roll back or undo, changes to the database. Such information consists of records of the actions of
transactions, primarily before they are committed. These records are collectively referred to as undo.

Undo records are used to: - Roll back transactions when a ROLLBACK statement is issued - Recover the
database - Provide read consistency - Analyze data as of an earlier point in time by using Oracle Flashback
Query - Recover from logical corruptions using Oracle Flashback features

When a ROLLBACK statement is issued, undo records are used to undo changes that were made to the
database by the uncommitted transaction. During database recovery, undo records are used to undo any
uncommitted changes applied from the redo log to the datafiles. Undo records provide read consistency by
maintaining the before image of the data for users who are accessing the data at the same time that another
user is changing it.

Why is it important to make this change?

The masking Engine updates or inserts masked data in batches. In the case of an insert, it only requires the
current transaction size for the commit of each table being masked. The default per table stream is 10k
rows. However, with an update, the transaction is not complete until the entire table is masked. So, the more
tables and more rows and the wider (size) each row is in each table, the more undo space is needed to
complete the transaction. Large tables, such as DW tables or history and Audit tables, most often need an
increase to the Undo space and undo Retention time for updates. If space or time is exceeded then the
masking job may fail with an ORA-01555, Snapshot too old error.

How exactly do I make this change? (exact commands, etc).

It is highly recommended to increase the Undo space and undo Retention time when running in-place jobs on
large tables. A general rule of thumb is 2 or 3 times the size of the larges table(s), or if there are multiple
tables running at the same time, then all tables combined. A DBA is best suited to make the necessary UDNO
Space and UNDO Retention changes.

5.2.5 Redo logs are optimally sized

What is Redo Logs?

Continuous Compliance – Continuous Compliance Home

Preparing data – 267

•
•
•

The most crucial structure for recovery operations is the redo log, which consists of two or more
preallocated files that store all changes made to the database as they occur. Every instance of an Oracle
Database has an associated redo log to protect the database in case of an instance failure.

Why is it important to make this change?

The most important reason to make this change is to keep performance optimal. If redo logs are too small,
then the log switching will occur too often, using up valuable Oracle resources.

How exactly do I make this change? (exact commands, etc).

A DBA is best suited to make these changes appropriately.

5.2.6 Change PCTFREE to 40-50:

What is PCTFREE?

PCTFREE and PCTUSED are used together, but PCTFREE is critical for updates. The larger the PCTFREE
value the more updates can be done.

Why is it important to make this change?

PCTFREE aids in performance increases for updating Oracle during masking. The Masking Engine does
many updates at the same time in batch mode. The more that can be done without DB overhead the faster
the masking jobs run.

How exactly do I make this change? (exact commands, etc).

A DBA is best suited to make these changes.

5.2.7 Change primary Key To ROWID:

What is ROWID?

For each row in the database, the ROWID pseudocolumn returns the address of the row. Oracle Database
rowid values contain information necessary to locate a row.

Why is it important to make this change?

This is especially important in masking for performance. IF ROWID is used then Oracle will manage the
updates for the rows it tracks using ROWID. This makes updates much faster. On occasion, there may be a
key (PK/FK/UK) or ID column with an index that is faster, but generally, ROWID is the fastest.

How exactly do I make this change? (exact commands, etc).

Add ROWID as the logical key on each table in the ruleset using the Masking Engine GUI. Also, in a script you
should drop foreign keys, and if possible indices and disable triggers and recreate them after the masking
job has been run for any of these types of columns being masked.

5.2.8 Masking user privileges:

The following privileges are required for the database user provided in the source connector configuration

SELECT on V$CONTROLFILE
SELECT on V$DATAFILE_HEADER
SELECT on V$INSTANCE

Continuous Compliance – Continuous Compliance Home

68 https://docs.microsoft.com/en-us/sql/relational-databases/backup-restore/view-or-change-the-recovery-model-of-a-
database-sql-server

Preparing data – 268

Why is it important to make this change?

These privileges are needed to calculate the size of the source database.

How exactly do I make this change? (exact commands, etc).

SQL commands to grant required privileges to the user

GRANT SELECT on v_$controlfile to [mask_user];
GRANT SELECT on v_$datafile_header to [mask_user];
GRANT SELECT on v_$instance to [mask_user];

5.3 Preparing SQL server database for profiling and masking
Before masking your data, it is important to prepare your database. This section explains the required
changes, reasons for the change, and the instructions to make the change.

5.3.1 Logging

What is Simple Recovery Model?

SQL Database Simple Recovery model - Automatically reclaims log space to keep space requirements small,
essentially eliminating the need to manage the transaction log space. Operations that require transaction log
backups are not supported by the simple recovery model.

Why is it important to make this change?

Reducing the overhead of the transaction logging and the size of the files before checkpoints increases the
masking speed significantly.

How exactly do I make this change?

Either (a) use SQL Server Management Studio to open the DB properties dialog box and select the “simple
recovery model” or (b) issue the SET RECOVERY SIMPLE statement from a SQL query tool. Please see this
reference68 for more details.

5.3.2 DB/VDB memory allocation

What is min/max memory in SQL Server?

Memory is allocated at the SQL Server level, so all the DBs will share the entire load. The max memory should
be close to the maximum available on the server.

Why is it important to make this change?

To assure that masking jobs will perform at an optimum level.

How exactly do I make this change?

https://docs.microsoft.com/en-us/sql/relational-databases/backup-restore/view-or-change-the-recovery-model-of-a-database-sql-server
https://docs.microsoft.com/en-us/sql/relational-databases/backup-restore/view-or-change-the-recovery-model-of-a-database-sql-server

Continuous Compliance – Continuous Compliance Home

Preparing data – 269

•
•
•

Use SQL Server Management Studio and change the max memory allocation for the server.

5.3.3 Primary/Foreign/DMS_ROW_ID Keys

What is a key?

A key is a unique, non-null value that identifies a row in the database.

Why is it important to make this change?

Using a PK or Foreign key is critical for fast updates. When a table does not have an identity column with an
index or a PK/FK then the masking engine will alter the table to have an Identity column, DMS_ROW_ID to
optimize performance.

How exactly do I make this change?

A logical key can be added to a table in the Masking Engine Ruleset for each table, if there is a specific
column that would find the row to update faster than the current PK/FK.

5.3.4 Creating a masking user and privileges

It is highly recommended to create a database user, and possibly a role, for use by the Masking Engine. This
user should be created in a non-Production environment and not in your production environment. The
following permissions are needed:

db_datareader
db_datawriter
db_ddladmin

SQL commands to add a user with the required privileges:

USE [mask_db]
GO
CREATE LOGIN [mask_user] WITH PASSWORD=N'delphix123'
GO
CREATE USER [mask_user] FOR LOGIN [mask_user]
GO
USE [mask_db]
GO
ALTER ROLE [db_datareader] ADD MEMBER [mask_user]
GO
USE [mask_db]
GO
ALTER ROLE [db_datawriter] ADD MEMBER [mask_user]
GO
USE [mask_db]
GO
ALTER ROLE [db_ddladmin] ADD MEMBER [mask_user]
GO

Continuous Compliance – Continuous Compliance Home

69 https://help.sap.com/viewer/3bdda6b0ffad441aab4fe51e4e876a19/16.0.3.7/en-US/
a8c58629bc2b10148a2c8f38befbcac8.html

70 https://delphixdocs.atlassian.net/wiki/spaces/CD/pages/5341432/Resizing+an+SAP+ASE+VDB

Preparing data – 270

5.4 Preparing Sybase database for profiling and masking

Before masking your data, it is important to prepare the database. This section explains the required
changes, reasons for the change, and instructions to make the change.

5.4.1 What is min/max memory in SQL server?

5.4.1.1 Determining the amount of memory SAP ASE needs

The total memory SAP ASE requires to start is the sum of all memory configuration parameters plus the size
of the procedure cache plus the size of the buffer cache, where the size of the procedure cache and the size
of the buffer cache are expressed in round numbers rather than in percentages. The procedure cache size
and buffer cache size do not depend on the total memory you configure. You can configure the procedure
cache size and buffer cache size independently. Use sp_cacheconfig to obtain information such as the total
size of each cache, the number of pools for each cache, the size of each pool, and so on.

Use sp_configure to determine the total amount of memory SAP ASE is using at a given moment: 1>

sp_configure "total logical memory"

Parameter Name Defau
lt

Memory
Used

Config
Value

Run
Value

Unit Type

total logical
memory

33792 127550 63775 63775 memory
pages(2k)

read-
only

Masking large tables can result in large transactions (depending on the masking job's commit
size). It is important to manage each database's transaction log as appropriate to allow the
masking jobs to run. Failure to manage the transaction log can result in the suspension of the
transaction and hence the masking job appears to hang. Please review the ASE documentation
Managing Free Space with Thresholds69 on how to manage the transaction log threshold.
Sometimes it is necessary to resize the database to have a larger transaction log. When resizing
a Delphix VDB, take care to ensure that the any new log devices are created in the VDB's
underlying "datafile" directory provided by the Delphix Engine. For more information, see
Resizing an SAP ASE VDB70.

https://help.sap.com/viewer/3bdda6b0ffad441aab4fe51e4e876a19/16.0.3.7/en-US/a8c58629bc2b10148a2c8f38befbcac8.html
https://delphixdocs.atlassian.net/wiki/spaces/CD/pages/5341432/Resizing+an+SAP+ASE+VDB
https://help.sap.com/viewer/3bdda6b0ffad441aab4fe51e4e876a19/16.0.3.7/en-US/a8c58629bc2b10148a2c8f38befbcac8.html
https://delphixdocs.atlassian.net/wiki/spaces/CD/pages/5341432/Resizing+an+SAP+ASE+VDB

Continuous Compliance – Continuous Compliance Home

Preparing data – 271

•

•

•

•

•

•

•

The value for the Memory Used column is represented in kilobytes, while the value for the Config Value
column is represented in 2K pages.

The Config Value column indicates the total logical memory SAP ASE uses while it is running. The Run Value
column shows the total logical memory being consumed by the current SAP ASE configuration. Your output
differs when you run this command because no two SAP ASEs are configured exactly the same.

5.4.1.2 Determine the SAP ASE memory configuration

The total memory allocated during system start-up is the sum of memory required for all the configuration
needs of SAP ASE. You can obtain this value from the read-only configuration parameter total logical
memory . This value is calculated by SAP ASE. The configuration parameter max memory must be greater
than or equal to total logical memory. Max memory indicates the amount of memory you will allow for SAP
ASE needs.

During server start-up, by default, SAP ASE allocates memory based on the value of total logical memory.
However, if the configuration parameter allocate max shared memory has been set, then the memory
allocated will be based on the value of max memory. The configuration parameter allocate max shared
memory enables a system administrator to allocate the maximum memory that is allowed to be used by SAP
ASE, during server start-up.

The key points for memory configuration are:

The system administrator should determine the size of shared memory available to SAP ASE and set
max memory to this value.
The configuration parameter allocate max shared memory can be turned on during start-up and
runtime to allocate all the shared memory up to max memory with the least number of shared
memory segments. A large number of shared memory segments have the disadvantage of some
performance degradation on certain platforms. Check your operating system documentation to
determine the optimal number of shared memory segments. Once a shared memory segment is
allocated, it cannot be released until the server is restarted.
The difference between max memory and total logical memory determines the amount of memory
available for the procedure and statement caches, data caches, or other configuration parameters.
The amount of memory SAP ASE allocates during start-up is determined by either total logical
memory or max memory. If you set alloc max shared memory to 1, SAP ASE uses the value for max
memory.
If either total logical memory or max memoryis too high:

SAP ASE may not start if the physical resources on your machine are not sufficient.

If it does start, the operating system page fault rates may rise significantly and the operating
system may need to be reconfigured to compensate.

Why is it important to make this change?

To assure that masking jobs will perform at an optimum level.

5.4.2 Primary/Foreign/DMS_ROW_ID keys to for masking Sybase:

What is a key?

A key is a unique, non-null value that identifies a row in the database.

Continuous Compliance – Continuous Compliance Home

Preparing data – 272

Why is it important to make this change?

Using a PK or Foreign key is critical for fast updates. When a table does not have an identity column with an
index or a PK/FK then the masking engine will alter the table to have an Identity column, DMS_ROW_ID to
optimize performance.

How exactly do I make this change? (exact commands, etc).

A logical key can be added to a table in the Masking Engine Ruleset for each table, if there is a specific
column that would find the row to update faster than the current PK/FK.

Note Sybase ASE will create unavoidable log entries when a table is altered and will increase the log size
significantly. If needed, run the masking jobs using the On-The-Fly method to avoid log file increases.

5.4.3 Creating a Masking user and privileges:

It is highly recommended to create a database user, and possibly a role, to mask. This user should not be
created in production but should be created in non-Production. The following permissions are needed:

Syntax to add user and give privileges:

sp_adduser mask_user;

CREATE user NEWUSER;

CREATE LOGIN mask_user WITH PASSWORD Delphix_123; --THIS MUST BE DONE IN MASTER

CREATE USER mask_user IDENTIFIED BY Delphix_123;

GRANT SELECT ON PII_V2 TO mask_user; GRANT INSERT ON PII_V2 TO mask_user; GRANT
DELETE ON PII_V2 TO mask_user; GRANT ALTER ON PII_V2 TO mask_user; GRANT UPDATE ON
PII_V2 TO mask_user;

GRANT ALTER ANY TABLE TO mask_user;

Adaptive Server requires a two-step process to add a user: sp_addlogin followed by sp_adduser.

CREATE LOGIN MASK_SUPER_USER WITH PASSWORD Delphix_123;

sp_addlogin MASK_SUPER_USER, Delphix_123;

GRANT ROLE sa_role TO MASK_SUPER_USER;

While performing a data copy, the database that contains the table must have select into/
bulkcopy/pllsort turned on.

Continuous Compliance – Continuous Compliance Home

Connecting data – 273

•
•
•
•
•
•
•
•
•
•
•

•

•

6 Connecting data
This section contains the following topics:

Managing environments (see page 273)

Managing remote mounts for VM continuous compliance engines (see page 282)

Managing remote mounts for containerized masking (see page 289)

Managing SSL/TLS over JDBC for containerized masking (see page 293)

Managing connectors (see page 296)

Managing extended connectors (see page 311)

Managing rule sets (see page 319)

Managing file formats (see page 333)

Managing inventories (see page 350)

Managing record types and header/footer records (see page 372)

Whole file masking (see page 378)

6.1 Managing environments
This section describes how you can create and manage your environments in the masking service.

As a reminder, environments are used to group certain sets of objects within the Masking Engine. They can
be thought of as folders/containers where a specified user can create manage connectors, rule sets, and
jobs.

The Main Environment screen lists all the environments the logged in user has access to. It is the first screen
that appears when a user logs into Delphix.

The main environments screen contains the following information and actions:

Environment ID — The numeric ID of the environment used to refer to the environment from the
Masking API.
Application — A way to indicate the name of the application whose data will be managed within this
environment.

Continuous Compliance – Continuous Compliance Home

Connecting data – 274

•
•
•
•
•
•
•

1.

2.
a.

3.

1.

2.

3.

Environment — The name of the environment.
Purpose — The purpose of the environment.
Jobs — The number of jobs contained within the environment.
Edit — Edit the environment. See more details below.
Export — Export the environment. See more details below.
Copy — Copy the environment. See more details below.
Delete — Delete the environment. See more details below.

The environments on the screen can be sorted by the various informational fields by clicking on the
respective field. In addition, the environments listed can be filtered using the Search field. See more details
below.

6.1.1 Adding an application

For an environment to be created, an application needs to be specified. Here are the steps to add an
application:

On the main environments page, near the upper right-hand corner of the screen, click on the Select
Action drop-down list and select the Add Application option.

The screen prompts you for the following items:
Application Name

Click Save to return to the Environments List/Summary screen.

6.1.2 Creating an environment

Here are the steps you need to take to create an environment:

On the main environments page, in the upper right-hand corner of the screen, click on the Select
Action drop-down list and select the Add Environment option.

The screen prompts you for the following items:

Application Name – The name of the application to associate with the environment, for informational
purposes.

Continuous Compliance – Continuous Compliance Home

Connecting data – 275

4.

5.

6.

7.

1.

2.

3.

Environment Name – The display name of the new environment.

Purpose – The type of masking workflow for the environment: Mask or Tokenize/Re-Identify.

Enable Approval Workflow (Database rulesets only) – Whether or not to require approvals of
inventories before masking jobs can be run in the environment. Applicable for Database rulesets only.

Either click Save to return to the Environments List/Summary screen, or click Save & View to display
the Environment Overview screen.

6.1.3 Exporting settings

To export the Settings:

On the main environments page, in the upper right-hand corner of the screen, click on the Select
Action drop-down list and select the Export Settings option.

The screen prompts you to take the input for the optional Passphrase. You can input the Passphrase
by clicking the Use Passphrase checkbox.

Click Export.

Continuous Compliance – Continuous Compliance Home

Connecting data – 276

All the information related to Settings (Domain, Algorithm, File Format and so on) is exported to a file.

A status pop-up appears. You can wait to finish the download or you can close the download popup page to
download the file for later. When the export operation is complete, automatically it will download the export
file or you can click on the Download file name to download the export file manually. You can also check the
export status from Async Task Status (see page 0) page.

6.1.4 Importing settings

Once you have exported your settings, you can easily import it into another Masking Engine. To import
settings:

Continuous Compliance – Continuous Compliance Home

Connecting data – 277

1.

2.

3.

4.

5.

6.

1.

2.
a.
b.

3.

On the main environments page, in the upper right-hand corner of the screen, click on the Select
Action drop-down list and select the Import Settings option.

The screen prompts you for the following items:

Passphrase – You can input the Passphrase by clicking the Use Passphrase checkbox. If the settings
were exported using a passphrase then you must use the same passphrase for the import settings as
well otherwise the import operation will fail.

Force Overwrite – Specify whether the import should fail if an object already exists with the same ID
or the existing object should be overwritten. Click on the force overwrite checkbox if you want to
overwrite the existing object.

Settings File – Click on Select... button to browse for the exported settings file that contains the
information you want to import. (This file must be a previously exported masking environment.)

Click Import button to start the import operation.

A status pop-up appears. You can wait to finish the import operation or you can close the pop-up page and
check the import status for later. When the import operation is complete, it will show the final status of the
import operation on the pop-up page. You can also check the import status from Async Task Status (see page
0) page.

6.1.5 Async task status

To check the async task status:

On the main environments page, in the upper right-hand corner of the screen, click on the Select
Action drop-down list and select the Async Task Status option.

A pop-up page will appear with the below filter options:
Select Task Type : Select the type to filter the result.
Enter Async Task Id : Enter the Async Task Id to filter the result.

Click on Find button to find the async task.

Continuous Compliance – Continuous Compliance Home

Connecting data – 278

From the result grid, you can also download the export file for the export operation by clicking the Download
file link on the corresponding row. You can also download the log file for the failed import/export operations
by clicking the Download log file link on the corresponding row

6.1.6 Exporting an environment

For a variety of different reasons (the main one being moving environments between masking engines), you
may want to export all the objects within an environment (connectors, rule sets, masking jobs, etc).

To export an environment use the Export Environment option available in the Masking UI. To export an
individual environment:

Continuous Compliance – Continuous Compliance Home

Connecting data – 279

1.

2.
a.

3.

4.

Click the Export icon or click on Export button on the Environment Overview screen.

The pop-up fills in the following items:
Environment Name

You can input the optional Passphrase by clicking the Use Passphrase checkbox.

Click Export.

All the information for the specified environment (connectors, rule sets, inventory, jobs, and so on) is
exported to a file.

A status pop-up appears. You can wait to finish the download or you can close the download pop-up page to
download the file for later. When the export operation is complete, automatically it will download the export
file or you can click on the Download file name to download the export file manually. You can also check the
export status from Async Task Status (see page 0) page.

6.1.7 Importing an environment

Once you have exported your environment, you can easily import it into another Masking Engine. To import
an environment:

Continuous Compliance – Continuous Compliance Home

Connecting data – 280

1.

2.

3.

4.

On the main environments page, in the upper right-hand corner of the screen, click on the Select
Action drop-down list and select the Import Environment option.

The screen prompts you for the following items:

Import Settings – Click the checkbox if you want to import settings as well.

Force Overwrite – Specify whether the import should fail if an object already exists with the same ID
or the existing object should be overwritten. Click on force overwrite checkbox if you want to
overwrite the existing object.

Continuous Compliance – Continuous Compliance Home

Connecting data – 281

5.

6.

7.

8.

9.

10.

11.

1.

2.
a.
b.
c.
d.

3.

1.

2.
a.
b.
c.

Application – You can select the existing application from the application drop-down or you can enter
the application name to create a new application.

Environment – You can select the existing environment from the environment drop-down or you can
enter the environment name to create a new environment.

OTF Environment – Click on OTF Environment checkbox to import the on-the-fly connectors into that
environment. You can select the existing environment from the environment drop-down or you can
enter the environment name to create a new environment.

Passphrase – You can input the Passphrase by clicking the Use Passphrase checkbox. If the
exported file is used the passphrase then you should use the same passphrase for the import as well.

Settings File – Click on Select... button to browse for the exported settings file that contains the
information you want to import. (This file must be a previously exported masking environment.)

Environment File – Click on Select... button to browse for the exported environment file that contains
the information you want to import. (This file must be a previously exported Masking environment.)

Click Import button to start the import operation.

A status pop-up appears. You can wait to finish the import operation or you can close the popup page and
check the import status for later. When the import operation is complete, it will show the final status of the
import operation on the pop-up page. You can also check the import status from Async Task Status (see page
0) page.

6.1.8 Editing an environment

To change the properties of an environment, do the following:

Click the Edit icon to the right of the environment status.

The pop-up prompts you for the following information:
Environment Name
Purpose
Application Name
Enable Approval Workflow

Click Save.

6.1.9 Copying an environment

A user can also easily create an exact copy of a certain environment. This is a very powerful feature when
wanting to have several similar but not exact environments but don't want to start from scratch. To copy an
environment do the following:

Click the Copy icon to the right of the environment status.

The pop-up prompts you for the following information:
Environment Name
Purpose
Application Name

Continuous Compliance – Continuous Compliance Home

Connecting data – 282

d.

3.

•

1.

2.

3.

1.

2.

Enable Approval Workflow

Click Save.

6.1.10 Deleting an environment

To delete an environment:

Click the Delete icon to the right of the environment status and copy icon.

6.1.11 Searching for environments

When a large number of environments have been created on a Masking Engine, it may be useful to filter the
Environments List/Summary screen. To filter the environment list, do the following:

In the Search field in the upper left side of the screen, enter the characters to search by.

Click the adjacent Search button.

The screen will display only the environments whose name match the specified search characters.

To re-display, the entire list of environments, clear the Search field of characters and click the Search button
again.

6.2 Managing remote mounts for VM continuous compliance
engines

This section describes how you can mount an NFS/CIFS location inside the Continuous Compliance engine
and use it in a masking job for engines deployed on virtual machines. For information on file mounts for
containerized masking, please refer to Managing Remote Mounts for Containerized Masking. (see page 289)

In order to access the files shared over NFS/CIFS server from the Masking Engine, complete the following
two steps:

Create and connect a mount using Mount Filesystem API (see page 0) endpoint.

Create a file connector (see page 0) with Filesystem Mount Point mode. Or, Upload a XML/Copybook
file format (see page 0) using Filesystem Mount Point mode.

Clicking the Delete icon deletes EVERYTHING for that environment: connections, inventory, rule
sets, and so on. It does not delete universal settings like algorithms, domains, etc.

Continuous Compliance – Continuous Compliance Home

Connecting data – 283

•

•

•

•

•
•

•

•

•
•
•

6.2.1 Mount filesystem API

The Mount Filesystem APIs are used to perform normal CRUD operations(Create, Read, Update, and Delete)
along with three mount operations connect(mount), disconnect(unmount), and remount on a mounted
object.

6.2.1.1 Mount information

To create a mount entry, information about the mount is passed. Some of them are required and some are
optional.

Required Information:

mountName: The name of the mount. This name is used to refer to this mount in the
connector creation and file format upload UIs.

hostAddress: The NFS/CIFS server address.

mountPath: The remote path shared by the NFS/CIFS server. For a CIFS mount, this should be
the path after the hostname/IP address, with any backslashes (\) replaced with a slash (/).
For example, \\10.0.0.1\Share would be entered as /Share.

type: The type of the server. CIFS, NFS3, or NFS4.
Optional Information:

options: The mount options.

connectOnStartup: Whether this mount should be connected or not when the server starts.

6.2.2 Mount options

The API supports passing many mount options. Not all of them are supported by a server. After a mount is
connected, you might see the options field has many options that were not passed by you or some options
that have been eliminated that were passed by you. The options field shows effective options only. The
applied options are gathered after a mount is connected.

The API also restricts the usage of some mount options.

6.2.2.1 Enforced options

The following mount options are enforced and added to the list of options for all mounts:

nosuid: The filesystem cannot contain set userid files.
noexec: No executable script can be run from the mount.
nodev: The filesystem cannot contain special devices.

When a server shuts down, all the mounts are disconnected.

Continuous Compliance – Continuous Compliance Home

Connecting data – 284

•
•
•

•

6.2.2.2 Minimal options

Although options is an optional field, it is required for CIFS mounts to pass credentials. The following
options are required for CIFS mounts:

username: The username to connect to the CIFS server.
password: The password of the user.
domain: The domain of the user.

For example, "options": "username=abc,password=pass,domain=DOMAIN"

For NFSv3 mounts, options are not required, therefore can be null .

For NFSv4 mounts, the following option is required:

nfsvers: The NFS protocol version number. For example, "options": "nfsvers=4.0"

6.2.2.3 Version options

The version information is passed using vers option. The supported versions based on mount types are

Mount Type Supported Versions

CIFS 2.0, 2.1, 3.0

NFS3 3, 3.0

NFS4 4, 4.0, 4.1, 4.2

6.2.2.4 Generic options

Some mount options are generic which can be applied to all the mount types while some are mount specific
options. In the case of remount operation, only generic options can be modified. The list of allowed generic
options are:

async, atime, auto, context, defaults, defcontext, diratime, dirsync, fscontext, group, iversion, lazytime, loud,
mand, _netdev, noatime, noauto, nodev, nodiratime, noexec, nofail, noiversion, nolazytime, nomand,
norelatime, nostrictatime, nosuid, nouser, owner, relatime, _rnetdev, ro, rootcontext, rw, silent, strictatime,
sync, and user.

Continuous Compliance – Continuous Compliance Home

Connecting data – 285

1.

2.

6.2.3 CRUD operations

6.2.3.1 Create

The create endpoint is used to create a mount entry. It takes all the information about a mount as its input
and creates a mount entry. It doesn't do any kind of validation about the mount's accessibility. The validation
is done during the connect operation.

6.2.3.2 Read

The read endpoints are used to retrieve information about a mount. There are two read endpoints.

get all: To get information about all mounts.

get: To get information about any particular mount identified by its id.

6.2.3.3 Update

The update endpoint is used to modify any information of a mount. Update operation can be performed only
on a disconnected mount.

6.2.3.4 Delete

The delete endpoint is used to delete a mount entry. A mount can be deleted only if it is not being used in any
of the connectors.

6.2.4 Mount operations

Apart from normal CRUD operations, there are three special mount related operations exposed through the
API.

6.2.4.1 Connect

The connect endpoint is used to mount a remote mount inside the masking engine. If the connect operation
succeeds then, the options field is updated with the applied mount options.

6.2.4.2 Disconnect

The disconnect endpoint is used to unmount a remote mount from the Masking Engine.

Continuous Compliance – Continuous Compliance Home

Connecting data – 286

•
•

•
•
•

6.2.4.3 Remount

The API supports the remount operation. This can be used to remount an active or to connect a
disconnected mount and also to update some mount information. This can update mountName,
connectOnStartup and generic options only. For other updates, use the normal update API.

6.2.4.4 Resolve mount consistency

A script runs in the background to keep the data in the mount_information table and mounts in sync. If for
some reason, the data for a mount mounted inside the mount engine and data corresponding to that mount
in mount_information table becomes inconsistent, the mount is unmounted. For example, if a mount is in a
disconnected state in DB but it is mounted in the engine, then it will be unmounted.

6.2.5 Using mounts

A mount can be used at two places:

File connectors
File formats

6.2.5.1 File connector

While creating a connector, when any file connector option is selected, the UI shows a dropdown to select
how a file will be accessed. There are three options:

Filesystem Mount Point
SFTP
FTP

Continuous Compliance – Continuous Compliance Home

Connecting data – 287

•
•

•

On selecting the Filesystem Mount Point option, the mount name and a path inside the mount needs to be
specified.

Mount Name: This is a list of mount names created in the engine.
Path Under Mount: A path relative to the path mounted. By default, it is at the root of the remote
Mount path.
Remote Path: The complete remote path. On selecting a mount name and typing a path in the above
input box, this gets updated.

Continuous Compliance – Continuous Compliance Home

Connecting data – 288

6.2.5.2 File format

The XML and Copybook file formats can be uploaded from a remote location. To upload a file format from
an NFS/CIFS location, select the Filesystem Mount Point option.

A connector can be created even if a mount is in a disconnected state but it should be in an
active state when a ruleset is being created or when a job is run.

Continuous Compliance – Continuous Compliance Home

Connecting data – 289

•
•
•
•
•
•

1.

2.

6.2.5.3 Sync mounts

A mount can be synced from a source engine to a target engine using Sync APIs (see page 635). Syncing a file
connector using a mount also syncs the related mounts. The following mount information fields are synced:

mountName
hostAddress
mountPath
options
connectOnStartup
type

In case of CIFS mounts, the password is not synced. In order to set the password in the target engine, update
the mount's options and ensure to include the password in the options.

6.2.6 Recommended mount server configuration

The NFS and CIFS servers should be configured in such a way that the files are readable and writeable by the
Masking Engine.

6.2.6.1 CIFS server

The user-provided to connect to the mount should have read and write permission on the mount.

6.2.6.2 NFS server

The Masking Engine's server IP should have read and write permission on the mount.

For NFS, the access to a file is controlled based on the UID and GID. In order to give read & write
permission to the Masking Engine on the share path, the path should be shared with the following
options:

<mount path> <masking engine ip>(rw,all_squash,anonuid=<uid>,anongid=<gid>)
uid and gid is of the owner of the shared path on the server

6.3 Managing remote mounts for containerized masking
This section describes how to mount an NFS mountpoint inside the Containerized Masking Engine. For
information on file mountpoints for Virtual Machine Masking, please refer to Managing File Mounts (see page
282).

In Containerized Masking, much more control is available to the admin at the Kubernetes layer. That
advantage is used to simplify file systems mounts for Containerized Masking. This document will describe
the process using NFS as an example mountpoint type.

Continuous Compliance – Continuous Compliance Home

Connecting data – 290

6.3.1 Creating the mountpoint connection in Kubernetes

To establish a remote mount using NFS, the first step is creating the NFS connection to the remote NFS host.
This is accomplished utilizing a special NFS persistent volume. This can be added to the beginning of the
kubernetes-config.yaml file or created as separate config files just for this purpose. If separate

config files are created, they will have to be applied before the main Pod config is applied.

Both a Persistent Volume (PV) and Persistent Volumne Claim (PVC) are necessary and the YAML for each of
these looks like the following snippets.

6.3.1.1 NFS Persistent Volume YAML

apiVersion: v1
 kind: PersistentVolume
 metadata:
 name: nfs-pv
 spec:
 capacity:
 storage: 500Mi
 volumeMode: Filesystem
 accessModes:
 - ReadWriteOnce
 storageClassName: nfs-storage
 mountOptions:
 - hard
 - nfsvers=4.1
 nfs:
 server: <your NFS server host>

Restriction
Filesystem mount points must be mounted as a subdirectory of /var/delphix/masking/

remote-mounts/ .



Restriction
In order for Kubernetes to utilize some particular network filesystem, the underlying host will
typically need to be able to support that filesystem. In this example, to support mounting NFS
filesystems, the underlying OS needs to be able to perform an nfs mount. This is typically
enabled by installing the nfs-client package. For example, if the kubernetes cluster runs on top of
a debian-type linux distro, the package would need to be installed using apt install nfs-client on
each node to ensure all nodes have the necessary utilities to handle mounting NFS filesystems.



Continuous Compliance – Continuous Compliance Home

Connecting data – 291

 path: <the exported directory on the NFS server, for example /var/tmp/
masking-mount>

6.3.1.2 NFS persistent volume claim YAML

apiVersion: v1
 kind: PersistentVolumeClaim
 metadata:
 name: nfs-pvc
 spec:
 accessModes:
 - ReadWriteOnce
 volumeMode: Filesystem
 storageClassName: nfs-storage
 resources:
 requests:
 storage: 500Mi # change corresponding to actual requirements

6.3.2 Using the mountpoint in the pod configuration

Next, the recently created NFS PVC must get mounted into the application container. This is achieved by
editing the existing Pod config YAML and adding 2 objects. First, attaching the PVC to the pod as a volume.
Second, linking that volume into the application container. This is demonstrated in the excerpt below.

6.3.2.1 Excerpt of kubernetes-config.yaml to show support for NFS volumes

#
 # Example of volume definition per Persistent Volume Claim
 #
 volumes:
 - name: nfs-pv-storage
 persistentVolumeClaim:
 claimName: nfs-pvc
 containers:
 - image: delphix-masking-app:6.0.16.0-c1
 name: app
 ports:
 - containerPort: 8284
 name: http
 volumeMounts:
 - name: masking-persistent-storage
 mountPath: /var/delphix/masking
 subPath: masking
 - name: masking-persistent-storage
 mountPath: /var/delphix/postgresql

Continuous Compliance – Continuous Compliance Home

Connecting data – 292

•
•

•

 subPath: postgresql
 #
 # Example of mounting an external volume
 #
 # Mount path is the directory on the `app` container to be mounted to the
 # remote provided Persistent Volume.
 # It should always start with the `/var/delphix/masking/remote-mounts`
 # and to be followed with customer named sub-directory per mount.
 # That sub-directory will automatically be created on the Masking Engine
`app` container.
 #
 - name: nfs-pv-storage
 mountPath: /var/delphix/masking/remote-mounts/nfs_example

6.3.3 Using the mountpoint in the UI

Once a properly configured Pod is started, the configured NFS filesystem can be accessed in the UI using the
same process that was previously used for non-containerized instances documented in Managing Remote
Mounts for VM Masking Engines (see page 282). The one sticking point is that these mount points (in the
dropdown list) by default are named "mountpoint_1", "mountpoint_2", etc.

It is possible to rename the default mount point names to something more friendly. This is done via the
PUT /mount-filesystem/{mountID} API endpoint.

6.3.4 Other types of filesystem mountpoint

The above example has used NFS, but it is possible to mount any filesystem that Kubernetes will support. To
mount CIFS or some other supported remote filesystem is possible so long as the same general procedure is
followed including:

creating the various Kubernetes objects (such as the PV and PVC)
mounting it under the /var/delphix/masking/remote-mounts/ required path

6.3.5 Known limitations

You can't configure mount point manually (i.e. using API endpoints). Only mount points provided by
Kubernetes will be detected.

The /mount-filesystem API has a large set of functionality that is used to manage filesystem
mounts in the Virtual Machine deployment of the Masking Engine. For Containerized Masking,
most of that functionality is handled by Kubernetes itself rendering the API tasks useless and
therefore disabled. The only functionality available in Containerized is the endpoint that allows
you to update an existing mount and only to update its name.

Continuous Compliance – Continuous Compliance Home

Connecting data – 293

•

•

•
•
•

•
•
•

•
•
•

Customized mount points can't be synced from Appliance Masking Engine. If the sync bundle
contains any mount point created via API - importing that bundle to containerized Masking Engine will
fail.
Masking Sync is incapable of altering your various Kubernetes config YAML files which is the only
way to mount a filesystem in Containerized Masking.
You can't edit existing mount points at containerized Masking Engine.
Mount points are named automatically by Masking Engine
You can delete (via API mountFilesystem) only those mount points which are not provided by
Kubernetes (for example were synced in), and not associated with any existing connector.

6.3.6 Local file masking troubleshooting

If Masking Engine is not responsive at <your-masking-engine-URL>:30080/masking - there might be need to
troubleshoot. If you are not sure what's the name of the masking pod you can find all pods in the given
Kubernetes's cluster by running kubectl get pod command. The one with the word masking will be the
desired pod. If multiple masking pods are run on the same instance - look for

delphix-masking-* names, Pod status could be seen by running kubectl get pod <your-masking-pod-name>.
If not all 3 containers are in the running status - let's get the description of the pod: kubectl describe pod
delphix-masking-0. In the output of the above command there is the health information for each container,
their status and the latest errors that prevented the pod from a successful startup. Most probably those
errors will give a hint on what went wrong. If Masking Engine was working fine prior to adding the Local File
Masking configuration, the error reasons could be (but not limited to):

the configured remote Persistent Volume is not accessible
the directory configured for remote Persistent Volume doesn't exist
the yaml files entries you've added are not correctly indented (yaml files are indentation sensitive).
After fixing the found problem and tearing down all created Kubernetes instances (in the opposite
order) - start applying those again.

If Masking Engine application is up and running, but the configured masking job fails - verify
the write permissions are granted to the masking target directory (on the corresponding mounted Persistent
Volume).

6.4 Managing SSL/TLS over JDBC for containerized masking
On the VM instance, we use the Virtualization Engine's Setup App to manage certificates and trust stores for
SSL/TLS needs. Since Containerized Masking Engine runs alone - we need to provide another way of creating
the truststore and storing the SSL certificate. There are multiple options of establishing truststore on linux
container. Below is an example of using Kubernetes for this purpose.

uploading the saved certificate to configmap
mounting that configmap as volume
creating a truststore and uploading there the configured certificates

6.4.1 Prerequisites

Database is configured with SSL listener. To establish the SSL/TLS connection over JDBC we should know:

Continuous Compliance – Continuous Compliance Home

Connecting data – 294

•
•
•
•
•

1.

2.

database URL,
SID,
SSL listener port,
SERVICE_NAME (for database service where SSL listener is enabled)
SSL_SERVER_CERT_DN (SSL server certificate distinguished name) - could be found from the
generated certificate, for example by using the openssl utility:

openssl x509 -in ssl_cert.crt -text

Here ssl_cert.crt is a name of the file containing the desired certificate (the one that was copied from the
Database).

6.4.2 Create configmap entry based on database provided SSL/TLS certificate

save SSL/TLS certificate as .crt file.

use Kubernetes command to create a configmap, for example:

kubectl configmap ora-18 --from-file=ssl_cert.crt

Here ora-18 is the name of the created configmap entry, ssl_cert.crt file contains the SSL/TLS certificate. To
verify that configmap entry is added to the pod instance run the following command:

kubectl get configmap

6.4.3 Mount the configured configmap as volume

Add configmap entry as a volume to the pod instance in it's config .yaml file. If you already have other
volumes defined that new entry can go under the existing volumes section. If not create a volumes: section
as shown below:

volumes:
 - name: ora-ssl-cert-volume
 configMap:
 name: ora-18

Here ora-ssl-cert-volume is a name for the provided volume, ora-18 is the name of the previously created
configmap entry.

Now we are ready to mount that volume to app container. Under the containers: section of the pod's
config .yaml file, find the app container and add another entry to its volumeMounts: as shown below:

- name: ora-ssl-cert-volume

Continuous Compliance – Continuous Compliance Home

Connecting data – 295

 mountPath: /var/delphix/ssl/ssl_cert.crt
 subPath: ssl_cert.crt

Here ora-ssl-cert-volume is a pod level provided volume, ssl_cert.crt is a name of the certificate file
(originally provided by the configured configmap).

If using multiple SSL/TLS certificates - the above steps to be repeated for each certificate.

6.4.4 Create trust store and upload all mounted SSL/TLS certificates

We suggest using Kubernetes's lifecycle postStart hook to create the truststore and load the certificates:

In the pod's config .yaml file in the containers: section, find the app container and add to a lifecycle section to
contain a postStart: hook as shown below

name: app
 lifecycle:
 postStart:
 exec:
 command: ["/bin/bash", "-c", "for filename in /var/delphix/ssl/*.crt;
do keytool -import -trustcacerts -keystore /var/delphix/ssl/.masking_certs -storepass
changeit -noprompt -alias $(basename \"$filename\" .crt) -file \"$filename\"; done"]

Here we use the keytool utility to create the truststore /var/delphix/ssl/.masking_certs and to

load all the mounted certificates found in the /var/delphix/ssl/ directory .

6.4.5 Configure SSL/TLS over JDBC connector

Now any required SSL/TLS certificates are uploaded to the truststore on Containerized Masking Engine. We
can use them to establish the JDBC connection. In the connector settings for the advanced Oracle database
connector the URL to be configured as following:

jdbc:oracle:thin:@(DESCRIPTION=(ADDRESS=(PROTOCOL=tcps)(HOST=<your oracle DB URL>)
(PORT=<port where SSL listener is configured>))(CONNECT_DATA=(SERVICE_NAME=<service
name>))(SECURITY=(SSL_SERVER_CERT_DN="<distinguished name of the SSL sertificate>")))

Attention!
The used mountPath /var/delphix/ssl/ is a preconfigured location on the app container where
certificates should be stored! That's where the truststore will look for customer provided
certificates.



Continuous Compliance – Continuous Compliance Home

Connecting data – 296

1.

1.

2.

1.

6.4.6 SSL/TLS over JDBC troubleshooting

verify the file contains the exact SSL/TLS certificate (copied from the DB). It should look like:

-----BEGIN CERTIFICATE-----
 MIIBkDCB+gIBADANBgkqhkiG9w0BAQQFADARMQ8wDQYDVQQDEwZiYmRoY3AwHhcNMjIwOTAxMDA0
 ...
 uVWk84o=
-----END CERTIFICATE-----

verify the certificate is mounted under the correct /var/delphix/ssl/ directory.

verify the certificate is uploaded to the truststore by logging into the bash on the app container and
checking truststore exists and how many certificates are loaded:

keytool -list -keystore /var/delphix/ssl/.masking_certs -v

if app container didn't start - most probably the mount was not configured correctly. Check the pod
description for errors:

kubectl describe pod delphix-masking-0

Particularly check for indentation issues in the YAML entries because Kubernetes is very sensitive to
indention.

6.5 Managing connectors
This page describes how to create and manage your connectors.

As a reminder, connectors are the way users define the data sources to which the Continuous Compliance
Engine should connect. Connectors are grouped within environments. In order to navigate to the connectors
screen, click on an environment and then click the Connector tab.

Continuous Compliance – Continuous Compliance Home

Connecting data – 297

•

•
•
•
•
•

1.

2.

The connectors screen contains the following information and actions:

Connector ID — The numeric ID of the connector used to refer to the connector from the masking
API.
Connector — The name of the connector.
Meta Data Source — The type of connector. E.g. Database, File, or Mainframe.
Type — The specific type of connector.
Edit — Edit the connector. See more details below.
Delete — Delete the connector. See more details below.

The connectors on the screen can be sorted by the various informational fields by clicking on the respective
field.

6.5.1 Creating a connector

Perform the below steps to create a new connector:

In the upper right-hand corner of the Connector tab, click Create Connection. The Create Connection
window appears, prompting you for connection information for the data source you would like to
connect to. The required information will change depending on the Type of data source you select.
For more details on what info is needed to connect to different types (Oracle, AWS RDS, etc.) refer to
the sections below.

Several of our connector types offer two different modes of connecting, Basic and Advanced Mode.
Advanced Mode gives you the ability to specify the exact JDBC URL and add parameters that may not
be available in Basic Mode.

Continuous Compliance – Continuous Compliance Home

Connecting data – 298

3.

4.

1.

2.
a.
b.

The fields that appear on the Connector screen are specific to the selected Connector Type (see
Connector Types below).

Click Save.

6.5.2 Editing a connector

Perform the below steps to edit a connector:

In the Connector tab, click the Edit icon for the connector you want to edit.

Change any information necessary. To change the password:
Select the checkbox next to Change Password.
In the field that appears, enter the new password.

Continuous Compliance – Continuous Compliance Home

Connecting data – 299

3.

•

•

•
•

Click Save.

6.5.3 Deleting a connector

To delete a connector, click the Delete icon to the far right of the connector name. When you delete a
connector, you also delete its rule sets and inventory data.

6.5.4 Database connectors

The fields that appear are specific to the DBMS Type you select. If you need assistance determining these
values, please contact your database administrator.

You can only create connectors for the databases listed. If your database is not listed here, you cannot
create a connector for it.

Connection Type — (Oracle, MS SQL Server, and Sybase only) Choose a connection type:

Basic — Basic connection information.

Advanced — The full JDBC connect string including any database parameters.
Connection Name — The name of the database connector (specific for your Delphix application).

Continuous Compliance – Continuous Compliance Home

Connecting data – 300

•
•

•
•

•
•

•

•

•

•

•

•
•
•

•

•

•

Schema Name — The schema that contains the tables that this connector will access.
Database Name— The name of the database to which you are connecting. Note: the database name
field is case-sensitive. It must match exactly with the name of the current database as known to the
instance.
Host Name/ IP — The network hostname or IP address of the database server.
Use Kerberos Authentication — (Oracle only, optional) Whether to use Kerberos to authenticate to the
database. This box is clear by default. Before Kerberos may be used, the appliance must be properly
configured, refer to the Kerberos configuration instructions (see page 227). If this box is checked, the
application authenticates with the Kerberos KDC before connecting to the database, then uses its
Kerberos credentials to authenticate to the database instead of a login/password. When Kerberos is
enabled, the "Login ID" field is treated as the Kerberos user principal name. The password, if supplied,
is used to authenticate the user principal with the KDC. The password field may be left blank if the
keytab set during appliance configuration contains keys for the user principal.

Note, Kerberos functionality has been disabled in containerized masking.
Login ID — The user login this connector will use to connect to the database (not applicable for
Kerberos Authentication).
Password — The password associated with the Login ID or Username (this password is stored
encrypted).
Use Password Vault — (DB2, MS SQL Server, Oracle, PostgreSQL, and Sybase only) Whether to use a
password vault to authenticate to the database instead of a login ID and password. This box is clear
by default. Before a password vault may be used, it must be properly configured. If this box is
checked, the selected Credential Path is used to obtain database credentials from the password vault
it references.
Credential Path — (DB2, MS SQL Server, Oracle, PostgreSQL, and Sybase only) The path to
credentials in a password vault to use for database authentication in lieu of a login ID and password.
Principal Name — (Kerberos Authentication only) The name of the Kerberos user principal to use
when authenticating with the KDC. The realm portion of the principal may be omitted if it matches the
configured default realm.
Service Principal — (Sybase with Use Kerberos Authentication only) The name of the Sybase service
instance.
Port — The TCP port of the server.
SID — (Oracle only) Oracle System ID (SID).
Instance Name — (MS SQL Server only) The name of the instance. This is optional. If the instance
name is specified, the connector ignores the specified "Port" and attempts to connect to the "SQL
Server Browser Service" on port 1434 to retrieve the connection information for the SQL Server
instance. If the instance name is provided, be sure to make exceptions in the firewall for port 1434 as
well as the particular port that the SQL Server instance listens to.
Custom Driver Name — (Generic only) The name of the JDBC driver class, including Java package
name.
JDBC URL — (Generic and Advanced connector mode for Oracle, MS SQL Server, and Sybase only)
The custom JDBC URL, typically including hostname/IP and port number.
Connection Properties File — A Java properties file to specify configurations for the JDBC
connection. See Database Connection Properties (see page 0) for more information.

All database types have a Test Connection button at the bottom left of the New Connector window. It is
highly recommend that you test your connection before you save it and leave the window. When you click

Continuous Compliance – Continuous Compliance Home

Connecting data – 301

Test Connection, Delphix uses the information in the form to attempt a database connection. When finished,
a status message appears indicating success or failure.

6.5.5 Database connector properties

6.5.5.1 Getting properties

To retrieve all properties set on the connector, make a request to the GET database-connector/{id}/

properties endpoint. This endpoint will respond with all default properties set by the driver, superimposed
by any properties specified by an uploaded connection properties file. If a properties file is uploaded for a
connector, this list can also be viewed through the UI on the database connector form, where you can sort by
Property , Value , or Modified . The Modified field signifies whether the property value is the

default or modified by the uploaded properties file.

The database name field is case-sensitive. It must match exactly with the name of the current
database as known to the instance.

Only a valid JDBC URL is required to retrieve properties of a connector; a valid connection to the
database server is not necessarily required.

Continuous Compliance – Continuous Compliance Home

Connecting data – 302

6.5.5.2 Setting properties

Properties can sometimes be set through the JDBC URL or through a connection properties file. Customizing
the JDBC URL is limited to Advanced, Generic, and Extended Connectors, while uploading a properties file is
supported by all database connectors. All properties files must have the extension .properties and must
adhere to Java properties file syntax. Even if a property specified in the properties file is not technically
supported by the JDBC driver, it will still be passed along to the driver when building the JDBC Connection.
All provided and unsupported properties will be logged whenever the properties file is loaded.

The properties file is assumed to be written using ISO 8859-1 character encoding.

Continuous Compliance – Continuous Compliance Home

Connecting data – 303

Certain JDBC drivers do not allow specific supported properties to be set through the JDBC URL.
For example, Caché DB does not support setting the schema property through the JDBC URL, so
it must either be set through the extended connector's Schema form field or through a
connection properties file. Please defer to specific Driver documentation to see how a property
must be set.

1.

2.

When a property can be duplicated among a form field, the JDBC URL, and the properties file,
the property value will most likely be used in the following hierarchy of specification.

Connector form fields (where applicable) for username, password, and schema.

Properties file 3a. Connector form fields (where applicable) for database name, host, port,
SID, and instance name 3b. JDBC URL

Though this hierarchy is convention, it is up to the JDBC driver to implement the precedence for
duplicate properties specified among the URL, Properties object, and JDBC Connection API.
Please defer to the specific JDBC Driver documentation to verify which method of specification
precedes the other. A masking connectors form will either have the fields listed in 3a or 3b, but
not both. Therefore, it is not possible to duplicate a property between 3a and 3b.

Continuous Compliance – Continuous Compliance Home

Connecting data – 304

•

•

6.5.5.3 Security considerations

The property key or value provided in a database connector's properties file will not be regulated and is
subject to any user with CREATE or UPDATE connector privileges. This means that even supported

sensitive properties such as user , password , hostname , etc. will be available in plain text to anyone

with the VIEW connector privilege.

If possible, specify sensitive properties through relevant form fields which will be obfuscated in all places or
through the JDBC URL which will still be visible in plain text to any user with the VIEW connector privilege
but will be redacted in support bundles.

6.5.6 File connectors

The following values appear when any of the file connector types are selected:

Connector Name — The name of the file connector (specific to your Delphix application and unrelated
to the file itself).
Connection Mode — Filesystem Mount Point, SFTP, FTP and FTPS (only for mainframe datasets).

Due to networking complications in containerized masking, FTP and FTPS is currently disabled
in containerized deployments. Delphix is researching options to re-enable FTP (for containerized
masking) at a future date.

Continuous Compliance – Continuous Compliance Home

Connecting data – 305

•
•
•
•
•
•

The rest of the values appear based on the selected Connection Mode value. For Filesystem Mount Point
connection mode, refer to the corresponding section in the Managing Remote Mounts (see page 282) page. For
other connection modes, the following values appear:

Path — The path to the directory where the file(s) are located.
Server Name — The name of the server used to connect to the file.
Port — The port used to connect to the server.
User Name — The user name to connect to the server.
Password — (non-Public Key Authentication only) The associated password for the server.
Public Key Authentication — (Optional) (Only appears for SFTP) Check this box to specify a public
key. When you check this box, the Available Keys drop-down appears. Choose a key from the drop-
down. See Delphix Masking APIs for information on uploading public keys to the Continuous
Compliance Engine.

Starting with version 6.0.9.0 the SFTP mode is extended with the User Directory as root flag. If the Path
defined is relative to the User-home-dir as configured on the SFTP Server, select the flag below.

If you plan to do on-the-fly masking, you will need to create a separate environment and
connector as the source for the files to be masked. The masked files will be put into the
directory being pointed to by the connector created previously (the target). However, the file
path specified in the connector of the target rule set must point to an existing file the target
directory. It does not have to be a copy of the file, just an entry in the directory with the same
name. It will be replaced by the masked file.

Continuous Compliance – Continuous Compliance Home

Connecting data – 306

If the connector is configured via the API then that flag is accessible as userDirIsRoot , for example:

{
 "connectorName": "Test SFTP Connector",
 "environmentId": 2,
 "fileType": "DELIMITED",
 "connectionInfo": {
 "connectionMode": "SFTP",
 "path": "/delimited",
 "host": "yourSFTPServer",
 "loginName": "xxxxx",
 "password": "xxxxx",
 "port": 22,
 "userDirIsRoot": true
 }
}

Continuous Compliance – Continuous Compliance Home

Connecting data – 307

•
•
•
•
•

6.5.6.1 Mainframe MVS Storage Access

The Continuous Compliance Engine can connect to a wide range of host systems, including Mainframes,
Linux, and Windows, as long as they support SFTP, FTP, and FTPS protocols. Furthermore, mainframe MVS
storage can be accessed using the FTP and FTPS protocol. In order to access the mainframe data set and
effectively mask its contents, you must adhere to the z/OS path name guidelines described below. Failing to
meet these criteria will result in the user being directed towards the USS storage, rather than the mainframe
MVS storage.

A data set name consists of one or more parts connected by periods. Each part is called a qualifier.
Each qualifier must begin with an alphabetic character (A to Z) or the special character @, #, or $.
The remaining characters in each qualifier can be alphabetic, special, or numeric (0 to 9) characters.
Each qualifier must be 1 to 8 characters in length.
The provided path or qualifier should end with a period dot (.).

6.5.6.2 Valid Connection With Mainframe

1 Connection successfully established with mainframe MVS storage

Continuous Compliance – Continuous Compliance Home

Connecting data – 308

6.5.6.3 Invalid Connection with Mainframe

2 Connection failed at mainframe MVS storage

Continuous Compliance – Continuous Compliance Home

Connecting data – 309

3 Connection failed at mainframe USS storage

6.5.6.4 FTPS Connector for Mainframe Storage

FTPS is an encryption protocol like FTP with support for TLS/SSL to establish a secure and encrypted
channel for data transfer between the Continuous Compliance Engine and the mainframe storage. This
added layer of security ensures that all data exchanged remains confidentially and tamper-proof.

Continuous Compliance – Continuous Compliance Home

Connecting data – 310

4 FTPS Connection to mainframe USS storage

If the connector is configured via the API, then in connection mode “FTPS“ needs to passed, for example:

{
 "connectorName": "MAINFRAME_FTPS",
 "environmentId": 1,
 "connectionInfo": {
 "connectionMode": "FTPS",
 "path": "MASKING.",
 "host": "zos.example.com",
 "loginName": "maskinguser",
 "password": "maskingpwd",
 "port": 21,
 "userDirIsRoot": false
 }
}

The FTPS connection mode is specifically designed and available exclusively for mainframe storage
systems. This connection mode is not available with any other connectors.

Continuous Compliance – Continuous Compliance Home

71 https://cd.delphix.com/docs/latest/truststore-settings

Connecting data – 311

To establish a successful connection to the mainframe using FTPS, it is important that users upload the
Server SSL Certificate to the TrustStore of the Data Engine. Detailed instructions for adding the certificate to
the Data Engine TrustStore can be found in the TrustStore settings71 page.

6.5.6.5 Invalid/No Certificate

The Continuous Compliance Engine experiences connection errors while trying to establish a connection
with the mainframe USS storage. These errors comes when either incorrect or invalid certificates are
provided or when no certificates have been uploaded to the TrustStore of the Data Engine.

5 Connection failed when Invalid or No SSL Certificate provided

6.6 Managing extended connectors
Extended Connectors allow you to upload additional JDBC Drivers to the Continuous Compliance Engine to
enable masking of data sources not natively supported by Continuous Compliance.

https://cd.delphix.com/docs/latest/truststore-settings
https://cd.delphix.com/docs/latest/truststore-settings

Continuous Compliance – Continuous Compliance Home

72 https://www.delphix.com/masking-help/jdbc-drivers-support

Connecting data – 312

6.6.1 Limitations

Delphix supports type 4 JDBC Drivers. These must be a pure-java .jar file that can be used simply by
uploading it (or it’s zip file) to the engine. Anything that requires compilation on the engine, or execution of
any kind of install or licensing script, is not supported.

Extended Connectors don't support all of the features available for built-in connectors like Oracle. As of
6.0.9.0, the "Disable Constraint", "Disable Trigger" and "Drop Indexes" options can be implemented and
enabled by driver support plugins, which are detailed here (see page 830). Delphix provides support for
Extended Connectors in accordance with our Support Policy72.

Drivers that require a Java version higher than 8 are not supported.

6.6.2 Installing a new driver

To use a new JDBC driver, first you need to upload it to your Masking Engine. Since some drivers require
multiple files, the driver and any additional files it needs to function should be put together in a single zip file.
Even if a driver doesn't require additional files, it still needs to be zipped.

For example, to package the Informix JDBC driver for use with Continuous Compliance take all three files
provided for Informix and zip them together:

$ ls
LICENSE.txt ifxjdbc.jar ifxlang.jar
$ zip informix.zip *
 adding: LICENSE.txt (deflated 70%)
 adding: ifxjdbc.jar (deflated 4%)
 adding: ifxlang.jar (deflated 4%)
$ ls
LICENSE.txt ifxjdbc.jar ifxlang.jar informix.zip
$

To upload the driver package to the engine, navigate to the JDBC Drivers under Settings.

https://www.delphix.com/masking-help/jdbc-drivers-support
https://www.delphix.com/masking-help/jdbc-drivers-support

Continuous Compliance – Continuous Compliance Home

Connecting data – 313

Clicking Add Driver will bring up a dialog box to upload the driver zip file and enter the driver's configuration
details.

Continuous Compliance – Continuous Compliance Home

Connecting data – 314

•

•
•

•

The Add Driver screen lets you set the following information.

Name A human-readable name for the driver. Name it whatever is convenient for you. Note: Special
Characters are not allowed in the Name field.
Description A human-readable description of the driver.
Class Name The Fully Qualified Class Name of the class in the JDBC driver that implements the
java.sql.Driver interface. The class name will be in the documentation for the driver itself.
Select JDBC driver for upload Lets you select the zip file containing the driver and upload it.

Users cannot update the driver support that a JDBC driver references or uses via the UI; as of
now, that can only be done via the web API.

Continuous Compliance – Continuous Compliance Home

Connecting data – 315

•

•

To remove an uploaded driver, click the Actions button to the right side corner of the JDBC Drivers list and
select the option Delete. Note that the delete will fail if any Connectors exist that use the driver you're trying
to delete.

If you find you need to edit a driver's configuration options later, click the Actions button to the right side
corner of the JDBC Drivers list and select the option Edit.

6.6.3 Driver permissions

The Continuous Compliance Engine uses the Java Security Manager to prevent uploaded JDBC drivers from
performing certain actions without your permission.

Uploaded drivers are granted all permissions except for the following non- FilePermission :

Class Target Action

java.net.SocketPermission localhost:- accept, connect, listen, resolve

java.lang.RuntimePermission exitVM

java.lang.RuntimePermission createClassLoader

java.lang.RuntimePermission accessClassInPackage.sun

java.lang.RuntimePermission setSecurityManager

java.security.SecurityPermission setPolicy

java.security.SecurityPermission setProperty.package.access

With regards to FilePermissions, read access is granted to all, though write is only allowed for the
following directories:

the masking user's home directory (System.getProperty("user.home"))

the JVM's default temp directory (System.getProperty("java.io.tmpdir"))

Please note that both of these locations are shared, so care will need to be taken to avoid collisions.

The set of permissions granted to uploaded drivers is static and cannot be modified.

6.6.4 Extended logging

The Continuous Compliance Engine provides enhanced logging for extended connectors to assist in
debugging connection problems. Enhanced logging can be enabled when the connector is created by

Continuous Compliance – Continuous Compliance Home

Connecting data – 316

•
•
•
•
•

checking the 'Enable Logger' box. Enhanced logging may have an impact on performance so you should
enable it only when debugging connection problems.

Note that extended logging will not work with signed drivers such as MSSQL.

Enhanced Logging requires some additional permissions to be granted.

Class Name Target Name Action Name Purpose

java.io.RuntimePermissi
on

getClassLoader Allows the driver to load
the classes
implementing the
logging feature

6.6.5 Creating an extended connector

Creating a connector using an Extended Driver is very similar to creating a connector with built-in support.
Choose Database - Extended as the Type. The following fields will be available:

Connection Name A name for this connection
JDBC Driver Select the JDBC Driver you want to use for this connection
Login ID The username the Masking Engine should connect to the target database with.
Password The password to use to connect to the database
JDBC URL You must provide the JDBC URL for the database to connect to. The exact format and
available parameters are specific to the database you're connecting to. Consult your database
vendors documentation for details.

Some databases allow you to specify usernames and passwords in the JDBC URL. It's best not
to do this. The Continuous Compliance Engine is careful not to log the Login ID and Password in
the Masking Engine's logs, but JDBC URLs may be logged unmodified.

Continuous Compliance – Continuous Compliance Home

Connecting data – 317

Once the connector is created, you can create rulesets, inventories, and jobs to profile and mask your data as
with other types of connectors.

Extended Connectors can be edited and deleted in the same way as Built In Connectors (see page 296).

6.6.6 Synchronization

Connectors using extended JDBC Drivers can be synchronized similarly to other connectors. See Working
with Multiple Masking Engines (see page 623) for details. When a job or connector requires an uploaded JDBC
Driver, the driver will be exported along with the connector or job. JDBC Drivers are part of the Global Object

Continuous Compliance – Continuous Compliance Home

73 https://download.delphix.com/

Connecting data – 318

1.

2.
a.
b.

and so will be synchronized whenever the Global Object is synchronized. They can also be synchronized
individually.

6.6.7 License entitlement for commercial JDBC drivers

Continuous Compliance requires the installation of a Delphix license to use certain commercial JDBC drivers.
Users who have purchased this entitlement will have access to their given license files on the Delphix
download site73.

6.6.7.1 Installing a license

Download the license from the Delphix download site.

Upload the license to Continuous Compliance using either
the API using the POST /license API endpoint or
the UI using the License file upload button in the Add or Edit JDBC Driver dialogue box. The
License button appears on entering a valid CData JDBC driver class name as shown in this
screenshot:

•

•

•

Commercial JDBC drivers from the following vendors must be licensed using this
mechanism:

 CData

To synchronize License files attached to a JDBC driver while s ynchronizing a connector,
Global Objects should be Synchronized first.

https://download.delphix.com/
https://download.delphix.com/

Continuous Compliance – Continuous Compliance Home

Connecting data – 319

6.6.7.2 Managing licenses

To view the licenses installed on an engine, use the GET /license API or GET /ALL API endpoint.

6.7 Managing rule sets
This section describes how rule sets can be created, edited, and removed.

Continuous Compliance – Continuous Compliance Home

Connecting data – 320

•
•
•
•
•
•
•
•

6.7.1 The rule sets screen

From anywhere within an Environment, click the rule set tab to display the rule sets associated with that
environment. The rule sets screen appears. If you have not yet created any rule sets, the rule set list is
empty.

The rule sets screen contains the following information and actions:

rule set ID — The numeric ID of the rule set used to refer to the rule set from the Masking API.
Name — The name of the rule set.
Meta Data Source — The type of rule set. One of Database, File, or Mainframe.
Type — The specific type of ruleset.
Edit — Edit the rule set. See more details below.
Refresh/Save — Refresh the rule set. Only applies to Database rule sets. See more details below.
Copy — Copy the rule set. See more details below.
Delete — Delete the rule set. See more details below.

The rule sets on the screen can be sorted by the various informational fields by clicking on the respective
field.

6.7.2 The create/Edit rule set window

In the upper right-hand corner, click the Create rule set button.

The Create rule set window appears.

Continuous Compliance – Continuous Compliance Home

Connecting data – 321

1 Rule Set Name Input Field
When editing an existing rule set, this field will be filled with the existing rule set name by default.

2 Connector List
When creating a new rule set, all available connectors will be listed here. When editing an existing
rule set, only the connector currently in use will appear.

3 Table or File List
If a database connector is selected in the connector list, all available tables in the database
schema associated with the connector will appear in this list. If a file connector is selected, all
available files in the directory associated with the connector will appear in this list.

4 Selected Table or File Number
Displays how many tables or files you have selected.

Continuous Compliance – Continuous Compliance Home

Connecting data – 322

5 Search Query Input Field
You can enter a search query here. After typing the search query, press ENTER to execute the
search query.

6 Clear Search Button
Click to remove any search query.

7 Select All Button
Click to select all tables or files in the table or file list.

8 Clear All Button
Click to deselect all tables or files in the table or file list.

9 File Name Patterns Editor
This editor will appear only when the selected connector is a file connector.

10 Add File Pattern Button
Click to add a new file pattern entry below.

•

•

•

search query

Use * to match any characters in the names of tables or files.

If you have selected a table or file before searching and it is not in the search
results, it will not be included in the rule set. You can add back the table or file by
removing the search query.

Checkbox / selections do not persist through a search or a clearing of the search
field.

Continuous Compliance – Continuous Compliance Home

74 https://docs.oracle.com/javase/8/docs/api/java/util/regex/Pattern.html

Connecting data – 323

1.

2.

3.

4.

5.

6.

7.

•
•

11 File Pattern Input Field
Enter the file pattern here.

12 Remove File Pattern Button
Click to remove a file pattern.

6.7.3 Creating a rule set

To create a new rule set:

Click on the name of an Environment, and then click the rule set tab.

In the upper right-hand corner of the rule set screen, click Create rule set.

The Create rule set screen lets you specify which tables belong in the rule set.

Enter a name for the new rule set.

Select a Connector name from the drop-down menu.

The list of tables for that connector appears. If you have not yet created any connectors, the list is
empty. Click individual table names to select them, or click Select All to select all the tables in the
connector. See "Create/Edit rule set Window" for a description of the screen and other options.

Click Save.

You may then need to define the rule set by modifying the table settings as described in "Modifying Tables in
a rule set" below.

For example:

For a table in a database rule set, you may want to filter data from the table.
For a file in a file or mainframe rule set, you must select a File Format to use.

6.7.4 Refreshing a rule set

Refreshing a rule set will result in the columns in the tables in the rule set being rescanned. As a result, the
inventory associated with the rule set will also be refreshed, but any pre-existing algorithm assignments will
be retained.

file pattern syntax

Expressions are case sensitive. A file pattern uses the regular expression syntax
defined by the Java Pattern class. The syntax is documented here74. For example, the
pattern .*\.txt will match any file with a .txt extension, such as example.txt.

https://docs.oracle.com/javase/8/docs/api/java/util/regex/Pattern.html
https://docs.oracle.com/javase/8/docs/api/java/util/regex/Pattern.html

Continuous Compliance – Continuous Compliance Home

Connecting data – 324

1.

2.

3.

1.

2.

3.

4.

5.

To refresh a rule set:

Click the Refresh/Save icon to the right of the rule set on the rule set screen.

The Refresh/Save icon will turn to an hourglass as the associated tables are rescanned.

After the refresh is complete, the Refresh/Save icon will return to the circular arrow.

6.7.5 Copying a rule set

If you copy a rule set, the inventory associated with that rule set will also be copied. Also, any filter conditions
defined for that rule set will be copied.

To copy a rule set:

Click the Copy icon to the right of the rule set on the rule set screen.

The Copy rule set window appears.

Enter a Name for the new rule set.

Click Save.

Modify the rule set as you want, using the procedures described above.

6.7.6 Deleting a rule set

If you delete a rule set, the inventory associated with that rule set will also be deleted. Also, any filter
conditions defined for that rule set will be deleted.

To delete a rule set, click the Delete icon to the right of the rule set on the rule set screen.

6.7.7 The rule set screen

From the rule set tab, click on a rule set to display the tables or files in the rule set. The rule set screen
appears.

Continuous Compliance – Continuous Compliance Home

Connecting data – 325

•
•
•

1.

2.

3.

4.

1.

2.

The rule set screen contains the following information and actions:

Table or File or Pattern — The name of the table or file/file pattern in the rule set.
Edit — Edit the table or file in the rule set. See more details below.
Delete — Delete the table or file from the rule set.

For rule sets with a large number of tables or files, the rule set screen will be displayed on pages that can be
navigated by the controls at the bottom of the list on the page. The tables or files displayed may also be
filtered using the Search field and button.

6.7.8 Editing/Modifying a rule set

To edit a rule set:

Click the Edit icon to the right of the rule set on the rule set screen.

Click the Edit rule set button towards the top.

The Create rule set screen appears. This screen lets you specify which tables belong in the rule set.

Modify the rule set as you want, using the preceding procedures.

6.7.9 Removing a table or File

To remove a table or file from a rule set:

From the rule set screen, click the name of the desired rule set.

Click the red delete icon to the right of the table or file you want to remove.

Continuous Compliance – Continuous Compliance Home

Connecting data – 326

1.

2.

3.

4.

5.

6.

1.

2.

3.

4.

1.

2.

6.7.10 Modifying tables in a rule set

The features in this section are disabled for file and mainframe rule sets.

You can modify tables in a rule set as follows:

6.7.10.1 Logical key

A logical key is a unique, non-null value that identifies a row in the database.

If your table has no primary keys defined in the database, and you are using an In-Place strategy, you must
specify an existing column or columns to be a logical key. This logical key does not change the target
database; it only provides information to Delphix. For multiple columns, separate each column using a
comma. Note: If no primary key is defined and a logical key is not defined an identity column will be created.

To enter a logical key:

From the rule set screen, click the name of the desired rule set.

Click the green edit icon to the right of the table whose filter you wish to edit.

On the left, select Logical Key.

Edit the text for this property. The logical key cannot be more than 1024 characters in length.

To remove any existing code, click Delete.

Click Save.

6.7.10.2 Edit filter

Use this function to specify a filter to run on the data before loading it to the target database.

To add a filter to a database rule set table or edit a filter:

From the rule set screen, click the name of the desired rule set.

Click the green edit icon to the right of the table you want.

On the left, select Edit Filter.

Edit the properties of this filter by entering or changing values in the Where field.

Be sure to specify column name with table name prefix (for example, customer.cust_id \<1000).

To remove an existing filter, click Delete.

Click Save.

If you remove a table/file from a rule set and that table/file has an inventory, that inventory will
also be removed.



Continuous Compliance – Continuous Compliance Home

Connecting data – 327

1.

2.

3.

4.

1.

2.

•

•

•
•

6.7.10.3 Custom SQL

Use this function to supply a customized SQL SELECT Query for the table. Typically, this query will include a
WHERE clause to filter or subset the data.

To add or edit SQL code:

From the rule set screen, click the name of the desired rule set.

Click the green edit icon to the right of the table you want.

On the left, select Custom SQL.

Enter the custom SQL code for this table.

Delphix will run the query to subset the table based on the SQL you specify.

To remove any existing code, click Delete.

Click Save.

6.7.11 Creating a ruleset for file formats

Once you create a ruleset with a file or set of files, you will need to assign those files to their appropriate file
format.

This is accomplished by editing the ruleset. Click on the edit button for the file the Edit File window will
appear with the file name. From the format drop-down select the proper format for the file.

If the file is a Mainframe data sets file with a copybook you will see a checkbox to signify if the file is
variable length.
For all other file types, select the end-of-record to let Delphix know whether the file is in windows/dos
format (CR+LF) or Linux format (LF).
If the file is a delimited file you will have a space to put in the delimiter.
If there are multiple files in the ruleset you will have to edit each one individually and assign it to the
appropriate file format.

6.7.12 Control character support for delimited files

The user can specify control character as a delimiter/end of record from UI/API.

The custom SQL must contain the primary key column (or columns if the table uses a composite
primary key) and all columns that will be masked.



Continuous Compliance – Continuous Compliance Home

Connecting data – 328

1.

2.

6.7.12.1 Control character as a delimiter

In order to use control character as a delimiter, the user needs to click on CTRL button inside
delimiter input text.

Clicking on CTRL button will open a virtual keyboard where users can select the required control
character. Also if the user wants to enter the control character manually then they can use the given
format $[hex value of the control character] , like $[01] for ^A.

Control Character

The control character value from UI/API should be in $[hex value of the control character]
format , like $[01] for ^A. The control character value support UTF-8 character set.

Continuous Compliance – Continuous Compliance Home

Connecting data – 329

1.

2.

6.7.12.2 Control character as an end of record

In order to use control character as an end of record, the user needs to click on CTRL button inside
custom end of record input text.

Clicking on CTRL button will open a virtual keyboard where users can select the required control
character. Also if the user wants to enter the control character manually then they can use the given
format $[hex value of the control character] , like $[01] for ^A.

Continuous Compliance – Continuous Compliance Home

Connecting data – 330

1.

2.

6.7.12.3 Control character as a value

Control characters are supported as values in a delimited file. No special configuration is necessary.
Simply configure the deliited file format as usual.

The user doesn’t need to configure anything extra if the control character is only part of the value and
not being used as a delimiter or end of record. However, the user needs to define delimiter/end of
record as per the requirement.

6.7.13 Define enclosure escaping strategy for delimited files

The user can configure the enclosure escape character from the UI/API to escape the enclosure. To
configure the enclosure escape character from the UI, user needs to select the "Enclosure Escaping Strategy"
dropdown value as per below options on the edit ruleset popup window,

Continuous Compliance – Continuous Compliance Home

Connecting data – 331

6.7.13.1 Double enclosure

Double enclosure option will set the escape character value same as enclosure value. For example, if the
enclosure escape character is " then escape character value will be " as well.

6.7.13.2 Custom

By selecting custom option user can specify any single character as an enclosure escape character except
the "escape sequences" and "control characters".

Continuous Compliance – Continuous Compliance Home

Connecting data – 332

6.7.13.3 Escape "enclosure escape character"

Selecting this checkbox indicates whether the enclosure escape character also escapes itself. For example,
if the enclosure escape character is " then the sequence "" would be treated as a single " character, rather
than an escape.

6.7.13.4 Configure enclosure escape character for the large ruleset

To configure the enclosure escape character for the large ruleset user can use this API Script. (see page 764)

Default Enclosure Escape Character

The default value for "Enclosure Escaping Strategy" is "Double Enclosure".

Continuous Compliance – Continuous Compliance Home

Connecting data – 333

6.8 Managing file formats
Unlike databases, files typically do not have built-in metadata to describe the format of the fields in the file.
Therefore this information must be provided to Delphix. This is done through the Settings tab, where a menu
item is available on the left for Formats. Click on Formats to see tabs for File and Mainframe and a button to
add a format.

6.8.1 Construct a Delimited File Format to upload

To import the file format for a delimited file, create a text document with the field names listed one per line
describing the structure of the file to Delphix. The screenshot below shows the contents of an example
delimited file format.

Continuous Compliance – Continuous Compliance Home

Connecting data – 334

6.8.2 Construct a Fixed-width File Format to upload

For fixed-width files, import a text file that describes the structure of the file to Delphix.

Notice there is no header and only a list of values.

•

•

•

•

•

•

•

•

Delimited file mismatch between format and data

Suppose the following delimited file format is being used

Delimited File Format:

FieldOne
FiledTwo
FiledThree

Delimiter Character: ,

If the input data does not match the format:

Input Field Count < Format Field Count: after masking, delimiters will be appended to match
the total fields with file format. For example:

Input data: Data1, Data2

Result after masking: Masked1, Masked2,
NOTE: One extra delimiter is added to match with the file format

Data Field Count > Format Field Count: after masking the extra fields in the delimited file
will be lost. For example:

Input data: Data1, Data2, Data3, Data4

Result after masking: Masked1, Masked2, Masked3

Continuous Compliance – Continuous Compliance Home

Connecting data – 335

To input the file format for fixed-width files, create a text document with the field names and the length of
each field, one combination per line. The screenshot below shows an example of content for fixed-width
formats. In this format, the field name is followed by the length of the field, separated by a comma.

6.8.3 Construct XML File Format to upload

For XML format files you can use the data file itself or a subset of the file you want to mask as the format.

Notice there is no header and only a list of values.

Fixed-width file mismatch between format and data

For fixed-width files, caution should be taken to ensure that the field length is accurate. An
incorrect field length will result in masking a field with the incorrect offset, which would have the
unintended consequence of not masking what was intended.

Multi-byte characters For fixed-width files, field length is determined by the number of
characters rather than the number of bytes.

Continuous Compliance – Continuous Compliance Home

Connecting data – 336

6.8.4 Construct JSON File Format to upload

For JSON format file you can use the data file itself or a subset of the file you want to mask as the format.

6.8.5 Mainframe data set to upload

For Mainframe files, you can use the copybook file as the format.

Continuous Compliance – Continuous Compliance Home

Connecting data – 337

1.

2.

6.8.6 To import a File format

For all File types other than Mainframe, you can import the file format via the Add File Format button in the
File tab, which will import the file directly into Delphix.

Click the Add File Format button at the upper right. The Add File Format wizard appears.

Select a Format Type. click Next.

Continuous Compliance – Continuous Compliance Home

Connecting data – 338

3.

4.

Import a format by clicking Choose File. The name of the file will be the name of the file format.

Browse for the file from which the fields will be imported. Click Next.
Note: The contents of the imported file vary for delimited, fixed width, copybook (Mainframe), XML,
and JSON file types.

Formatting Examples are shown in the wizard based for each format type.

Continuous Compliance – Continuous Compliance Home

Connecting data – 339

5.

6.

7.

Removing a selected file

If you accidentally selected an incorrect file, simply click the cross button to the right of the file name
and repeat the selection steps above.

Optionally, for only the delimited or fixed-width formats, users will see a step to configure the number
of header or footer records for the file. Click Next with or without setting the header or footer as
needed.

View the summary on the last step to review the changes.

Click Save at any point after importing the format.

Continuous Compliance – Continuous Compliance Home

Connecting data – 340

1.

2.

3.

6.8.7 To import a Mainframe format

For Mainframe data sets, you can specify the format via the Add Mainframe Format wizard in the Mainframe
tab, which will import the copybook directly into Delphix.

Go to the Mainframe tab.

Click the Add Mainframe Format button in the upper right. The Add Mainframe Format wizard will
appear.

The Copybook Format Type is pre-selected. click Next.

Continuous Compliance – Continuous Compliance Home

Connecting data – 341

4.

5.

Import a format by clicking Choose File.

Browse for the format file and click Next.

Formatting Examples is shown in the wizard for copybook.

Continuous Compliance – Continuous Compliance Home

Connecting data – 342

6.

7.

6.8.7.1 Removing a selected file

If you accidentally selected an incorrect file, simply click the x button to the right of the file name and
repeat the selection steps above.

View the summary on the last step to review the changes.

Click Save at any point after importing the format.

6.8.8 To delete a format

Click the Actions button (…) to the right of the corresponding format name in the list and select the Delete
option from the dropdown.

The user will be prompted for confirmation.

6.8.9 To edit a format

Click the Actions button (…) to the right of the corresponding format name in the list and select the Edit
option from the dropdown.

Continuous Compliance – Continuous Compliance Home

Connecting data – 343

6.8.10 Assigning a file format to files

Once a rule set with a file or set of files is created, you will need to assign those files to their appropriate file
format. This is accomplished by editing the rule set. When clicking on the edit button for the file, a pop-up
screen called Edit File will appear with the file name. There will be a drop-down to select the proper format
for the file. If the file is a Mainframe data set file with a copybook, you will see a checkbox to signify if the file
is variable length.

For all other file types, select the end-of-record to let Delphix know whether the file is in Windows/DOS
format (CR+LF) or Linux format (LF). If the file is a delimited file, there will be a space to put in the delimiter.
If there are multiple files in the ruleset, you will have to edit each one individually and assign it to the
appropriate file format.

6.8.11 Add Fields to a file format

File inventory is based on the file format. Therefore, if you make a change to a file inventory, that
change applies to all files that use that format.

You can define new fields only on Delimited, Fixed-Width & JSON file formats.

Continuous Compliance – Continuous Compliance Home

Connecting data – 344

1.

2.

6.8.11.1 To create new fields:

Go to Settings -> Format page, from the Actions (..) the dropdown to the right of the corresponding
format name, and choose the Edit option, An inventory-like screen will be visible with all the fields
listed.

Click on the Add Field button appearing on the left corner just above the grid, to open an Add Field
Dialogue.

You can also navigate to this Formats screen from any Environments Inventory tab, by clicking
on the Edit File Format button.

An information banner is also added on the inventory page to help user with navigation.

Continuous Compliance – Continuous Compliance Home

Connecting data – 345

3.

4.

5.

6.

Fill out the form and click Save.

The Field Name or JSON Path and all inputs in the Formatting section are mandatory.

The Masking section is optional and can be edited later as well.

Newly added fields will be reflected under the selected record type group on the page.

6.8.11.2 Constructing a JSON path

A JsonPath expression begins with the dollar sign ($) character, which refers to the root element. The dollar
sign is followed by a sequence of child elements, which are separated by the square brackets ([‘’]) containing
the name of each JSON field. If the field is inside an array, a star character is used to represent all elements
of the array ([*]).

If you select a DATESHIFT algorithm or multi-column algorithms, more fields will appear in the
dialogue. A DATESHIFT algorithm allows you to pick a date format from the dropdown list or
specify your own date format.

Continuous Compliance – Continuous Compliance Home

Connecting data – 346

1.

2.

6.8.12 View, Edit, or Delete a file field

The fields can be Viewed, Edited, or Deleted using the Action menu (…) to the right of the
corresponding field.

The View is a read-only pre-filled dialogue (similar to Add Fields) and the user can not make edits.

Continuous Compliance – Continuous Compliance Home

75 https://masking.delphix.com/docs/latest/managing-record-types-and-header-footer-records

Connecting data – 347

3.

4.

Edit prompts a pre-filled dialogue (similar to Add Fields) and the user can make edits as needed.

Delete action, the user will be prompted for confirmation to Delete a field. Fields from XML and
Mainframe formats cannot be deleted.

6.8.13 Record types

You can use record types to perform conditional masking of the file records. If a file has a different set of
records spread across multiple rows, then the masking engine should be able to understand all the unique
records. For example, a file has the following record in the first 3 columns of each row; first name, last name,
and age – but the last column of each row has a unique record like IP address, ethernet address, etc. In this
case, you must create a new record type for every unique record present in the file, and assign a specific file
format to all the record types. For more information on adding a record type, see the Managing Record
Types75 article.

6.8.14 Redefine conditions

For Mainframe data sets, the File formats screen allows for the entry of Redefine Conditions, which are used
to handle any occurrences of COBOL's REDEFINES construct that might appear in the copybook. In COBOL,
the REDEFINES keyword allows an area of a record to be interpreted in multiple different ways. In the
example below, for instance, each record can hold either the details of a person (PERSON-DET) or the details
of a company (COMP-DET).

Edit action for a field can be used from the Inventory screen as well for algorithm assignment
and setting up automatic updates only (Masking section only).

Record types can be managed only via the Formats settings, the Inventory screen does not
allow adding, updating, and deleting record types.

https://masking.delphix.com/docs/latest/managing-record-types-and-header-footer-records
https://masking.delphix.com/docs/latest/managing-record-types-and-header-footer-records

Continuous Compliance – Continuous Compliance Home

Connecting data – 348

1.

In order to do any masking, however, the Compliance Engine must be able to determine, for each record,
which fields should be read, so that the correct algorithms can be applied. In order to do this, the masking
engine uses redefined conditions, which are specified in the format. Redefine Conditions are boolean
expressions that can reference any fields in the record when they are evaluated.

In the example copybook above, the field CUST-TYPE is used to indicate which group is present. If CUST-
TYPE holds a 'P', a PERSON-DET group is present, and if it holds a 'C', COMP-DET is present. This can be
expressed in the inventory by specifying a Redefine Condition with the value [CUST-TYPE]='P' . This
expression indicates that, for each record read from the source file during the masking job, the value of the
field CUST-TYPE should be read and compared against the string 'P'. If it is equal, the Compliance Engine will
read from the record the fields subordinate to PERSON-DET and will apply any masking algorithms specified
on those fields. Similarly, a Redefine Condition with the value [CUST-TYPE]='C' should be applied to the
COMP-DET field. Exactly one of the conditions should be evaluated to 'true' for each group of redefined
fields. For example, a copybook might have fields A, B REDEFINES A, and C REDEFINES A. Of the Redefine
Conditions attached to A, B, and C, one and only one should be evaluated to be true for each record.

6.8.14.1 Entering a Redefine condition

In the File-formats screen, Click the Actions (…) button to the right of the corresponding field having
REDEFINED or REDEF type, then select the Edit Redefine Condition option for an edit dialogue to
appear.

Continuous Compliance – Continuous Compliance Home

Connecting data – 349

2.

3.

Enter a condition in the dialog box that appears. This is the expression that when evaluated to true,
causes the subordinate fields to be read and (if they have algorithms assigned) masked.

Click Save.

Continuous Compliance – Continuous Compliance Home

Connecting data – 350

6.8.14.2 Format of Redefine conditions

Redefine Conditions allow fields to be compared against either number or string literals. Square brackets
[] enclosing a field name indicate a variable, which takes on the value of the named field:

[Field1] = 'An example String'

String literals can be enclosed in either single or double quotes. For fields that are numeric (e.g. PIC S99V9),
the operators < , <= , > , and >= can be used in addition to the =operator:

[Field2] <= -10.5

Also, conditions can be joined using AND , OR , and NOT to form more complex conditions:

([Field3] > 2.5 AND [Field3] < 10) OR NOT [FIELD4] = 'Z'

6.9 Managing inventories
An inventory describes all of the data present in a particular rule set and defines the methods that will be
used to secure it. Inventories typically include a table or file name, column/field name, data classification,
and the chosen algorithm.

6.9.1 The inventory screen

From anywhere within an environment, click the Inventory tab to see the Inventory screen. This displays the
inventories for the environment's rule sets. Select a ruleset name from the Rule Set drop-down menu to
change the inventory screen for a particular ruleset.

Redefine Conditions can be managed only via the Formats settings, the Inventory screen for
Mainframe does not allow adding and updating redefine conditions.

Continuous Compliance – Continuous Compliance Home

Connecting data – 351

•

•

•

6.9.2 Sorting on an inventory grid

Use these steps to sort the grid based on any one of the grid column data.

Click on any desired column header on the grid. The records in the grid will be sorted based on the
data in that column.
Click on the column again to change the sorting order. A vertical directional arrow symbol indicates
the sorting order applied (↑ Ascended, ↓ Descending, and blank default sorting order).

6.9.3 Filtering on an inventory grid

Use these steps to add a Filter on the grid to show columns or fields only matching certain criteria.

Hover on any column header of the grid and click the ꠵ icon that appears in the right corner.

•
•

Sorting is applied within each group when rows are grouped by Record types or Table name.
The Mainframe grid does not have sorting enabled because the memory is shared across
record types and dataset masking is sensitive to the order of the field in the Copybook
format.



Continuous Compliance – Continuous Compliance Home

Connecting data – 352

•

•

•
•

•
•

When the dialogue appears, choose the first tab, then select a required filter criteria and provide the
required inputs to filter the grid.
To remove a filter criteria, click on the cross mark on the applied filter criteria value listed before the
Reload button, just on top of the grid.
To remove all filter criteria click on the Reset button.
These filters will be persisted in the browser cache until the user resets it or clears the browser
cache.

6.9.4 View more columns on the inventory grid

To see the other grid columns which are not displayed by default on the grid.

Hover on any column header of the grid and click on the ꠵ icon that appears in the right corner.
When the dialogue appears., choose the third tab, then choose any desired columns from the list
below to view it on the grid.

To filter an inventory grid to display only the Masked fields, hover on the Algorithm column, click
on the ꠵ icon appearing on the right side corner of the dialogue, and choose the Not blank option
from the drop down.



Continuous Compliance – Continuous Compliance Home

Connecting data – 353

1.

6.9.5 Assigning algorithms

To set criteria for sensitive columns or fields:

Click the Actions (…) button to the right of the corresponding column or field, then select the Edit
option for the Edit Field/Column dialogue to appear.

Continuous Compliance – Continuous Compliance Home

Connecting data – 354

2. From the Domain drop-down list, select the appropriate sensitive data element type.

•

•

From the Inventory screen, the Edit Field/Column dialogue allows you to edit properties only
under the Masking section.
To edit the Formatting properties of a file field, go to the Settings → Formats and edit the
corresponding format. You can also navigate to Settings → Formats from Inventory screen
using the Edit File Format button present at the right corner, just above the grid.



Continuous Compliance – Continuous Compliance Home

76 https://masking.delphix.com/docs/latest/out-of-the-box-algorithm-instances

Connecting data – 355

3.

a.

4.
a.

b.

5.

6.

•

•

•

•

•

The Continuous Compliance Engine defaults to a Masking Algorithm, as specified in the Settings
screen. If necessary, you can override the default algorithm.

To select a different masking algorithm, choose one from the Algorithm drop-down list. For
detailed descriptions of these algorithms, see the Out-of-the-box algorithm instances76 article.

Choose Enable Automatic Updates:
Check (Enabled)
The default setting. A profiling job can determine or update whether to mask a column.
Uncheck (Disabled)
The user decides whether to mask/unmask a column. The user's choice overrides the
profiling job.

You can add/remove notes in the Notes text field.

Once complete, click Save, which must be done for any edits to take effect.

6.9.6 Managing database inventory settings

Database Inventory screen lists Columns from all the tables in the rule set, the number beside each
table name in parentheses is the total number of columns in that particular table.
If a database column is a Primary Key, Foreign Key, or Index, it will be indicated below the column
name.
Metadata for the database column appears under the Data Type column including its Length
mentioned in parentheses. This information is read-only.
By default, only Table Name, Column Name, Data Type, Domain, Algorithm, and File Format columns
will be displayed in the database inventory screen.
If the Inventory Approval Workflow (see page 0) is enabled for the environment, a Status button appears
just above the grid if any changes like Add/Edit/Delete/Import inventory are done to any column
properties.

If you select a DATESHIFT algorithm and are not masking a datetime or timestamp column,

you must specify a Date Format (this field only appears if a DATESHIFT algorithm is selected
from the Masking Algorithm dropdown). The default format is YYYY-MM-DD in the legacy UI.

A dropdown provides the capability to add a new date format or select from the existing list in
the dropdown. Click on the or icon next to the dropdown for more suggestions on valid
formats.

https://masking.delphix.com/docs/latest/out-of-the-box-algorithm-instances
https://masking.delphix.com/docs/latest/out-of-the-box-algorithm-instances

Continuous Compliance – Continuous Compliance Home

Connecting data – 356

•

•

•

6.9.7 Managing a fixed-width or delimited file inventory settings

Search/select a file or file format under the File Format dropdown to create or edit the inventory of
sensitive data. The Record Types and Fields for that specific file will appear in the grid below.
Fields are listed in groups of Record Types, which can be collapsed and expanded by clicking on the
down arrow icon ⌄ beside each Record Type Name. Users can also Expand All and Collapse All using
the Actions ꠵ button in the right corner, just above the grid.
The count next to the Record Type in parentheses shows the total number of fields in that record.

Continuous Compliance – Continuous Compliance Home

Connecting data – 357

•

6.9.8 Managing a JSON file inventory settings

Search/select a file or file format under the File Format dropdown to create or edit the inventory of
sensitive data.

• To add a new Field, Record Type to the inventory, or to manage qualifiers or headers &
footers of the selected file format, click on the Edit File Format button in the right corner.
Navigate to the selected Settings Format screen and use Add Field.



Continuous Compliance – Continuous Compliance Home

Connecting data – 358

•

•

6.9.9 Managing an XML file inventory settings

Search/select a file or file format under the File Format dropdown to create or edit the inventory of
sensitive data.
The fields are displayed with Xpath in a flat-grid structure and are, by default, sorted by Xpath.

•

•

To add a new JSON path to the inventory, click on Edit File Format button in the right corner
that will navigate to the respective selected Edit Formats screen, where you can use the Add
Field button.
Profiling is not supported on the JSON file rule sets.



Continuous Compliance – Continuous Compliance Home

Connecting data – 359

•

•

•
•

6.9.10 Managing Mainframe inventory settings

Search/select a file or file format under the File Format dropdown to create or edit the inventory of
sensitive data.
Fields are listed in groups by a parent field which can be collapsed and expanded by clicking on the
down arrow icon ⌄ beside the field name. Users can also Expand All and Collapse All using the
Actions ꠵ button in the right corner, just above the grid.
The count next to the Field name in parentheses shows the total number of children fields.
If a field is type of REDEFINED or REDEF then it will be indicated below the field name.

• XML attributes can be identified by “@“ in the Xpath.

Continuous Compliance – Continuous Compliance Home

77 https://masking.delphix.com/docs/latest/managing-file-formats

Connecting data – 360

• To edit Redefine conditions, click on the Edit Mainframe Format button at the right corner
above the grid to navigate to the respective selected Edit Formats screen, where you can
edit Redefine conditions. For more information on Redefine condition see the Managing File
Formats77 article.



• Masking a node with Level 88 children is not supported. A Level 88 node refers to the
condition name in the Copybook format. If we allow masking a node with Level 88 children,
the dataset file generated after masking will no longer be compatible with it’s Copybook
format.

https://masking.delphix.com/docs/latest/managing-file-formats
https://masking.delphix.com/docs/latest/managing-file-formats

Continuous Compliance – Continuous Compliance Home

Connecting data – 361

1.

2.

3.

1.

2.

6.9.11 Importing and exporting an inventory

6.9.11.1 To export an inventory

Click on the Actions ꠵ button in the right corner just above the grid, then choose Export Ruleset from
the options.

The Export Ruleset window appears with the name of the currently selected Rule Set and provide a
corresponding .csv File Name to export.

Click Export.

When the export operation is complete, a .csv file with the name provided earlier will start to be Downloaded
on the browser.

6.9.11.2 To import an inventory

Click on the Actions ꠵ button in the right corner just above the grid, then choose Import Ruleset from
the options.

The Import Ruleset window appears with the name of the currently selected Rule Set.

Continuous Compliance – Continuous Compliance Home

Connecting data – 362

3.

4.

Click Choose File to browse for the exported comma-separated (.csv) file.

Click Import.

When the import operation is complete, the inventory you imported appears in the Rule Set list for this
environment.

6.9.12 Document Store Type masking

This feature provides the ability to mask structured documents that are stored in database columns and
delimited files. This is done by marking a column/delimited field as Structured and assigning a respective
Document Store Type and File Format to it.

•
•

•

Only one rule set can be imported at a time.
The format of an imported .csv file must exactly match the format of the exported inventory.
If you plan to import an inventory, you should export it first and then update the exported file
as needed before importing it.
After importing the inventory to a 10.0.0.0 version or above Compliance Engine from older
versions, rule set refresh is mandatory when the inventory has any document store type
assignments, or the user needs to perform document store type masking on the columns
from the imported inventory.



Continuous Compliance – Continuous Compliance Home

78 https://docs.oracle.com/javase/8/docs/api/java/sql/JDBCType.html

Connecting data – 363

With the release of version 10.0.0.0 of the Continuous Compliance Engine, the document store type masking
will support automatic datatype identification. This will be done by using the JDBC SQL Type78 associated
with columns. String and BLOB types will be supported for document store type masking.

Database columns with a supported data type or a Delimited file field provide a setting called Data Model,
which can be configured as either Plain or Structured.

As shown in the image below, columns with Plain selected as the Data Model can be masked as a single
value by assigning a Domain and Algorithm.

•

•

•

•

With version 10.0.0.0 release
In the case of existing rule sets, a rule set refresh is mandatory before using Document Store
Type masking.
Masking jobs having rule sets with Document Store Type assignments will need mandatory
rule set refresh. Without rule set refresh job will not be allowed to run.
Masking jobs having rule sets without document store type assignments will not need rule
set refresh.
Rule set refresh is not required for newly created rule sets.



•

•

•

•

•

•

•

•

•

For Database columns

The database column type should be from one of the following JDBC SQL Types:
CHAR , NCHAR , VARCHAR , NVARCHAR , CLOB , NCLOB , LONGVARCHAR ,

LONGNVARCHAR , BLOB , SQLXML .

BLOB type will not be supported for MySQL databases.

SQLXML type will be only supported for Oracle databases.

The file format must be either XML or JSON.

For Delimited file-fields

Document store type masking for delimited field is supported when JSON or XML
data is enclosed by Enclosure and has enclosure escaping strategy as Double

Enclosure .

Only the double enclosure escaping strategy is supported. Custom enclosure
escaping strategy and "enclosure escape character" functionality are not supported
for delimited fields with structured data.

More details on how to assign enclosure to delimited file-rule set can be found
here (see page 319).

https://docs.oracle.com/javase/8/docs/api/java/sql/JDBCType.html
https://docs.oracle.com/javase/8/docs/api/java/sql/JDBCType.html

Continuous Compliance – Continuous Compliance Home

Connecting data – 364

When the Structured value is selected for the Data Model, a Document Store Type and File Format can be
assigned as shown in the image below.

The image below shows the Inventory screen for the database rule set with a structured column. To quickly
access an assigned File Format from this screen (books.xml in this example), click on the Actions button (...)
and select the Edit File Format option from the dropdown.

Continuous Compliance – Continuous Compliance Home

79 https://masking.delphix.com/docs/latest/using-multi-column-algorithms

Connecting data – 365

6.9.12.1 Multi-column algorithm support for document store type masking

With the release of version 10.0.0.0, Multi-column algorithms79 will be supported for JSON and XML
document store type masking with limited buffer-data size.

Currently, the delimited file inventory screen does not show the File Format column in the grid
that indicates the document store type assignment for the field. Users can assign algorithms to
the fields inside document store selected file format by either clicking on the Actions button (...)
and selecting the Edit File Format option in the grid or by going to Settings > Format and
choosing to Edit the assigned file format.



https://masking.delphix.com/docs/latest/using-multi-column-algorithms
https://masking.delphix.com/docs/latest/using-multi-column-algorithms

Continuous Compliance – Continuous Compliance Home

80 https://masking.delphix.com/docs/latest/masking-api-client

Connecting data – 366

The fields having multi-column assignments should not exceed the limit of buffer data size. In case of
exceeding the limit of buffer data size, the job will fail. Users can configure buffer size by adjusting
CharStreamingBufferLimitRate to avoid exceeding the buffer data size issue.

6.9.12.1.1 Multi-column algorithm with JSON file format

Multi-column algorithm assignment for JSON fields will be validated at the time of assignment. If any of the
above combinations are found while assigning a multi-column algorithm, that assignment will not be
allowed.

Below is a sample JSON file format with valid and invalid multi-column assignment examples.

•

•

Buffer size (in bytes) will be using calculated using the below formula:
((Max_memory_of_Job/No_of_streams_for_job)*CharStreamingBufferLimitRate)/100

The default values will be used when the maximum memory and number of the stream for
the job are not defined.
Buffer-data size is configurable via the application setting
CharStreamingBufferLimitRate under Mask group settings. For adjusting

CharStreamingBufferLimitRate , refer to the Masking API client80.



•

•

•

•

•

Multi-column algorithm is supported for JSON files and JSON in Document Store Type
masking.
Multi-column algorithm is not supported for JSON fields where,

JSON field is an array.

JSON fields are part of different arrays.

JSON fields are on different levels having one or more fields from JSON arrays.



https://masking.delphix.com/docs/latest/masking-api-client
https://masking.delphix.com/docs/latest/masking-api-client

Continuous Compliance – Continuous Compliance Home

Connecting data – 367

6.9.12.1.2 Multi-column algorithm with XML file format

In the case of XML document store type masking, multi-column algorithm assignment to XML elements will
not be validated at the time of assignment. XML can be difficult to find out if an element is a type of an array
or a single element until the whole data is read. Here, the masking job will fail immediately when any of the
invalid multi-column assignments are found while running the job. Make sure the algorithm assignment
should follow the below rules.

Assigning a multi-column algorithm to an invalid combination of JSON fields will produce an
error that shows JSON paths.



• Multi-column algorithm for XML file masking is not supported.

Continuous Compliance – Continuous Compliance Home

Connecting data – 368

Below is a sample XML file format with valid and invalid multi-column assignment examples.

6.9.13 Inventory Approval Workflow (database rule sets only)

When enabled, this feature requires a user (the “approver”) to approve a rule set’s inventory settings before a
masking job for that rule set can be executed.

A database masking job will only be allowed to run if its rule set is in the Approved state. If the database rule
sets state is either New, Submitted, or Rejected, and the user tries to run the masking job, then the user will
receive the following error message: “Attempt to execute job while approval workflow is enabled and the rule
set is not approved.”

•
•

•

•

•

Multi-column algorithm assignment to XML attributes is not supported.
Multi-column algorithm is not supported for XML elements where,

The element is a type of array.

Elements are part of different arrays.

Elements are on different levels having one or more elements of type array.

This feature is only available for database rule sets.

Continuous Compliance – Continuous Compliance Home

Connecting data – 369

•

6.9.13.1 Enabling Inventory Approval Workflow for an environment

Users can enable the inventory approval workflow for any environment by selecting the checkbox “Enable
Approval Workflow (database rule sets only)” at the bottom of the Add, Edit, or Copy environment dialogue
boxes.

6.9.13.2 Workflow stages

NEW
When a user updates any column properties for a database rule set, the approval workflow status will
be reset to NEW for that particular rule set. A masking job will not be able to run on any rule set in this
status. Users will have to submit these inventories for approval by clicking on the Submit button
which appears just above the grid.

Continuous Compliance – Continuous Compliance Home

Connecting data – 370

• SUBMITTED
Once the user modifies any properties in the database inventory and submits it for approval, an
Admin user or any user whose role has the Inventory Approval privilege enabled will be able to
approve/reject these changes by clicking on the Approve/Reject buttons appearing on the top of the
grid. The Approve and Reject buttons will be hidden for the users without this privilege.

Continuous Compliance – Continuous Compliance Home

Connecting data – 371

•

•

APPROVED
If the database rule set status is Approved, masking jobs using this rule set may be executed.

REJECTED
If the database rule set status is Rejected, the user will have to re-modify the inventory properties set
to the database columns and submit the inventory again for approval.

Continuous Compliance – Continuous Compliance Home

Connecting data – 372

6.10 Managing record types and header/footer records

6.10.1 Overview

6.10.1.1 Records types

Sometimes a delimited or fixed-width file will contain records with different formats. For example, this
delimited file contains records with two different formats. Some records have an account number and postal
address fields and other records have an account number and email address:

addresss, account1234, 9A Lexington Street, Bridgeport, Michigan, 48009
email, account1234 bar@example.com
address, account5678, 9B Agawam Village, Rochester, Colorado, 80015

Record types and header/footer records are only applicable to delimited and fixed-width file
formats.

Continuous Compliance – Continuous Compliance Home

Connecting data – 373

address, account4321, 99 Mill River Drive, Davenport, Washington, 99336
email, account4321, foo@example.com

In this example, the first field differentiates the records: address for records with the format:

type, account_number, address, city, state, zip

and email for records with the format:

type, account_number, email_address

A field that differentiates records from one another is called a record type qualifier. The Compliance Engine
supports up to three record type qualifiers.

In this case, define qualifiers that allow the Compliance Engine to differentiate between the different record
types.

6.10.1.2 Header and footer records

Another common situation is for a delimited or fixed-width file to have one or more header or footer records.
In this case, it may be desirable for the Compliance Engine to place unaltered copies of these records into
the masked output file. For example, this delimited file’s first record is a header that contains the names of
each field:

hostname, IP
foo.example.com, 10.11.12.13
bar.exmaple.com, 10.14.15.16

In this situation, the Compliance Engine can be configured to treat the first record as a header so that its
unmodified contents will be written into the masked file.

Navigation Options:

i. Go to Settings > File Format. Use the Action menu (…) option to Edit against the fixed or delimited file
format for the records you want to add.

ii. Navigate to Environments > Inventory.

Click on Go to Format Setting and click on Add Record Types. The Record Type window appears.

You must select a rule set that was created using a file connector from the Select Rule Set
dropdown list and select the file format or data file from the dropdown for the record type you
want to add.

Continuous Compliance – Continuous Compliance Home

81 https://masking.delphix.com/docs/latest/managing-file-formats

Connecting data – 374

1.

2.

5.

6.10.1.2.1 Adding record types

Create a record type for each distinct record format by uploading a format file.

Perform the following steps to add a record type to a file format:

Click Add Record Type button. The Add Record Type window appears.

In the Add Record Type window, enter values for the following fields:
Record Name - A free-form name for this record type.
Choose File - Browse for the file from which to import fields.

Click Save.

The Environments > Inventory screen only allows viewing the record type, utilize the Go to file
Format option for adding, editing, and deleting the record type which is a format level change.



The contents of the imported file vary for Delimited and Fixed-width. Refer to Managing file
formats81 for formatting examples.

https://masking.delphix.com/docs/latest/managing-file-formats
https://masking.delphix.com/docs/latest/managing-file-formats

Continuous Compliance – Continuous Compliance Home

Connecting data – 375

7.

1.

2.

3.

The added record type will be displayed with corresponding fields in the grid below.

6.10.1.2.2 Editing record types

In order to edit an added record type name:

Select the Edit option from the … menu in the Actions column of the record type to rename.

A prefilled window (similar to the above) will appear.

Rename and Save.

6.10.1.2.3 Deleting record types

In order to delete an added record type:

Continuous Compliance – Continuous Compliance Home

Connecting data – 376

1.

2.

1.

2.

3.

Select the Delete option from the … menu in the Actions column of the record type to be deleted.

A confirmation window will appear, confirm to Delete.

6.10.1.2.4 Managing qualifiers

In order to associate qualifiers with record types:

Click on Qualifier Button, the Record Type Qualifier window will open.

Select the corresponding Record Type to add, edit, or view qualifiers.

No. of Qualifiers - Select the number of qualifiers. There can be a maximum of 3 qualifiers.

.

Continuous Compliance – Continuous Compliance Home

Connecting data – 377

Fields to add Qualifier 1, Qualifier 2 and Qualifier 3 will render based on selected “No. of
Qualifiers”.



Continuous Compliance – Continuous Compliance Home

Connecting data – 378

4.

5.

6.

1.

2.

Regular Expression - This value is a regular expression that the Compliance Engine uses to match the
specified field, to determine whether the record is of this type. A record type applies if its regular
expression matches its specified identifier fields.

Field Name - Select the field name within the record type.

Click Save once complete.

6.10.1.2.5 Configure header and footer

The Header or Trailer associated with a format is used to specify the number of records that are not masked
at the beginning and end of a file.

Click the Header & Footer button and a small window will appear.

Add or update the already configured Number of Records for the header or footer, or both, then save.

6.11 Whole file masking
You can now configure the masking engine to mask the complete file and pass the content of that file as a
single input to an algorithm.

Continuous Compliance – Continuous Compliance Home

Connecting data – 379

•

•

1.

2.

3.

4.

5.

6.11.1 Pre-requisite

You must create a fixed-width file connector. For more information on creating connectors, see
Managing connectors (see page 296).
You must create a fixed-width file format that has only one field defined in it. For more information on
creating file formats, see Managing file formats (see page 333).

6.11.2 Masking a whole file

Perform the following procedure to mask a whole file.

Navigate to Environments > Ruleset.

On the Rule Set screen, click the Edit icon to the right of the fixed-width connector rule set.
Alternatively, click on the fixed-width connector name. The rule set screen displays all the files in the
directory that are associated with the respective connector.

Click the Edit icon to the right of the file or pattern name. The Edit File screen appears.

From the File Format drop-down list, select a file format that has only one field defined in it. Selecting
any other file format will result in an error.

Select the Mask whole file checkbox to enable whole file masking.
Selecting this option results in the disappearance of other options (End of Record, Delimited,
Enclosure, and Escape Character for Enclosure). These configurations are no more required as the
masking engine will now read the whole file and send it to the algorithm.

Continuous Compliance – Continuous Compliance Home

Connecting data – 380

•

•

6.

7.

Note
Masking the whole file is applicable only for:

Files that are less than 200 MB in size. However, you can modify this limit via API by
configuring Whole File Masking Max File Size In MB key in the Application Settings.

The file format that has only one field defined in it. The masking whole file is applicable only
for: Files that are less than 200 MB in size. However, you can modify this limit via API by
configuring Whole File Masking Max File Size In MB key in the Application Settings. File
format that has only one field defined in it.

Click Save.

Navigate to Environments > Inventory. The Record Types, Define Fields, and Delete options are
greyed-out when you select a file format that is used with any fixed-width file having Mask whole file
option enabled.

Continuous Compliance – Continuous Compliance Home

Connecting data – 381

8.

9.

10.

Click the Edit icon to the right of the record type.

From the Algorithm drop-down list, select the matching extended algorithms that must be applied to
the file.

Note: You can not modify/update the length and position for the single field defined in the respective
file format if you enable the Mask whole file option in the rule set screen.

Click Save.

Continuous Compliance – Continuous Compliance Home

Identifying sensitive data – 382

•
•
•
•
•
•
•
•
•
•
•
•
•
•

7 Identifying sensitive data
This section contains the following topics:

Discovering your sensitive data (see page 382)

Out of the box profiling settings (see page 384)

ASDD standard profile set (see page 385)

Standard profile set expressions (see page 423)

Legacy profile set expressions (see page 429)

Configuring profile sets (see page 440)

Managing domains (see page 444)

Managing classifiers (see page 446)

Managing expressions (see page 452)

ASDD profile set import and export (see page 457)

Creating a profiling job (see page 458)

Running a profiling job (see page 460)

Reporting profiling results (see page 461)

ASDD features and support (see page 468)

7.1 Discovering your sensitive data

7.1.1 Overview

After connecting data to the masking service, the next step is to discover which of the data should be
secured. This process is referred as sensitive data discovery, or profiling throughout the product
documentation.

Once a rule set has been created (see page 319), profiling is done by Managing rule sets (see page 319) and
running (see page 460) a profiling job for that rule set. A profiling job examines the metadata, such as column
names and types, and potentially the data itself, to determine which columns or fields contain sensitive
information. Upon determining that a data item is sensitive, the profiler assigns the matching domain and
associated masking algorithm to the column or field. A profiling job covers only those tables and files
present in the rule set; any new objects accessible through the defined connector will not be discovered and
must be manually added to the rule set.

The Continuous Compliance product currently ships with two distinct profiling implementations: the new
Automated Sensitive Data Discovery (ASDD) profiler and the legacy profiler. The content of the profile set
determines which implementation will be chosen when a profiling job is run. The ASDD profiler supports (see
page 468) a wider range of logic for detecting sensitive fields and improved data inspection logic for
databases. However, at this time, ASDD profiling is limited to only specific database variants.

Continuous Compliance – Continuous Compliance Home

Identifying sensitive data – 383

•

•

•
•

7.1.2 Concepts

7.1.2.1 Profile set

The Profile Set chosen defines the logic that will be used to determine which columns or fields in the rule set
contain sensitive information. A profile set may contain a set of search expression and type expressions, or a
set of classifiers, that define the recognition logic for the legacy or ASDD profiler, respectively. As each
expression or classifier is associated with a domain, the composition of the profile set determines which
types of sensitive data may be detected by a profiling job use a particular profile set. Several built-in profile
sets (see page 384) are available by default.

7.1.2.2 Domain

A domain represents a particular type of sensitive information, such as first name or tax ID number. Based
on the detection logic in the profile set, a profile job may assign a domain to a particular field or column in
the rule set; when this occurs, the default masking algorithm defined for that domain will also be assigned.
The domain mechanism helps to ensure that the same masking algorithm is applied consistently across rule
sets whenever a particular type of sensitive data is discovered.

7.1.2.3 Level - column or data

The term Level is used for search expressions to indicate whether the data itself is examined, or if profiling is
done based only on the field or column name and type. Examining the data is more time-consuming than
examining metadata alone, as the profiling job must retrieve data from the data source.

7.1.2.4 Classifier

A classifier defines a specific piece of logic for recognizing sensitive data. Classifiers may only be used with
the ASDD profiler. Classifiers use a framework and instance model, similar to algorithms. A framework
represents a particular software module for detecting sensitive information, while an instance provides the
configuration for a framework and associates it with a particular domain. The pre-built ASDD Standard profile
set includes a number of classifier instance definitions. It is possible to create additional instances using the
API client.

The following classifier frameworks are available:

PATH - Examines the path to the data in question and applies regular expression and/or exact match
logic to match domains. For databases, the path includes the table and column name.
TYPE - Uses the data type and length of a field or column to reject possible domain matches.
Supported types are String, Number, Date and Binary.
REGEX - Matches the data itself using regular expressions to match or reject domains.
LIST - Checks whether data values are present in a list of value to match or reject domains.

Of these frameworks, PATH and TYPE operate at the column level, while REGEX and LIST operate at the data
level. It is not currently possible to install additional classifier frameworks.

Continuous Compliance – Continuous Compliance Home

Identifying sensitive data – 384

7.1.2.5 Search expression

A search expression defines a regular expression (regex) that will be used to match data to a domain. How
the regex is applied depends on the value chosen for level - column-level expressions are matched against
the field or column name, while data-level expressions are matched against the data values themselves.
Every legacy, built-in profile set includes a number of column-level search expressions

designed to identify common sensitive data types (SSN, Name, Addresses, etc). The pre-built profile sets do
not include any data level expressions by default, but some data level expressions (see page 452) are included
(but not part of any profile set) that may be added to user-created profile sets. You also have the ability to
create additional search expressions.

7.1.2.6 Type expression

A type expression defines a constraint limiting matches for a particular domain to a particular set of data
types, with an optional minimum length for each type. For example, matches for the FIRST_NAME domain
may be limited to only string columns with a length of 8 characters or more. Supported types are STRING,
NUMBER, DATE, and BINARY. The Standard (see page 423) profile set includes type expressions for most
domains, and more may be created if desired.

7.2 Out of the box profiling settings
The Delphix Platform comes out of the box with recognition logic to help you discover over 30 types of
sensitive data (account numbers, addresses, etc.). This logic is organized into a number of pre-built profile
sets that can be easily applied to a rule set when a profile job is created.

7.2.1 ASDD standard profile set

This is the recommended profiler set for the ASDD profiler and should be preferred for all data sources
supported (see page 468) by the ASDD Profiler. This profile set has the widest range of classification logic,
including classifiers for all logic in the legacy Standard profile set, as well as data-level classifiers for a
number of domains. It includes value list classifiers capable of detecting several domains, such as
FIRST_NAME and LAST_NAME, even when column names are not meaningful. Data level detection is limited
to English language values.

The classifiers present in the ASDD Standard profile set are described in the ASDD Standard Profile Set (see
page 385)section.

7.2.2 Standard profile set

This is the recommended profile set for the legacy profiler. It contains column-level search and type
expressions appropriate for detecting a wide range of sensitive information.

The column and type expressions used in this profile set are described in the Standard Profile Set
Expressions (see page 423) section.

Continuous Compliance – Continuous Compliance Home

82 https://download.delphix.com/folder/4385/Delphix%20Product%20Releases/
Automated%20Sensitive%20Data%20Discovery

Identifying sensitive data – 385

•
•

7.2.3 Legacy profile sets

The legacy profile sets are provided for backward compatibility, specifically, to provide consistent results for
pre-existing profiling jobs. For other uses, the Standard profile set described above is preferred. The legacy
profile sets do not contain any type expressions to restrict matching based on the column type.

These profile sets are:

Financial - Legacy
HIPAA - Legacy

The expressions used by these profile sets are described in the Legacy Profile Set Expressions (see page 429)
section.

7.3 ASDD standard profile set
As of the 11.0.0.0 release, administrators control when upgrades of the ASDD Standard Profile Set occur.
For every Delphix Engine release, the ASDD Standard Profile Set will be made available to customers in the
Automated Sensitive Data Discovery directory folder on the Delphix Download site82. A README is also
present, which includes a changelog and usage instructions. Additionally, as of 11.0.0.0, the contents of the
ASDD Standard Profile Set may be customized. To recover or upgrade the ASDD Standard profile set, see the
ASDD Profile Set Import and Export article (see page 457) for more information on the import API endpoint.

For reference, the following JSON listing contains the full configuration for all classifiers present in the ASDD
Standard Profile Set as of the 14.0.0.0 release.

[
 {
 "domain": "ACCOUNT_NO",
 "name": "Account Number - Path",
 "type": "PATH",
 "properties": {
 "paths": [
 {
 "matchType": "REGEX",
 "matchStrength": 0.67,
 "fieldValue": "(?i)(?>(account|accnt|acct)_?-? ?(number|num|nbr|
no|user))($|[_-])"
 }
],
 "rejectStrength": 0.0
 }
 },
 {
 "domain": "ACCOUNT_NO",
 "name": "Account Number - Type",
 "type": "TYPE",

https://download.delphix.com/folder/4385/Delphix%20Product%20Releases/Automated%20Sensitive%20Data%20Discovery
https://download.delphix.com/folder/4385/Delphix%20Product%20Releases/Automated%20Sensitive%20Data%20Discovery

Continuous Compliance – Continuous Compliance Home

Identifying sensitive data – 386

 "properties": {
 "allowedTypes": [
 {
 "minimumLength": "5",
 "typeName": "String"
 },
 {
 "minimumLength": "5",
 "typeName": "Number"
 }
],
 "matchAutoIncrementingColumn": true
 }
 },
 {
 "domain": "ADDRESS",
 "name": "Address Line 1 - Path",
 "type": "PATH",
 "properties": {
 "paths": [
 {
 "matchType": "REGEX",
 "matchStrength": 0.67,
 "fieldValue": "(?i)(?>((st(reet)?_?-? ?addr(ess)?)|street?|
addr(ess)?)_?-? ?((l(i)?n(e)?)? ?_?(1|))?)"
 }
],
 "rejectStrength": 0.0
 }
 },
 {
 "domain": "ADDRESS",
 "name": "Address Line 1 - Type",
 "type": "TYPE",
 "properties": {
 "allowedTypes": [
 {
 "minimumLength": "20",
 "typeName": "String"
 }
]
 }
 },
 {
 "domain": "ADDRESS",
 "name": "Address Line 1 - Regex",
 "type": "REGEX",
 "properties": {
 "dataPatterns": [
 {
 "regex": "(?i)(.*[\\s]+b(ou)?l(e)?v(ar)?d[\\s]*.*)|(.*[\\s]
+st(reet)?[\\s]*.*)|(.*[\\s]+ave[.]?(nue)?[\\s]*.*)|(.*[\\s]+r(oa)?d[\\s]*.*)|(.*[\
\s]+l(a)?n(e)?[\\s]*.*)|(.*[\\s]+cir(cle)?[\\s]*.*)|(.*[\\s]+dr[.]?(ive)?[\\s]*.*)|

Continuous Compliance – Continuous Compliance Home

Identifying sensitive data – 387

(.*[\\s]+h(igh)?w(a)?y[\\s]*.*)|(.*[\\s]+r(ou)?t(e)?[\\s]*.*)|(.*[\\s]+c(our)?t[\
\s]*.*)|(.*[\\s]+way[\\s]*.*)",
 "matchStrength": 0.7,
 "allowPartialMatch": false
 }
],
 "rejectStrength": 0.1
 }
 },
 {
 "domain": "ADDRESS_LINE2",
 "name": "Address Line 2 - Path",
 "type": "PATH",
 "properties": {
 "paths": [
 {
 "matchType": "REGEX",
 "matchStrength": 0.67,
 "fieldValue": "(?i)(?>((st(reet)?_?-? ?addr(ess)?)|street?|
addr(ess)?)_?-? ?((l(i)?n(e)?)? ?_?([2-9]))?)"
 }
],
 "rejectStrength": 0.0
 }
 },
 {
 "domain": "ADDRESS_LINE2",
 "name": "Address Line 2 - Type",
 "type": "TYPE",
 "properties": {
 "allowedTypes": [
 {
 "minimumLength": "20",
 "typeName": "String"
 }
]
 }
 },
 {
 "domain": "ADDRESS_LINE2",
 "name": "Address Line 2 - Regex",
 "type": "REGEX",
 "properties": {
 "dataPatterns": [
 {
 "regex": "(?i)(.*[\\s]*ap(ar)?t(ment)?[.\\s]+.*)|(.*[\\s]*s(ui)?
te[.\\s]+.*)|(c(are)?[\\s]*[\\\\]?[/]?o(f)?[.\\s]+.*)|(.*[\\s]*b(ui)?ld(in)?g[.\\s]
+.*)|(.*[\\s]*fl(oor)?[.\\s]+.*)|(.*[\\s]*r(oo)?m[.\\s]+.*)|(.*[\\s]*unit[.\\s]+.*)",
 "matchStrength": 0.7,
 "allowPartialMatch": false
 }
],

Continuous Compliance – Continuous Compliance Home

Identifying sensitive data – 388

 "rejectStrength": 0.1
 }
 },
 {
 "domain": "AGE",
 "name": "Age - Path",
 "type": "PATH",
 "properties": {
 "paths": [
 {
 "matchType": "REGEX",
 "matchStrength": 0.67,
 "fieldValue": "(?i)(?>(age)[_-]?(group|grp|num|nbr|no|number)?)
($|[_-])"
 }
],
 "rejectStrength": 0.0
 }
 },
 {
 "domain": "BANK_ACCOUNT_NO",
 "name": "Bank Account Number - Path",
 "type": "PATH",
 "properties": {
 "paths": [
 {
 "matchType": "REGEX",
 "matchStrength": 0.67,
 "fieldValue": "(?i)(?>(bank_?-? ?)?(account|accnt|acct)_?-? ?
(number|num|nbr|no))($|[_-])"
 }
],
 "rejectStrength": 0.0
 }
 },
 {
 "domain": "BANK_ACCOUNT_NO",
 "name": "Bank Account Number - Regex",
 "type": "REGEX",
 "properties": {
 "dataPatterns": [
 {
 "regex": "\\d{5,17}",
 "matchStrength": 0.05,
 "allowPartialMatch": false
 }
],
 "rejectStrength": 0.1
 }
 },
 {
 "domain": "BANK_ACCOUNT_NO",

Continuous Compliance – Continuous Compliance Home

Identifying sensitive data – 389

 "name": "Bank Account Number - Type",
 "type": "TYPE",
 "properties": {
 "allowedTypes": [
 {
 "minimumLength": "5",
 "typeName": "Number"
 }
],
 "matchAutoIncrementingColumn": true
 }
 },
 {
 "domain": "BENEFICIARY_NO",
 "name": "Beneficiary Number - Path",
 "type": "PATH",
 "properties": {
 "paths": [
 {
 "matchType": "REGEX",
 "matchStrength": 0.67,
 "fieldValue": "(?i)(?>(bene(ficiary)?_?-? ?(number|num|nbr|no|
id)))"
 }
],
 "rejectStrength": 0.0
 }
 },
 {
 "domain": "BENEFICIARY_NO",
 "name": "Beneficiary Number - Type",
 "type": "TYPE",
 "properties": {
 "allowedTypes": [
 {
 "minimumLength": "5",
 "typeName": "Number"
 },
 {
 "minimumLength": "10",
 "typeName": "String"
 }
]
 }
 },
 {
 "domain": "BIOMETRIC",
 "name": "Biometric - Path",
 "type": "PATH",
 "properties": {
 "paths": [
 {

Continuous Compliance – Continuous Compliance Home

Identifying sensitive data – 390

 "matchType": "REGEX",
 "matchStrength": 0.67,
 "fieldValue": "(?i)(?>(biometric))"
 }
],
 "rejectStrength": 0.0
 }
 },
 {
 "domain": "BIOMETRIC",
 "name": "Biometric - Type",
 "type": "TYPE",
 "properties": {
 "allowedTypes": [
 {
 "minimumLength": "10",
 "typeName": "String"
 },
 {
 "minimumLength": "0",
 "typeName": "Binary"
 }
]
 }
 },
 {
 "domain": "CERTIFICATE_NO",
 "name": "Certificate Number - Path",
 "type": "PATH",
 "properties": {
 "paths": [
 {
 "matchType": "REGEX",
 "matchStrength": 0.67,
 "fieldValue": "(?i)(?>(cert(ificate)?_?-? ?(number|num|nbr|no|
id)))"
 }
],
 "rejectStrength": 0.0
 }
 },
 {
 "domain": "CERTIFICATE_NO",
 "name": "Certificate Number - Type",
 "type": "TYPE",
 "properties": {
 "allowedTypes": [
 {
 "minimumLength": "10",
 "typeName": "String"
 },
 {

Continuous Compliance – Continuous Compliance Home

Identifying sensitive data – 391

 "minimumLength": "5",
 "typeName": "Number"
 }
]
 }
 },
 {
 "domain": "CITY",
 "name": "City - List",
 "type": "LIST",
 "properties": {
 "valueLists": [
 {
 "file": "file://us_cities.txt",
 "matchStrength": 1.0
 }
]
 }
 },
 {
 "domain": "CITY",
 "name": "City - Path",
 "type": "PATH",
 "properties": {
 "paths": [
 {
 "matchType": "REGEX",
 "matchStrength": 0.67,
 "fieldValue": "(?i)(?>^(home_?-? ?city|city))"
 },
 {
 "matchType": "REGEX",
 "matchStrength": 0.67,
 "fieldValue": "(?i)(?>^(address_?-? ?city|city|city_?-? ?
address))"
 }
],
 "rejectStrength": 0.0
 }
 },
 {
 "domain": "CITY",
 "name": "City - Type",
 "type": "TYPE",
 "properties": {
 "allowedTypes": [
 {
 "minimumLength": "10",
 "typeName": "String"
 }
]
 }

Continuous Compliance – Continuous Compliance Home

Identifying sensitive data – 392

 },
 {
 "domain": "COUNTRY",
 "name": "Country - Path",
 "type": "PATH",
 "properties": {
 "paths": [
 {
 "matchType": "REGEX",
 "matchStrength": 0.67,
 "fieldValue": "(?i)country",
 "allowPartialMatch": false
 }
],
 "rejectStrength": 0.0
 }
 },
 {
 "domain": "COUNTRY",
 "name": "Country - Type",
 "type": "TYPE",
 "properties": {
 "allowedTypes": [
 {
 "minimumLength": "15",
 "typeName": "String"
 }
]
 }
 },
 {
 "domain": "COUNTRY",
 "name": "Country - List",
 "type": "LIST",
 "properties": {
 "valueLists": [
 {
 "file": "file://countries.txt",
 "matchStrength": 1.0
 }
],
 "rejectStrength": 0.5
 }
 },
 {
 "domain": "COUNTY",
 "name": "County - Path",
 "type": "PATH",
 "properties": {
 "paths": [
 {
 "matchType": "REGEX",

Continuous Compliance – Continuous Compliance Home

Identifying sensitive data – 393

 "matchStrength": 0.67,
 "fieldValue": "(?i)(?>(county))"
 }
],
 "rejectStrength": 0.0
 }
 },
 {
 "domain": "COUNTY",
 "name": "County - Type",
 "type": "TYPE",
 "properties": {
 "allowedTypes": [
 {
 "minimumLength": "10",
 "typeName": "String"
 }
]
 }
 },
 {
 "domain": "CREDIT CARD",
 "name": "Credit Card Number - Path",
 "type": "PATH",
 "properties": {
 "paths": [
 {
 "matchType": "REGEX",
 "matchStrength": 0.67,
 "fieldValue": "(?i)(?>(^cc|credit[-_]?card)[-_]?(number|num|
nbr|no)?)"
 },
 {
 "matchType": "REGEX",
 "matchStrength": 0.67,
 "fieldValue": "(?i)(?>card[-_]?(number|num|nbr|no))"
 }
],
 "rejectStrength": 0.0
 }
 },
 {
 "domain": "CREDIT CARD",
 "name": "Credit Card Number - Regex",
 "type": "REGEX",
 "properties": {
 "dataPatterns": [
 {
 "regex": "(?:3[47][0-9]{2}[0-9]{6}[0-9]{4})",
 "allowPartialMatch": false,
 "checksumType": "LUHN",
 "dataCleanRegex": "[-.]",

Continuous Compliance – Continuous Compliance Home

Identifying sensitive data – 394

 "matchStrength": 0.9
 },
 {
 "regex": "(?:4[0-9]{12}(?:[0-9]{3})?(?:[0-9]{3})?)",
 "allowPartialMatch": false,
 "checksumType": "LUHN",
 "dataCleanRegex": "[-.]",
 "matchStrength": 0.9
 },
 {
 "regex": "(?:5[1-5][0-9]{2}|222[1-9]|22[3-9][0-9]|2[3-6][0-9]{2}|
27[01][0-9]|2720)[0-9]{12}",
 "allowPartialMatch": false,
 "checksumType": "LUHN",
 "dataCleanRegex": "[-.]",
 "matchStrength": 0.9
 },
 {
 "regex": "(?:2131|1800|35[0-9]{3})[0-9]{11}",
 "allowPartialMatch": false,
 "checksumType": "LUHN",
 "dataCleanRegex": "[-.]",
 "matchStrength": 0.9
 },
 {
 "regex": "3(?:0[0-5,9]|6[0-9])[0-9]{11}|3[89][0-9]{12}?(?:[0-9]
{1,3})?",
 "allowPartialMatch": false,
 "checksumType": "LUHN",
 "dataCleanRegex": "[-.]",
 "matchStrength": 0.9
 },
 {
 "regex": "6(?:(011|5[0-9][0-9])[0-9]{2}|4[4-9][0-9]{3}|2212[6-9]|
221[3-9][0-9]|22[2-8][0-9]{2}|229[0-1][0-9]|2292[0-5])[0-9]{10}?(?:[0-9]{3})?",
 "allowPartialMatch": false,
 "checksumType": "LUHN",
 "dataCleanRegex": "[-.]",
 "matchStrength": 0.9
 }
],
 "rejectStrength": 0.1
 }
 },
 {
 "domain": "CREDIT CARD",
 "name": "Credit Card Number - Type",
 "type": "TYPE",
 "properties": {
 "allowedTypes": [
 {
 "minimumLength": "15",

Continuous Compliance – Continuous Compliance Home

Identifying sensitive data – 395

 "typeName": "Number"
 },
 {
 "minimumLength": "15",
 "typeName": "String"
 }
]
 }
 },
 {
 "domain": "CUSTOMER_NO",
 "name": "Customer Number - Path",
 "type": "PATH",
 "properties": {
 "paths": [
 {
 "matchType": "REGEX",
 "matchStrength": 0.67,
 "fieldValue": "(?i)(?>(cust(omer|mr)?) ?_?-?(num(ber)?|nbr|no))"
 }
],
 "rejectStrength": 0.0
 }
 },
 {
 "domain": "CUSTOMER_NO",
 "name": "Customer Number - Type",
 "type": "TYPE",
 "properties": {
 "allowedTypes": [
 {
 "minimumLength": "5",
 "typeName": "String"
 },
 {
 "minimumLength": "5",
 "typeName": "Number"
 }
]
 }
 },
 {
 "domain": "DOB",
 "name": "Date of Birth - Path",
 "type": "PATH",
 "properties": {
 "paths": [
 {
 "matchType": "REGEX",
 "matchStrength": 0.67,
 "fieldValue": "(?i)(?>dob|dtofb|(day|date?|dt)_?-?(of)?_?
(birth))"

Continuous Compliance – Continuous Compliance Home

Identifying sensitive data – 396

 },
 {
 "matchType": "REGEX",
 "matchStrength": 0.67,
 "fieldValue": "(?i)(?>b(irth)?_?-? ?(date|day|dt))"
 }
],
 "rejectStrength": 0.0
 }
 },
 {
 "domain": "DOB",
 "name": "Date of Birth - Type",
 "type": "TYPE",
 "properties": {
 "allowedTypes": [
 {
 "minimumLength": "6",
 "typeName": "String"
 },
 {
 "typeName": "Date"
 }
]
 }
 },
 {
 "domain": "DRIVING_LC",
 "name": "Drivers License - Path",
 "type": "PATH",
 "properties": {
 "paths": [
 {
 "matchType": "REGEX",
 "matchStrength": 0.67,
 "fieldValue": "(?i)(?>(drivers?|lic(ense)?)_?-? ?(number|num|nbr|
no))"
 }
],
 "rejectStrength": 0.0
 }
 },
 {
 "domain": "DRIVING_LC",
 "name": "Drivers License - Type",
 "type": "TYPE",
 "properties": {
 "allowedTypes": [
 {
 "minimumLength": "10",
 "typeName": "Number"
 },

Continuous Compliance – Continuous Compliance Home

Identifying sensitive data – 397

 {
 "minimumLength": "10",
 "typeName": "String"
 }
]
 }
 },
 {
 "domain": "DRIVING_LC",
 "name": "Drivers License - Regex",
 "type": "REGEX",
 "properties": {
 "dataPatterns": [
 {
 "note": "One alpha followed by digits (short): AZ 1+8, CA 1+7, HI
1+8, IN 1+9, KS 1+8, MA 1+9, MO 1+5..9, MT 1+9, NE 1+6..8, NV 1+8, OH 1+4..8, OK 1+9,
OR 1+6..7, RI 1+6, UT 4-10, VA 1+8..11, VT 1+8, WV 1+6",
 "regex": "[A-Z][0-9]{4,9}",
 "matchStrength": 0.15,
 "allowPartialMatch": false
 },
 {
 "note": "One alpha followed by digits (long): FL 1+12, MD 1+12,
MI 1+12, MN 1+12, NJ 1+14, UT 4-10, VA 1+8..11",
 "regex": "[A-Z][0-9]{10,14}",
 "matchStrength": 0.3,
 "allowPartialMatch": false
 },
 {
 "note": "One alpha followed by digits with dashes (short): KS
1+8, KY 1+8, VA 1+8..11",
 "dataCleanRegex": "[-]",
 "regex": "[A-Z][0-9]{8,9}",
 "matchStrength": 0.15,
 "allowPartialMatch": false
 },
 {
 "note": "One alpha followed by digits with dashes (long): FL
1+12, IL 1+11 or 1+12, MD 1+12, MN 1+12, VA 1+8..11, WI 1+13",
 "dataCleanRegex": "[-]",
 "regex": "[A-Z][0-9]{10,13}",
 "matchStrength": 0.3,
 "allowPartialMatch": false
 },
 {
 "note": "Two alpha followed by digits: OH 2+3..7, WV 2+7",
 "regex": "[A-Z]{2}[0-9]{3,7}",
 "matchStrength": 0.2,
 "allowPartialMatch": false
 },
 {
 "note": "Digits followed by alpha: ME 7+1, MO 8+2 or 9+1, VT 7+1",

Continuous Compliance – Continuous Compliance Home

Identifying sensitive data – 398

 "regex": "[0-9]{7}[A-Z]|[0-9]{8}[A-Z]{2}|[0-9]{9}[A-Z]",
 "matchStrength": 0.2,
 "allowPartialMatch": false
 },
 {
 "note": "Digits and spaces: NM 3-3-3, NY 3-3-3, PA 2-3-3",
 "regex": "[0-9]{2,3} [0-9]{3} [0-9]{3}",
 "matchStrength": 0.1,
 "allowPartialMatch": false
 },
 {
 "note": "Digit-alpha-digit: IA 3+2+4, NH 2+3+5",
 "regex": "[0-9]{3}[A-Z]{2}[0-9]{4}|[0-9]{2}[A-Z]{3}[0-9]{5}",
 "matchStrength": 0.3,
 "allowPartialMatch": false
 },
 {
 "note": "Digits only: AL 7-8, AK 7, AZ 9, AR 9, CT 9, DE 7, DC 7,
GA 9, HI 9, IA 9, LA 8, ME 7-8, MA 9, M0 9, MT 9 or 13-14, NV 9-10 or 12, NY 9, NM
8-9, NC 1-12, ND 9, OH 8, OK 9, RI 7, SC 5-11, SD 6-10 or 12, TN 7-9, TX 7-8, VA 9,
WV 7, WY 9",
 "regex": "([0-9]{6,14})",
 "matchStrength": 0.0,
 "allowPartialMatch": false
 },
 {
 "note": "CO",
 "regex": "[0-9]{2}-[0-9]{3}-[0-9]{4}",
 "matchStrength": 0.1,
 "allowPartialMatch": false
 },
 {
 "note": "ID",
 "regex": "[A-Z]{2}[0-9]{6}[A-Z]",
 "matchStrength": 0.3,
 "allowPartialMatch": false
 },
 {
 "note": "IN",
 "regex": "[0-9]{2}-[0-9]{4}-[0-9]{4}",
 "matchStrength": 0.1,
 "allowPartialMatch": false
 },
 {
 "note": "MA - SA + 7 digits",
 "regex": "SA[0-9]{7}",
 "matchStrength": 0.5,
 "allowPartialMatch": false
 },
 {
 "note": "MI - 1 alpha + 12 digits with spaces",
 "regex": "[A-Z]([0-9]{3}){4}",

Continuous Compliance – Continuous Compliance Home

Identifying sensitive data – 399

 "matchStrength": 0.5,
 "allowPartialMatch": false
 },
 {
 "note": "MS - looks just like SSN with dashes",
 "regex": "([0-9]{3}-[0-9]{2}-[0-9]{4})",
 "matchStrength": 0.0,
 "allowPartialMatch": false
 },
 {
 "note": "MO - not covered elsewhere",
 "regex": "[0-9]{3}[A-Z][0-9]{6}|[A-Z][0-9]{6}R",
 "matchStrength": 0.3,
 "allowPartialMatch": false
 },
 {
 "note": "NH - NHL + 8 digits",
 "regex": "NHL[0-9]{8}",
 "matchStrength": 0.5,
 "allowPartialMatch": false
 },
 {
 "note": "ND - 3 letters, 6 digits with spaces",
 "regex": "[A-Z]{3} ?[0-9]{2} ?[0-9]{4}",
 "matchStrength": 0.3,
 "allowPartialMatch": false
 },
 {
 "note": "NJ 1 alpha + 14 digits with spaces",
 "dataCleanRegex": "[-]",
 "regex": "[A-Z][0-9]{4} [0-9]{5} [0-9]{5}",
 "matchStrength": 0.4,
 "allowPartialMatch": false
 },
 {
 "note": "WA - old - very broad will match any 12 position alpha
string",
 "regex": "[A-Z]([A-Z]{4}|[A-Z]{3}[*]|[A-Z]{2}[*]{2}|[A-Z]{1}[*]
{3})[A-Z]{2}[0-9A-Z]{5}",
 "matchStrength": 0.0,
 "allowPartialMatch": false
 },
 {
 "note": "WA - new",
 "regex": "WDL[0-9A-Z]{9}",
 "matchStrength": 0.3,
 "allowPartialMatch": false
 },
 {
 "note": "WY - 9 digits with a dash",
 "regex": "[0-9]{6}-[0-9]{3}",
 "matchStrength": 0.1,

Continuous Compliance – Continuous Compliance Home

Identifying sensitive data – 400

 "allowPartialMatch": false
 }
],
 "rejectStrength": 0.75
 }
 },
 {
 "domain": "EMAIL",
 "name": "Email Address - Path",
 "type": "PATH",
 "properties": {
 "paths": [
 {
 "matchType": "REGEX",
 "matchStrength": 0.67,
 "fieldValue": "(?i)(cust|customer|partner|home|private|def|
default)_?-? ?(email)_?-? ?(address|)"
 },
 {
 "matchType": "REGEX",
 "matchStrength": 0.67,
 "fieldValue": "(?i)(?>(email_?-? ?)(addr?e?s?s?)?)"
 }
],
 "rejectStrength": 0.0
 }
 },
 {
 "domain": "EMAIL",
 "name": "Email Address - Regex",
 "type": "REGEX",
 "properties": {
 "dataPatterns": [
 {
 "regex": "[A-Z0-9.!#$%&'*+/=?^_{|}~-]{1,64}@(?=.{1,255}$)[A-
Z0-9-]+(?:\\.[A-Z0-9-]+)*",
 "matchStrength": 0.9,
 "allowPartialMatch": false
 }
],
 "rejectStrength": 0.1
 }
 },
 {
 "domain": "EMAIL",
 "name": "Email Address - Type",
 "type": "TYPE",
 "properties": {
 "allowedTypes": [
 {
 "minimumLength": "20",
 "typeName": "String"

Continuous Compliance – Continuous Compliance Home

Identifying sensitive data – 401

 }
]
 }
 },
 {
 "domain": "FIRST_NAME",
 "name": "First Name - List",
 "type": "LIST",
 "properties": {
 "valueLists": [
 {
 "file": "file://us_first.txt",
 "matchStrength": 1.0
 },
 {
 "file": "file://de_first.txt",
 "matchStrength": 1.0
 },
 {
 "file": "file://ch_first.txt",
 "matchStrength": 1.0
 }
]
 }
 },
 {
 "domain": "FIRST_NAME",
 "name": "First Name - Path",
 "type": "PATH",
 "properties": {
 "paths": [
 {
 "matchType": "REGEX",
 "matchStrength": 0.67,
 "fieldValue": "(?i)(?>(mid(dle)?_?-? ?(na?me?))(_?-?user)?)"
 },
 {
 "matchType": "REGEX",
 "matchStrength": 0.67,
 "fieldValue": "(?i)(?>(f(irst)?_?-? ?(na?me?))(_?-?user)?)"
 }
],
 "rejectStrength": 0.0
 }
 },
 {
 "domain": "FIRST_NAME",
 "name": "First Name - Type",
 "type": "TYPE",
 "properties": {
 "allowedTypes": [
 {

Continuous Compliance – Continuous Compliance Home

Identifying sensitive data – 402

 "minimumLength": "10",
 "typeName": "String"
 }
]
 }
 },
 {
 "domain": "FULL_NAME",
 "name": "Full Name - Path",
 "type": "PATH",
 "properties": {
 "paths": [
 {
 "matchType": "REGEX",
 "matchStrength": 0.67,
 "fieldValue": "(?i)(?>((fu?l?l|whole|user)([-_]*)?(na?me?)))"
 }
],
 "rejectStrength": 0.0
 }
 },
 {
 "domain": "FULL_NAME",
 "name": "Full Name - Type",
 "type": "TYPE",
 "properties": {
 "allowedTypes": [
 {
 "minimumLength": "20",
 "typeName": "String"
 }
]
 }
 },
 {
 "domain": "FULL_NAME",
 "name": "Full Name - List",
 "type": "LIST",
 "properties": {
 "valueLists": [
 {
 "file": "file://us_first.txt",
 "matchStrength": 0.7
 },
 {
 "file": "file://de_first.txt",
 "matchStrength": 0.7
 },
 {
 "file": "file://ch_first.txt",
 "matchStrength": 0.7
 },

Continuous Compliance – Continuous Compliance Home

Identifying sensitive data – 403

 {
 "file": "file://us_last.txt",
 "matchStrength": 0.7
 },
 {
 "file": "file://de_last.txt",
 "matchStrength": 0.7
 },
 {
 "file": "file://ch_last.txt",
 "matchStrength": 0.7
 }

],
 "tokenizeInput": true,
 "tokenizationDelimiter": " "
 }
 },
 {
 "domain": "HIPAA_DATE",
 "name": "HIPAA Date - Path",
 "type": "PATH",
 "properties": {
 "paths": [
 {
 "matchType": "REGEX",
 "matchStrength": 0.67,
 "fieldValue": "(?i)(?>(adm(it|ission)?|tr(ea)?t(ment)?_?-?|ds|
disc(h|harge))-?_? ?(date|day|dt))"
 }
],
 "rejectStrength": 0.0
 }
 },
 {
 "domain": "HIPAA_DATE",
 "name": "HIPAA Date - Type",
 "type": "TYPE",
 "properties": {
 "allowedTypes": [
 {
 "minimumLength": "6",
 "typeName": "String"
 },
 {
 "typeName": "Date"
 }
]
 }
 },
 {
 "domain": "IBAN",

Continuous Compliance – Continuous Compliance Home

Identifying sensitive data – 404

 "name": "IBAN - Regex",
 "type": "REGEX",
 "properties": {
 "dataPatterns": [
 {
 "note": "Fetched from: 'https://www.swift.com/standards/data-
standards/iban-international-bank-account-number', List of countries in order for
regex formats listed below: Andorra, United Arab Emirates (The), Albania, Austria,
Azerbaijan, Bosnia and Herzegovina, Belgium, Bulgaria, Bahrain, Burundi, Brazil,
Republic of Belarus, Switzerland, Costa Rica, Cyprus, Czechia, Germany, Djibouti,
Denmark, Dominican Republic, Estonia, Egypt, Spain, Finland, Faroe Islands, France,
United Kingdom, Georgia, Gibraltar, Greenland, Greece, Guatemala, Croatia, Hungary,
Ireland, Israel, Iraq, Iceland, Italy, Jordan, Kuwait, Kazakhstan, Lebanon, Saint
Lucia, Liechtenstein, Lithuania, Luxembourg, Latvia, Libya, Monaco, Moldova,
Montenegro, Macedonia, Mauritania, Malta, Mauritius, Netherlands, Norway, Pakistan,
Poland, Palestine, State of, Portugal, Qatar, Romania, Serbia, Russia, Saudi Arabia,
Seychelles, Sudan, Sweden, Slovenia, Slovakia, San Marino, Somalia, Sao Tome and
Principe, El Salvador, Timor-Leste, Tunisia, Turkey, Ukraine, Vatican City State,
Virgin Islands, Kosovo",
 "regex": "(AD[0-9]{10}[A-Z0-9]{12})|(AE[0-9]{21})|(AL[0-9]{10}[A-
Z0-9]{16})|(AT[0-9]{18})|(AZ[0-9]{2}[A-Z]{4}[A-Z0-9]{20})|(BA[0-9]{18})|(BE[0-9]
{14})|(BG[0-9]{2}[A-Z]{4}[0-9]{6}[A-Z0-9]{8})|(BH[0-9]{2}[A-Z]{4}[A-Z0-9]{14})|
(BI[0-9]{25})|(BR[0-9]{25}[A-Z]{1}[A-Z0-9]{1})|(BY[0-9]{2}[A-Z0-9]{4}[0-9]{4}[A-Z0-9]
{16})|(CH[0-9]{7}[A-Z0-9]{12})|(CR[0-9]{20})|(CY[0-9]{10}[A-Z0-9]{16})|(CZ[0-9]{22})|
(DE[0-9]{20})|(DJ[0-9]{25})|(DK[0-9]{16})|(DO[0-9]{2}[A-Z0-9]{4}[0-9]{20})|(EE[0-9]
{18})|(EG[0-9]{27})|(ES[0-9]{22})|(FI[0-9]{16})|(FO[0-9]{16})|(FR[0-9]{12}[A-Z0-9]
{11}[0-9]{2})|(GB[0-9]{2}[A-Z]{4}[0-9]{14})|(GE[0-9]{2}[A-Z]{2}[0-9]{16})|(GI[0-9]{2}
[A-Z]{4}[A-Z0-9]{15})|(GL[0-9]{16})|(GR[0-9]{9}[A-Z0-9]{16})|(GT[0-9]{2}[A-Z0-9]
{24})|(HR[0-9]{19})|(HU[0-9]{26})|(IE[0-9]{2}[A-Z]{4}[0-9]{14})|(IL[0-9]{21})|
(IQ[0-9]{2}[A-Z]{4}[0-9]{15})|(IS[0-9]{24})|(IT[0-9]{2}[A-Z]{1}[0-9]{10}[A-Z0-9]
{12})|(JO[0-9]{2}[A-Z]{4}[0-9]{4}[A-Z0-9]{18})|(KW[0-9]{2}[A-Z]{4}[A-Z0-9]{22})|
(KZ[0-9]{5}[A-Z0-9]{13})|(LB[0-9]{6}[A-Z0-9]{20})|(LC[0-9]{2}[A-Z]{4}[A-Z0-9]{24})|
(LI[0-9]{7}[A-Z0-9]{12})|(LT[0-9]{18})|(LU[0-9]{5}[A-Z0-9]{13})|(LV[0-9]{2}[A-Z]{4}
[A-Z0-9]{13})|(LY[0-9]{23})|(MC[0-9]{12}[A-Z0-9]{11}[0-9]{2})|(MD[0-9]{2}[A-Z0-9]
{20})|(ME[0-9]{20})|(MK[0-9]{5}[A-Z0-9]{10}[0-9]{2})|(MR[0-9]{25})|(MT[0-9]{2}[A-Z]
{4}[0-9]{5}[A-Z0-9]{18})|(MU[0-9]{2}[A-Z]{4}[0-9]{19}[A-Z]{3})|(NL[0-9]{2}[A-Z]{4}
[0-9]{10})|(NO[0-9]{13})|(PK[0-9]{2}[A-Z]{4}[A-Z0-9]{16})|(PL[0-9]{26})|(PS[0-9]{2}
[A-Z]{4}[A-Z0-9]{21})|(PT[0-9]{23})|(QA[0-9]{2}[A-Z]{4}[A-Z0-9]{21})|(RO[0-9]{2}[A-Z]
{4}[A-Z0-9]{16})|(RS[0-9]{20})|(RU[0-9]{31})|(SA[0-9]{4}[A-Z0-9]{18})|(SC[0-9]{2}[A-
Z]{4}[0-9]{20}[A-Z]{3})|(SD[0-9]{16})|(SE[0-9]{22})|(SI[0-9]{17})|(SK[0-9]{22})|
(SM[0-9]{2}[A-Z]{1}[0-9]{10}[A-Z0-9]{12})|(SO[0-9]{21})|(ST[0-9]{23})|(SV[0-9]{2}[A-
Z]{4}[0-9]{20})|(TL[0-9]{21})|(TN[0-9]{22})|(TR[0-9]{8}[A-Z0-9]{16})|(UA[0-9]{8}[A-
Z0-9]{19})|(VA[0-9]{20})|(VG[0-9]{2}[A-Z]{4}[0-9]{16})|(XK[0-9]{18})",
 "allowPartialMatch": false,
 "checksumType": "MOD97",
 "matchStrength": 0.9
 }
],
 "rejectStrength": 0.1
 }
 },
 {

Continuous Compliance – Continuous Compliance Home

Identifying sensitive data – 405

 "domain": "IP ADDRESS",
 "name": "IP Address - Path",
 "type": "PATH",
 "properties": {
 "paths": [
 {
 "matchType": "REGEX",
 "matchStrength": 0.67,
 "fieldValue": "(?i)(?>(ip_?-? ?addre?s?s?))"
 }
],
 "rejectStrength": 0.0
 }
 },
 {
 "domain": "IP ADDRESS",
 "name": "IP Address - Type",
 "type": "TYPE",
 "properties": {
 "allowedTypes": [
 {
 "minimumLength": "10",
 "typeName": "String"
 }
]
 }
 },
 {
 "domain": "IP ADDRESS",
 "name": "IP Address - Regex",
 "type": "REGEX",
 "properties": {
 "dataPatterns": [
 {
 "regex": "(?>((25[0-5]|2[0-4][0-9]|[01]?[0-9][0-9]?)\\.){3}
(25[0-5]|2[0-4][0-9]|[01]?[0-9][0-9]?))",
 "note": "IPv4",
 "allowPartialMatch": false,
 "matchStrength": 0.9
 },
 {
 "regex": "(?>([A-F0-9]{0,4}:){2,7}[A-F0-9]{0,4})",
 "note": "IPv6 standard addresses",
 "allowPartialMatch": false,
 "matchStrength": 0.9
 },
 {
 "regex": "(?>(([A-F0-9]{0,4}:){2,6})((25[0-5]|2[0-4][0-9]|[01]?
[0-9][0-9]?)\\.){3}(25[0-5]|2[0-4][0-9]|[01]?[0-9][0-9]?))",
 "note": "IPv6 dual addresses",
 "allowPartialMatch": false,
 "matchStrength": 0.9

Continuous Compliance – Continuous Compliance Home

Identifying sensitive data – 406

 }
],
 "rejectStrength": 0.1
 }
 },
 {
 "domain": "LAST_NAME",
 "name": "Last Name - List",
 "type": "LIST",
 "properties": {
 "valueLists": [
 {
 "file": "file://us_last.txt",
 "matchStrength": 1.0
 },
 {
 "file": "file://de_last.txt",
 "matchStrength": 1.0
 },
 {
 "file": "file://ch_last.txt",
 "matchStrength": 1.0
 }
]
 }
 },
 {
 "domain": "LAST_NAME",
 "name": "Last Name - Path",
 "type": "PATH",
 "properties": {
 "paths": [
 {
 "matchType": "REGEX",
 "matchStrength": 0.67,
 "fieldValue": "(?i)(?>((l(as)?t)_?-? ?(na?me?))(_?-?user)?)"
 },
 {
 "matchType": "REGEX",
 "matchStrength": 0.67,
 "fieldValue": "(?i)(?>(sur) ?_?-? ?(name)?_?-? ?(no|id|str|
value|))"
 }
],
 "rejectStrength": 0.0
 }
 },
 {
 "domain": "LAST_NAME",
 "name": "Last Name - Type",
 "type": "TYPE",
 "properties": {

Continuous Compliance – Continuous Compliance Home

Identifying sensitive data – 407

 "allowedTypes": [
 {
 "minimumLength": "10",
 "typeName": "String"
 }
]
 }
 },
 {
 "domain": "PLATE_NO",
 "name": "License Plate - Path",
 "type": "PATH",
 "properties": {
 "paths": [
 {
 "matchType": "REGEX",
 "matchStrength": 0.67,
 "fieldValue": "(?i)(?>(license|li?c)?[-_]?plate[-_]?(number|
num|nbr|no)?)"
 }
],
 "rejectStrength": 0.0
 }
 },
 {
 "domain": "PO_BOX",
 "name": "PO Box - Path",
 "type": "PATH",
 "properties": {
 "paths": [
 {
 "matchType": "REGEX",
 "matchStrength": 0.67,
 "fieldValue": "(?i)(?>(p.?o.?_?-? ?box|post_?-? ?office_?-? ?
box ?_?-?)(number|num|nbr|no)?)"
 }
],
 "rejectStrength": 0.0
 }
 },
 {
 "domain": "PO_BOX",
 "name": "PO Box - Type",
 "type": "TYPE",
 "properties": {
 "allowedTypes": [
 {
 "minimumLength": "4",
 "typeName": "String"
 },
 {
 "minimumLength": "4",

Continuous Compliance – Continuous Compliance Home

Identifying sensitive data – 408

 "typeName": "Number"
 }
]
 }
 },
 {
 "domain": "PASSWORD",
 "name": "Password - Path",
 "type": "PATH",
 "properties": {
 "paths": [
 {
 "matchType": "REGEX",
 "matchStrength": 0.67,
 "fieldValue": "(?i)(?>(pass) ?_?-??(word)?_?-? ?(word|nbr|no|id|
value|))"
 }
],
 "rejectStrength": 0.0
 }
 },
 {
 "domain": "PASSWORD",
 "name": "Password - Type",
 "type": "TYPE",
 "properties": {
 "allowedTypes": [
 {
 "minimumLength": "6",
 "typeName": "String"
 }
]
 }
 },
 {
 "domain": "PAYMENT_AMOUNT",
 "name": "Payment Amount - Path",
 "type": "PATH",
 "properties": {
 "paths": [
 {
 "matchType": "REGEX",
 "matchStrength": 0.67,
 "fieldValue": "(?i)(?>(pay(ment)?|bill|remit(tance)?|premium|
amount|salary|price|revenue|income|credit|debit)[_-]?(amount|amnt|value|val)?)"
 }
],
 "rejectStrength": 0.0
 }
 },
 {
 "domain": "PAYMENT_AMOUNT",

Continuous Compliance – Continuous Compliance Home

Identifying sensitive data – 409

 "name": "Payment Amount - Regex",
 "type": "REGEX",
 "properties": {
 "dataPatterns": [
 {
 "note": "International currency symbols and abbreviations from:
https://wise.com/gb/blog/world-currency-symbols. Regex prefixed with symbol",
 "regex": "((EUR|ALL|BYN|BAM|BGN|HRK|CZK|DKK|HRK|GEL|DKK|HUF|ISK|
CHF|MDL|MKD|NOK|PLN|RON|RUB|RSD|SEK|CHF|TRY|UAH|GBP|USD|XCD|AWG|ARS|BSD|BBD|BMD|BZD|
BOB|BRL|CAD|KYD|CLP|COP|CRC|CUP|ANG|DOP|FKP|GTQ|GYD|HTG|HNL|JMD|MXN|NIO|PAB|PYG|PEN|
ANG|SRD|TTD|UYU|VED|AFN|AMD|AZN|BHD|EUR|GEL|IQD|IRR|ILS|JOD|KWD|LBP|ILS|SYP|AED|ILS|
OMR|QAR|SAR|YER|XAF|XOF|DZD|AOA|BWP|BIF|CVE|KMF|CDF|DJF|EGP|ERN|ETB|SZL|GMD|GHS|GNF|
KES|LSL|LRD|LYD|MGA|MWK|MUR|MRU|MAD|MZN|NAD|NGN|RWF|STN|SCR|SLL|SOS|ZAR|SSP|SDG|TZS|
TND|UGX|USD|AUD|BDT|BTN|BND|KHR|CNY|HKD|IDR|INR|JPY|KZT|KGS|LAK|MOP|MYR|MVR|MNT|MMK|
NPR|NZD|KPW|PKR|PHP|SGD|KRW|LKR|TWD|TJS|USD|THB|TMT|UZS|VND|BTC|XBT|ETH|LTC|XMR|XRP|
USDT)|(€|L|Br|KM|лв|kn|Kč|kn|₾|ft|kr|Íkr|CHF|L|ден|zł|lei|₽|RSD|CHF|₺|₴|£|\\$|ƒ|B\\$|
BZ\\$|Bs|R\\$|CA\\$|CI\\$|₡|CUC\\$|ƒ|RD\\$|FK£|Q|G\\$|G|L|J\\$|C\\$|B/\\.|₲|S/\\.|Sr\
\$|TT\\$|\\$U|Bs\\.|؋|֏,դր|₼|\\. ب.\\د |€|ლარი| ل.\\ل|ك|ينار|₪|ریال|د.\\ع |₪|£S|AED|₪| .\ر

ق.\\ر|ع\ |SR|ریال|FCFA|CFA|دج|Kz|P|FBu|CVE|CF|FC|Fdj|E£|Nkf|Br|L|D|GH₵|FG|KSh|L|LD\\$|LD|
Ar|K|₨|UM|DH|MT|N\\$|₦|R₣|Db|SR|Le|Sh\\.So\\.|R|SS£|SDG|TSh| ت.\\د |USh|\\$|A\\$|৳|Nu|
B\\$|៛|¥|元|\\$|HK\\$|Rp|₹|₸|som|₭|MOP\\$|RM|MRf|₮|K|Rs|\\$|₩|Rs|₱|S\\$|₩|Rs|NT\\$|
TJS|US\\$|฿|m|som|₫|₿|Ξ|Ł|ɱ|XRP|₮))\\s?[+-]?(\\d{1,3}(,\\d{3})*|(\\d+))(\\.\\d{2})?",
 "allowPartialMatch": false,
 "matchStrength": 0.9
 },
 {
 "note": "International currency symbols and abbreviations from:
https://wise.com/gb/blog/world-currency-symbols. Regex suffixed with symbol",
 "regex": "[+-]?(\\d{1,3}(,\\d{3})*|(\\d+))(\\.\\d{2})?\\s?((EUR|
ALL|BYN|BAM|BGN|HRK|CZK|DKK|HRK|GEL|DKK|HUF|ISK|CHF|MDL|MKD|NOK|PLN|RON|RUB|RSD|SEK|
CHF|TRY|UAH|GBP|USD|XCD|AWG|ARS|BSD|BBD|BMD|BZD|BOB|BRL|CAD|KYD|CLP|COP|CRC|CUP|ANG|
DOP|FKP|GTQ|GYD|HTG|HNL|JMD|MXN|NIO|PAB|PYG|PEN|ANG|SRD|TTD|UYU|VED|AFN|AMD|AZN|BHD|
EUR|GEL|IQD|IRR|ILS|JOD|KWD|LBP|ILS|SYP|AED|ILS|OMR|QAR|SAR|YER|XAF|XOF|DZD|AOA|BWP|
BIF|CVE|KMF|CDF|DJF|EGP|ERN|ETB|SZL|GMD|GHS|GNF|KES|LSL|LRD|LYD|MGA|MWK|MUR|MRU|MAD|
MZN|NAD|NGN|RWF|STN|SCR|SLL|SOS|ZAR|SSP|SDG|TZS|TND|UGX|USD|AUD|BDT|BTN|BND|KHR|CNY|
HKD|IDR|INR|JPY|KZT|KGS|LAK|MOP|MYR|MVR|MNT|MMK|NPR|NZD|KPW|PKR|PHP|SGD|KRW|LKR|TWD|
TJS|USD|THB|TMT|UZS|VND|BTC|XBT|ETH|LTC|XMR|XRP|USDT)|(€|L|Br|KM|лв|kn|Kč|kn|₾|ft|kr|
Íkr|CHF|L|ден|zł|lei|₽|RSD|CHF|₺|₴|£|\\$|ƒ|B\\$|BZ\\$|Bs|R\\$|CA\\$|CI\\$|₡|CUC\\$|ƒ|
RD\\$|FK£|Q|G\\$|G|L|J\\$|C\\$|B/\\.|₲|S/\\.|Sr\\$|TT\\$|\\$U|Bs\\.|؋|֏,դր|₼|\\. .\د
ب\ |€|ლარი| ل.\\ل|ك|ينار|₪|ریال|د.\\ع |₪|£S|AED|₪| ق.\\ر|ع.\\ر |SR|ریال|FCFA|CFA|دج|Kz|P|FBu|

CVE|CF|FC|Fdj|E£|Nkf|Br|L|D|GH₵|FG|KSh|L|LD\\$|LD|Ar|K|₨|UM|DH|MT|N\\$|₦|R₣|Db|SR|
Le|Sh\\.So\\.|R|SS£|SDG|TSh| ت.\\د |USh|\\$|A\\$|৳|Nu|B\\$|៛|¥|元|\\$|HK\\$|Rp|₹|₸|som|
₭|MOP\\$|RM|MRf|₮|K|Rs|\\$|₩|Rs|₱|S\\$|₩|Rs|NT\\$|TJS|US\\$|฿|m|som|₫|₿|Ξ|Ł|ɱ|XRP|
₮))",
 "allowPartialMatch": false,
 "matchStrength": 0.9
 },
 {
 "note": "Currency with Numeric digits and without prefix or
suffix currency symbols, but ending in decimals",
 "regex": "[+-]?(\\d{1,3}(,\\d{3})*|(\\d+))(\\.\\d{2})",
 "allowPartialMatch": false,

Continuous Compliance – Continuous Compliance Home

Identifying sensitive data – 410

 "matchStrength": 0.3
 }

],
 "rejectStrength": 0.1
 }
 },
 {
 "domain": "PAYMENT_AMOUNT",
 "name": "Payment Amount - Type",
 "type": "TYPE",
 "properties": {
 "allowedTypes": [
 {
 "minimumLength": "4",
 "typeName": "String"
 },
 {
 "minimumLength": "4",
 "typeName": "Number"
 }
]
 }
 },
 {
 "domain": "ZIP",
 "name": "Postcode - Path",
 "type": "PATH",
 "properties": {
 "paths": [
 {
 "matchType": "REGEX",
 "matchStrength": 0.67,
 "fieldValue": "(?i)(?>(zip|post|postal)_?-? ?(co?de?)|(zip))"
 }
],
 "rejectStrength": 0.0
 }
 },
 {
 "domain": "ZIP",
 "name": "Postcode - Regex",
 "type": "REGEX",
 "properties": {
 "dataPatterns": [
 {
 "regex": "^[0-9]{5}(?:-[0-9]{4})$",
 "matchStrength": 0.7
 },
 {
 "regex": "^[0-9]{5}$",
 "matchStrength": 0.2

Continuous Compliance – Continuous Compliance Home

Identifying sensitive data – 411

 }
],
 "rejectStrength": 0.1
 }
 },
 {
 "domain": "ZIP",
 "name": "Postcode - Type",
 "type": "TYPE",
 "properties": {
 "allowedTypes": [
 {
 "minimumLength": "4",
 "typeName": "Number"
 },
 {
 "minimumLength": "4",
 "typeName": "String"
 }
]
 }
 },
 {
 "domain": "PRECINCT",
 "name": "Precinct - Path",
 "type": "PATH",
 "properties": {
 "paths": [
 {
 "matchType": "REGEX",
 "matchStrength": 0.67,
 "fieldValue": "(?i)(?>precinct|prcnct)"
 }
],
 "rejectStrength": 0.0
 }
 },
 {
 "domain": "PRECINCT",
 "name": "Precinct - Type",
 "type": "TYPE",
 "properties": {
 "allowedTypes": [
 {
 "minimumLength": "0",
 "typeName": "String"
 },
 {
 "minimumLength": "0",
 "typeName": "Number"
 }
]

Continuous Compliance – Continuous Compliance Home

Identifying sensitive data – 412

 }
 },
 {
 "domain": "RECORD_NO",
 "name": "Record Number - Path",
 "type": "PATH",
 "properties": {
 "paths": [
 {
 "matchType": "REGEX",
 "matchStrength": 0.67,
 "fieldValue": "(?>(med(ical)?|rec(ord)?|(med(ical)?)[-_]?
rec(ord)?)[-_]?(num(ber)?|nbr|no|id|key))"
 }
],
 "rejectStrength": 0.0
 }
 },
 {
 "domain": "RECORD_NO",
 "name": "Record Number - Type",
 "type": "TYPE",
 "properties": {
 "allowedTypes": [
 {
 "minimumLength": "5",
 "typeName": "String"
 },
 {
 "minimumLength": "5",
 "typeName": "Number"
 }
]
 }
 },
 {
 "domain": "SCHOOL_NM",
 "name": "School Name - Path",
 "type": "PATH",
 "properties": {
 "paths": [
 {
 "matchType": "REGEX",
 "matchStrength": 0.67,
 "fieldValue": "(?i)(?>school_?-?na?me?)"
 }
],
 "rejectStrength": 0.0
 }
 },
 {
 "domain": "SCHOOL_NM",

Continuous Compliance – Continuous Compliance Home

Identifying sensitive data – 413

 "name": "School Name - Type",
 "type": "TYPE",
 "properties": {
 "allowedTypes": [
 {
 "minimumLength": "20",
 "typeName": "String"
 }
]
 }
 },
 {
 "domain": "SECURITY_CODE",
 "name": "Security Code - Path",
 "type": "PATH",
 "properties": {
 "paths": [
 {
 "matchType": "REGEX",
 "matchStrength": 0.67,
 "fieldValue": "(?i)(?>se?cu?r(i?ty?)?_?co?de?)"
 }
],
 "rejectStrength": 0.0
 }
 },
 {
 "domain": "SECURITY_CODE",
 "name": "Security Code - Type",
 "type": "TYPE",
 "properties": {
 "allowedTypes": [
 {
 "minimumLength": "5",
 "typeName": "String"
 },
 {
 "minimumLength": "5",
 "typeName": "Number"
 },
 {
 "minimumLength": "0",
 "typeName": "Binary"
 }
]
 }
 },
 {
 "domain": "SERIAL_NO",
 "name": "Serial Number - Path",
 "type": "PATH",
 "properties": {

Continuous Compliance – Continuous Compliance Home

Identifying sensitive data – 414

 "paths": [
 {
 "matchType": "REGEX",
 "matchStrength": 0.67,
 "fieldValue": "(?i)(?>(ser(ial)?)_?-? ?(number|num|nbr|no))"
 }
],
 "rejectStrength": 0.0
 }
 },
 {
 "domain": "SERIAL_NO",
 "name": "Serial Number - Type",
 "type": "TYPE",
 "properties": {
 "allowedTypes": [
 {
 "minimumLength": "0",
 "typeName": "Number"
 },
 {
 "minimumLength": "0",
 "typeName": "String"
 }
]
 }
 },
 {
 "domain": "SIGNATURE",
 "name": "Signature - Path",
 "type": "PATH",
 "properties": {
 "paths": [
 {
 "matchType": "REGEX",
 "matchStrength": 0.67,
 "fieldValue": "(?i)(?>(signature))"
 }
],
 "rejectStrength": 0.0
 }
 },
 {
 "domain": "SIGNATURE",
 "name": "Signature - Type",
 "type": "TYPE",
 "properties": {
 "allowedTypes": [
 {
 "minimumLength": "0",
 "typeName": "String"
 },

Continuous Compliance – Continuous Compliance Home

Identifying sensitive data – 415

 {
 "minimumLength": "0",
 "typeName": "Binary"
 }
]
 }
 },
 {
 "domain": "SSN",
 "name": "Social Security Number - Path",
 "type": "PATH",
 "properties": {
 "paths": [
 {
 "matchType": "REGEX",
 "matchStrength": 0.67,
 "fieldValue": "(?i)(?>(ssn$|social_?-? ?security_?-? ?(number|
num|nbr|no|code|id)))"
 }
],
 "rejectStrength": 0.0
 }
 },
 {
 "domain": "SSN",
 "name": "Social Security Number - Regex",
 "type": "REGEX",
 "properties": {
 "dataPatterns": [
 {
 "regex": "(?!000)(?!666)[0-8]\\d{2}([-])(?!00)\\d{2}\\1(?!0000)\
\d{4}",
 "allowPartialMatch": false,
 "matchStrength": 0.7
 },
 {
 "regex": "[9]\\d{2}([-])(?!(6[6-9]))(?!89)([5-9][0-9])\\1\\d{4}",
 "allowPartialMatch": false,
 "matchStrength": 0.7
 },
 {
 "regex": "(?!000)(?!666)[0-8]\\d{2}(?!00)\\d{2}(?!0000)\\d{4}",
 "allowPartialMatch": false,
 "matchStrength": 0.1
 },
 {
 "regex": "[9]\\d{2}(?!(6[6-9]))(?!89)([5-9][0-9])\\d{4}",
 "allowPartialMatch": false,
 "matchStrength": 0.1
 }
],
 "rejectStrength": 0.1

Continuous Compliance – Continuous Compliance Home

Identifying sensitive data – 416

 }
 },
 {
 "domain": "SSN",
 "name": "Social Security Number - Type",
 "type": "TYPE",
 "properties": {
 "allowedTypes": [
 {
 "minimumLength": "9",
 "typeName": "Number"
 },
 {
 "minimumLength": "9",
 "typeName": "String"
 }
]
 }
 },
 {
 "domain": "TAX_ID",
 "name": "Tax ID - Path",
 "type": "PATH",
 "properties": {
 "paths": [
 {
 "matchType": "REGEX",
 "matchStrength": 0.67,
 "fieldValue": "(?i)(?>(tax)_?-? ?(id(ent)?)_?-? ?((co?de?)|
(number|num|nbr|no))?)"
 },
 {
 "matchType": "REGEX",
 "matchStrength": 0.67,
 "fieldValue": "(?i)(?>tin$)"
 }
],
 "rejectStrength": 0.0
 }
 },
 {
 "domain": "TAX_ID",
 "name": "Tax ID - Type",
 "type": "TYPE",
 "properties": {
 "allowedTypes": [
 {
 "minimumLength": "6",
 "typeName": "String"
 },
 {
 "minimumLength": "6",

Continuous Compliance – Continuous Compliance Home

Identifying sensitive data – 417

 "typeName": "Number"
 }
]
 }
 },
 {
 "domain": "TELEPHONE_NO",
 "name": "Telephone Number - Path",
 "type": "PATH",
 "properties": {
 "paths": [
 {
 "matchType": "REGEX",
 "matchStrength": 0.67,
 "fieldValue": "(?i)(?>(phone|contact|^tel($|[_-])|fax|mobile|
telephone)_?-? ?)(number|num|nbr|no)?"
 }
],
 "rejectStrength": 0.0
 }
 },
 {
 "domain": "TELEPHONE_NO",
 "name": "Telephone Number - Regex",
 "type": "REGEX",
 "properties": {
 "dataPatterns": [
 {
 "regex": "((\\+?1|001)[-.]?)?(\\([0-9]{3}\\)[-.]?|[0-9]{3}
[-.])[0-9]{3}[-.][0-9]{4}",
 "allowPartialMatch": false,
 "matchStrength": 0.7
 },
 {
 "regex": "\\+(?:[0-9][.()\\\/-]?){6,14}[0-9]",
 "allowPartialMatch": false,
 "matchStrength": 0.5
 },
 {
 "regex": "[0-9]{5,17}",
 "allowPartialMatch": false,
 "dataCleanRegex": "[+ -.()\\/]",
 "matchStrength": 0.05
 }
],
 "rejectStrength": 0.1
 }
 },
 {
 "domain": "TELEPHONE_NO",
 "name": "Telephone Number - Type",
 "type": "TYPE",

Continuous Compliance – Continuous Compliance Home

Identifying sensitive data – 418

 "properties": {
 "allowedTypes": [
 {
 "minimumLength": "7",
 "typeName": "Number"
 },
 {
 "minimumLength": "7",
 "typeName": "String"
 }
]
 }
 },
 {
 "domain": "UNION_MEMBERSHIP_NO",
 "name": "Union Membership Number - Path",
 "type": "PATH",
 "properties": {
 "paths": [
 {
 "matchType": "REGEX",
 "matchStrength": 0.67,
 "fieldValue": "(?i)(?>(union)[_ -]?)(membe?r(ship)?)?[_ -]?
(number|num|nbr|no|id)(?!\\w*(name|group|grp))"
 }
],
 "rejectStrength": 0.0
 }
 },
 {
 "domain": "UNION_MEMBERSHIP_NO",
 "name": "Union Membership Number - Type",
 "type": "TYPE",
 "properties": {
 "allowedTypes": [
 {
 "minimumLength": "3",
 "typeName": "String"
 },
 {
 "minimumLength": "3",
 "typeName": "Number"
 }
]
 }
 },
 {
 "domain": "US_PASSPORT",
 "name": "US Passport - Path",
 "type": "PATH",
 "properties": {
 "paths": [

Continuous Compliance – Continuous Compliance Home

Identifying sensitive data – 419

 {
 "matchType": "REGEX",
 "matchStrength": 0.67,
 "fieldValue": "(?i)(?>(passport)[_ -]?)(number|num|nbr|no)?"
 }
],
 "rejectStrength": 0.0
 }
 },
 {
 "domain": "US_PASSPORT",
 "name": "US Passport - Regex",
 "type": "REGEX",
 "properties": {
 "dataPatterns": [
 {
 "regex": "[A-Z]\\d{8}",
 "allowPartialMatch": false,
 "matchStrength": 0.2
 },
 {
 "regex": "(?!0{9})\\d{9}",
 "allowPartialMatch": false,
 "matchStrength": 0.1
 }
],
 "rejectStrength": 0.1
 }
 },
 {
 "domain": "US_PASSPORT",
 "name": "US Passport - Type",
 "type": "TYPE",
 "properties": {
 "allowedTypes": [
 {
 "minimumLength": "9",
 "typeName": "String"
 },
 {
 "minimumLength": "9",
 "typeName": "Number"
 }
]
 }
 },
 {
 "domain": "US_STATE",
 "name": "US State - Path",
 "type": "PATH",
 "properties": {
 "paths": [

Continuous Compliance – Continuous Compliance Home

Identifying sensitive data – 420

 {
 "matchType": "REGEX",
 "matchStrength": 0.67,
 "fieldValue": "(?i)state",
 "allowPartialMatch" : false
 }
],
 "rejectStrength": 0.0
 }
 },
 {
 "domain": "US_STATE",
 "name": "US State - Type",
 "type": "TYPE",
 "properties": {
 "allowedTypes": [
 {
 "minimumLength": "14",
 "typeName": "String"
 }
]
 }
 },
 {
 "domain": "US_STATE",
 "name": "US State - List",
 "type": "LIST",
 "properties": {
 "valueLists": [
 {
 "file": "file://us_states_full.txt",
 "matchStrength": 1.0
 }
],
 "rejectStrength": 0.1
 }
 },
 {
 "domain": "USPS_STATE_CODE",
 "name": "USPS State Code - Path",
 "type": "PATH",
 "properties": {
 "paths": [
 {
 "matchType": "REGEX",
 "matchStrength": 0.67,
 "fieldValue": "(?i)state[_-]?(cd|code|abbrev)?",
 "allowPartialMatch" : false
 }
],
 "rejectStrength": 0.0
 }

Continuous Compliance – Continuous Compliance Home

Identifying sensitive data – 421

 },
 {
 "domain": "USPS_STATE_CODE",
 "name": "USPS State Code - Type",
 "type": "TYPE",
 "properties": {
 "allowedTypes": [
 {
 "minimumLength": "2",
 "typeName": "String"
 }
]
 }
 },
 {
 "domain": "USPS_STATE_CODE",
 "name": "USPS State Code - List",
 "type": "LIST",
 "properties": {
 "valueLists": [
 {
 "file": "file://us_states.txt",
 "matchStrength": 1.0
 }
],
 "rejectStrength": 0.5
 }
 },
 {
 "domain": "VIN_NO",
 "name": "Vehicle Identification Number - Path",
 "type": "PATH",
 "properties": {
 "paths": [
 {
 "matchType": "REGEX",
 "matchStrength": 0.67,
 "fieldValue": "(?i)(?>(^vin$|vehicle_?-? ?id(entification)?_?-? ?
(number|num|nbr|no)))"
 },
 {
 "matchType": "REGEX",
 "matchStrength": 0.67,
 "fieldValue": "(?i)(?>(vehicle))"
 }
],
 "rejectStrength": 0.0
 }
 },
 {
 "domain": "VIN_NO",
 "name": "Vehicle Identification Number - Type",

Continuous Compliance – Continuous Compliance Home

Identifying sensitive data – 422

 "type": "TYPE",
 "properties": {
 "allowedTypes": [
 {
 "minimumLength": "10",
 "typeName": "String"
 }
]
 }
 },
 {
 "domain": "WEB",
 "name": "Web URL - Path",
 "type": "PATH",
 "properties": {
 "paths": [
 {
 "matchType": "REGEX",
 "matchStrength": 0.67,
 "fieldValue": "(?i)(?>(^url_?-? ?|web_? ?)(addr?e?s?s?)?)"
 }
],
 "rejectStrength": 0.0
 }
 },
 {
 "domain": "WEB",
 "name": "Web URL - Type",
 "type": "TYPE",
 "properties": {
 "allowedTypes": [
 {
 "minimumLength": "10",
 "typeName": "String"
 }
]
 }
 },
 {
 "domain": "USER_ID",
 "name": "User ID - Path",
 "type": "PATH",
 "properties": {
 "paths": [
 {
 "matchType": "REGEX",
 "matchStrength": 0.67,
 "fieldValue": "(?i)(?>(use?r)([-_])?(na?me?|id)?)$"
 }
],
 "rejectStrength": 0.0
 }

Continuous Compliance – Continuous Compliance Home

Identifying sensitive data – 423

 },
 {
 "domain": "USER_ID",
 "name": "User ID - Type",
 "type": "TYPE",
 "properties": {
 "allowedTypes": [
 {
 "minimumLength": "8",
 "typeName": "String"
 },
 {
 "minimumLength": "8",
 "typeName": "Number"
 }
]
 }
 }
]

7.4 Standard profile set expressions
This section lists all the column and type profile expressions used by the standard profile set included with
the product.

7.4.1 Column level expressions

Expression Name Domain Expression

Account_Number_V2 ACCOUNT_
NO

(?>(account|accnt|acct)_?-? ?(number|num|nbr|

no|user))$

Address_Line1_V2 ADDRESS (?>((street_?-? ?address)|street|

address)_?-? ?((line)? ?_?(1|))?)$

Address_Line2_V2 ADDRESS_
LINE2

(?>((street_?-? ?address)|street|

address)_?-? ?((line)? ?_?(2|3|4|5))?)$

Beneficiary_NO_V2 BENEFICIA
RY_NO

(?>(bene(ficiary)?_?-? ?(Number|Num|Nbr|No|

Id)))$

Continuous Compliance – Continuous Compliance Home

Identifying sensitive data – 424

Expression Name Domain Expression

Biometric_V2 BIOMETRI
C

(?>(biometric)$)

Certificate_Number_V2 CERTIFICA
TE_NO

(?>(Cert(ificate)?_?-? ?(Number|Num|Nbr|No)))$

Certificate_ID_V2 CERTIFICA
TE_NO

(?>cert(ificate)?_?-? ?id)

City_V2 CITY (?>^(address_?-? ?city|city|city_?-? ?address)

$)

City_V2_2 CITY (?>^(address|home_?-? ?city|city|city_?-? ?ad?

dress?e?)$)

County_V2 COUNTY (?>(county)$)

Card_Number_V2 CREDIT
CARD

(?>card_?-? ?(number|num|nbr|no))$

Credit_Card_Number_V2 CREDIT
CARD

(?>credit_?-? ?card_?-? ?(number|num|nbr|no))$

Customer_Number_V2 CUSTOME
R_NO

(?>(cust(omer|mr)?) ?_?-?(num(ber)?|nbr|no))$

Birth_Date_V2 DOB (?>b(irth)?_?-? ?(date|day|dt))$

DOB_Date_V2 DOB (?>dob|dtofb|(day|date?|dt)_?-?(of)?_?(birth))

$

Admission_Date_V2 DOB (?>(adm(it|ission)?|tr(ea)?t(ment)?_?-?|ds|

disc(h|harge))_? ?(date|day|dt))$

Continuous Compliance – Continuous Compliance Home

Identifying sensitive data – 425

Expression Name Domain Expression

Drivers_License_Number
_V2

DRIVING_L
C

(?>(drivers?|lic(ense)?)_?-? ?(number|num|nbr|

no))$

Email_V2 EMAIL (?>(email_?-? ?)(addr?e?s?s?)?)$

Email_V2_2 EMAIL (cust|customer|partner|home|private|def|

default)_?-? ?(email)_?-? ?(address|)

First_Name_V2 FIRST_NA
ME

(?>(f(irst)?_?-? ?(na?me?))(_?-?user)?)$

Middle_Name_V2 FIRST_NA
ME

(?>(mid(dle)?_?-? ?(na?me?))(_?-?user)?)$

Full_Name_V2 FULL_NAM
E

(?>((fu?l?l_?-? ?|whole_?-? ?)?_?-?(na?me?))

(_?-?user)?)$

IP_Address_V2 IP
ADDRESS

(?>(ip_?-? ?addre?s?s?))$

Last_Name_V2 LAST_NA
ME

(?>((l(as)?t)_?-? ?(na?me?))(_?-?user)?)$

Surname_V2 LAST_NA
ME

(?>(sur) ?_?-? ?(name)?_?-? ?(no|id|str|

value|))

Password_V2 PASSWOR
D

(?>(pass) ?_?-??(word)?_?-? ?(word|nbr|no|id|

value|))

PO_Box_V2 PO_BOX (?>(p.?o.?_?-? ?box|post_?-? ?office_?-? ?

box ?_?-?)(number|num|nbr|no)?$)

Precinct_V2 PRECINCT (?>precinct|prcnct)$

Continuous Compliance – Continuous Compliance Home

Identifying sensitive data – 426

Expression Name Domain Expression

Record_Number_V2 RECORD_N
O

(?>(rec|record)_?(number|num|nbr|no))$

School_Name_V2 SCHOOL_N
M

(?>school_?-?na?me?)$

Security_Code_V2 SECURITY_
CODE

(?>se?cu?r(i?ty?)?_?co?de?)$

Serial_Number_V2 SERIAL_N
O

(?>(ser(ial)?)_?-? ?(number|num|nbr|no))$

Signature_V2 SIGNATUR
E

(?>(signature)$)

Social_Security_Number
_V2

SSN (?>(ssn$|social_?-? ?security_?-? ?(number|

num|nbr|no|code|id))$)

TaxID_Code_or_Number_
V2

TAX_ID (?>(tax)_?-? ?(id(ent)?)_?-? ?((co?de?)|

(number|num|nbr|no))?)$

TaxID_Number_V2 TAX_ID (?>tin$)

Telephone_or_Contact_N
umber_V2

TELEPHON
E_NO

(?>(phone|contact|tel|fax)_?-? ?)(number|num|

nbr|no)?$

Vehicle_V2 VIN_NO (?>(vehicle)$)

VIN_NO_V2 VIN_NO (?>(^vin$|Vehicle_?-? ?Id(entification)?_?-? ?

(Number|Num|Nbr|No))$)

Web_URL_Address_V2 WEB (?>(^url_?-? ?|web_? ?)(addr?e?s?s?)?)$

Zip_or_Postal_Code_V2 ZIP (?>(zip|post|postal)_?-? ?(co?de?)|(zip))

Continuous Compliance – Continuous Compliance Home

Identifying sensitive data – 427

7.4.2 Type expressions

The column data type, if recognized, must match one of the specified types for the domain to be assigned.

Expression Name Domain Expression Minimum Length

ACCOUNT_NO_type_V2 ACCOUNT_NO Number 5

ACCOUNT_NO_type_V2_2 ACCOUNT_NO String 5

ADDRESS_type_V2 ADDRESS String 20

ADDRESS_LINE2_type_V2 ADDRESS_LINE2 String 20

BENEFICIARY_NO_type_V2 BENEFICIARY_NO String 10

BENEFICIARY_NO_type_V2_2 BENEFICIARY_NO Number 5

BIOMETRIC_type_V2 BIOMETRIC String 10

BIOMETRIC_type_V2_2 BIOMETRIC Binary None

CERTIFICATE_NO_type_V2 CERTIFICATE_NO String 10

CERTIFICATE_NO_type_V2_2 CERTIFICATE_NO Number 5

CITY_type_V2 CITY String 10

COUNTY_type_V2 COUNTY String 10

CREDIT CARD_type_V2 CREDIT CARD String 15

CREDIT CARD_type_V2_2 CREDIT CARD Number 15

CUSTOMER_NO_type_V2 CUSTOMER_NO String 5

CUSTOMER_NO_type_V2_2 CUSTOMER_NO Number 5

Continuous Compliance – Continuous Compliance Home

Identifying sensitive data – 428

Expression Name Domain Expression Minimum Length

DOB_type_V2 DOB String 6

DOB_type_V2_2 DOB Date None

DRIVING_LC_type_V2 DRIVING_LC String 10

DRIVING_LC_type_V2_2 DRIVING_LC Number 10

EMAIL_type_V2 EMAIL String 20

FIRST_NAME_type_V2 FIRST_NAME String 10

FULL_NAME_type_V2 FULL_NAME String 20

IP ADDRESS_type_V2 IP ADDRESS String 10

LAST_NAME_type_V2 LAST_NAME String 10

PASSWORD_type_V2 PASSWORD String 6

PO_BOX_type_V2 PO_BOX String 4

PO_BOX_type_V2_2 PO_BOX Number 4

PRECINCT_type_V2 PRECINCT String None

PRECINCT_type_V2_2 PRECINCT Number None

RECORD_NO_type_V2 RECORD_NO String 5

RECORD_NO_type_V2_2 RECORD_NO Number 5

SCHOOL_NM_type_V2 SCHOOL_NM String 20

SECURITY_CODE_type_V2 SECURITY_CODE String 5

Continuous Compliance – Continuous Compliance Home

Identifying sensitive data – 429

Expression Name Domain Expression Minimum Length

SECURITY_CODE_type_V2_2 SECURITY_CODE Number 5

SERIAL_NO_type_V2 SERIAL_NO Number None

SERIAL_NO_type_V2_2 SERIAL_NO String None

SIGNATURE_type_V2 SIGNATURE String None

SIGNATURE_type_V2_2 SIGNATURE Binary None

SSN_type_V2 SSN String None

SSN_type_V2_2 SSN Number None

TAX_ID_type_V2 TAX_ID String 6

TAX_ID_type_V2_2 TAX_ID Number 6

TELEPHONE_NO_type_V2 TELEPHONE_NO String 7

TELEPHONE_NO_type_V2_2 TELEPHONE_NO Number 7

VIN_NO_type_V2 VIN_NO String 10

WEB_type_V2 WEB String 10

ZIP_type_V2 ZIP Number 4

ZIP_type_V2_2 ZIP String 4

7.5 Legacy profile set expressions
This section describes all the column level profile expressions used by the two legacy Profile Sets included
with the product, as well as several data level expressions included with the product but not in any of the pre-
constructed Profile Sets.

Continuous Compliance – Continuous Compliance Home

Identifying sensitive data – 430

7.5.1 Account numbers

An account number is the primary identifier for ownership of an account, whether a vendor account, a
checking or brokerage account, or a loan account. An account number is used whether or not the identifier
uses letters or numbers. Below are the profile Expressions Delphix uses to identify account numbers:

Expression
Name

Domain Expression
Level

Expression

Account
number

ACCOUNT
_NO

Column (?>(acc(oun\|n)?t)_?(num(ber)?\|nbrjno)?)

(?!\w*(ID\|type))

7.5.2 Physical addresses

Below are the profile Expressions Delphix uses to identify physical addresses:

Expres
sion
Name

Do
mai
n

Expr
essi
on
Leve
l

Expression

Address ADD
RES
S

Colu
mn

^(?:(?!postalcode\|city\|state\|country\|email\|(l\|ln\|

lin\|line)?_?2{1}\|ID).)*addre?s?s?_?(?:(?!city\|state\|

country\|email|(l\|ln\|lin\|line)?_?2{1}\|ID).)*$

Street
Address

ADD
RES
S

Colu
mn

(?>(str(eet)?_?addre?s?s?\|street))(?!\w*(ID\|type))

Data -
Address

ADD
RES
S

Data (.[\s]+b(ou)?*l(e)?v(ar)?d[\s].)|(.[\s]+st[.]?(reet)?

[\s].)|(.[\s]+ave[.]?(nue)?[\s].)|(.[\s]+r(oa)?d[\s].)|(.

[\s]+l(a)?n(e)?[\s].)|(.[\s]+cir(cle)?[\s].*)

Address
Line2 -
before

ADD
RES
S_LI
NE2

Colu
mn

^(?:(?!email\|ID).)*(l\|ln\|lin\|line)?2{1}_?addre?s?s?

(?:(?!email\|ID).)*$

Continuous Compliance – Continuous Compliance Home

Identifying sensitive data – 431

Expres
sion
Name

Do
mai
n

Expr
essi
on
Leve
l

Expression

Address
Line2 -
after

ADD
RES
S_LI
NE2

Colu
mn

^(?:(?!email\|ID).)*addre?s?s?_?(l\|ln\|lin\|line)?_?2{1}

(?:(?!email\|ID).)*$

Data -
Address
Line 2

ADD
RES
S_LI
NE2

Data (.*[\s]*ap(ar)?t(ment)?[\s]+.*)|(.*[\s]*s(ui)?te[\s]+.*)

\|(c(are)?[\s]*[\\\\]?[/]?o(f)?[\s]+.*)

7.5.3 Beneficiary ID

Below are the profile Expressions Delphix uses to identify beneficiary IDs:

Expression
Name

Domain Expression
Level

Expression

Beneficiary
number

BENEFICIARY
_NO

Column (?>(bene(ficiary)?)_?(num(ber)?|nbr\|

no))(?!\w*ID)1

Beneficiary ID BENEFICIARY
_NO

Column (?>(bene(ficiary)?)_?id)

7.5.4 Biometrics

Below are the profile Expressions Delphix uses to biometric data:

Expression Name Domain Expression Level Expression

Biometric BIOMETRIC Column biometric

Continuous Compliance – Continuous Compliance Home

Identifying sensitive data – 432

7.5.5 Certificate ID

Below are the profile Expressions Delphix uses to identify certificate IDs:

Expression
Name

Domain Expression
Level

Expression

Certificate
number

CERTIFICATE_
NO

Column (?>cert(ificate)?_?(num(ber)?\|

nbr\|no\|id))

Certificate ID CERTIFICATE_
NO

Column (?>cert(ificate)?_?id)

7.5.6 City

Below are the profile Expressions Delphix uses to identify cities:

Expression Name Domain Expression Level Expression

City CITY Column ci?ty(?!\w*ID)

7.5.7 Country

Below are the profile Expressions Delphix uses to identify countries:

Expression Name Domain Expression Level Expression

Country COUNTRY Column c(ou)?nty(?!\w*ID)

7.5.8 Credit card

Below are the profile Expressions Delphix uses to identify credit cards:

Continuous Compliance – Continuous Compliance Home

Identifying sensitive data – 433

Expres
sion
Name

Domain Expressi
on Level

Expression

Card
number

CREDIT
CARD

Column (?>ca?rd_?(num(ber)?\|nbr\|no)?)(?!\w*ID)

Credit
Card
number

CREDIT
CARD

Column (?>cre?di?t_?(ca?rd)?_?(num(ber)?\|nbr\|no)?)(?!

\w*ID)

Data -
Credit
Card

CREDIT
CARD

Data ^(?:3[47][0-9]{13}|4[0-9]{12}(?:[0-9]{3})?(?:[0-9]

{3})?\|(?:5[1-5][0-9]{2}\|222[1-9]\|22[3-9][0-9]\|

2[3-6][0-9]{2}\|27[01][0-9]\|2720)[0-9]{12}\|6(?:

(011\|5[0-9][0-9])[0-9]{2}\|4[4-9][0-9]{3}\|

2212[6-9]\|221[3-9][0-9]\|22[2-8][0-9]{2}\|229[0-1]

[0-9]|2292[0-5])[0-9]{10}?(?:[0-9]{3})?\|

3(?:0[0-5,9]\|6[0-9])[0-9]{11}\|3[89][0-9]{14}?(?:

[0-9]{1,3})?)$

7.5.9 Customer number

Below are the profile Expressions Delphix uses to identify customer IDs:

Expression
Name

Domain Expression
Level

Expression

Customer
number

CUSTOMER_N
UM

Column (?>(cu?st(omer\|mr)?)_?(num(ber)?\|

nbr|no)?)(?!\w*ID)

7.5.10 Date of birth

Below are the profile Expressions Delphix uses to identify dates of birth:

Continuous Compliance – Continuous Compliance Home

Identifying sensitive data – 434

Expression
Name

Dom
ain

Expression
Level

Expression

Birth Date DOB Column (?>(bi?rth)_?(date?\|day\|dt))(?!\w*ID)

Birth Date1 DOB Column (?>dob\|dtofb\|(day\|date?\|dt)_?(of)?_?

(bi?rth))(?!\w*ID)

Birth Date2 DOB Column (?>b_?(date?\|day))(?!\w*ID)

Admission Date DOB Column (?>(adm(it\|ission)?)_?(date?\|day\|dt))(?!

\w*ID)

Treatment Date DOB Column (?>(tr(ea)?t(ment)?)_?(date?\|day|dt))(?!

\w*ID)

Discharge Date DOB Column (?>(ds\|disc(h\|harge)?)_?(date?\|day\|dt))

(?!\w*ID)

7.5.11 Driver license number

Below are the profile Expressions Delphix uses to identify driver license numbers:

Expression Name Domai
n

Expression
Level

Expression

Drivers License
number

DRIVIN
G_LC

Column (?>(dri?v(e?rs?e?)?)_?(license|li?c)?_?

(num(ber)?\|nbr|no)?)(?!\w*ID)

Drivers License
number1

DRIVIN
G_LC

Column (^license$\|(license\|li?c)_?(num(ber)?\|

nbr\|no))(?!\w*ID)

7.5.12 Email

Below are the profile Expressions Delphix uses to identify emails:

Continuous Compliance – Continuous Compliance Home

Identifying sensitive data – 435

Expression Name Domai
n

Expression Level Expression

Email EMAIL Column ^(?:(?!invalid).)*email(?!\w*ID)

Data - Email EMAIL Column \b[A-Z0-9._%+-]+@[A-Z0-9.-]+\.[A-Z]

{2,6}\b

7.5.13 First name

Below are the profile Expressions Delphix uses to identify first names:

Expression Name Domain Expression
Level

Expression

First Name FIRST_NAM
E

Column (?>(fi?rst)_?(na?me?)\|f_?name)(?!

\w*ID)

Middle Name FIRST_NAM
E

Column (?>(mid(dle)?)_?(na?me?)\|m_?name)

(?!\w*ID)

7.5.14 IP address

Below are the profile Expressions Delphix uses to IP addresses:

Expressi
on
Name

Dom
ain

Express
ion
Level

Expression

IP
Address

IP
ADD
RES
S

Column (?>(ip_?addre?s?s?))(?!\w*(ID\|type))

Data - IP
Address

IP
ADD
RES
S

Data \b(?:(?:25[0-5]\|2[0-4][0-9]\|1[0-9][0-9]\|[1-9]?

[0-9])\.){3}(?:25[0-5]\|2[0-4][0-9]\|1[0-9][0-9]\|

[1-9]?[0-9])\b

Continuous Compliance – Continuous Compliance Home

Identifying sensitive data – 436

7.5.15 Last name

Below are the profile Expressions Delphix uses to identify last names:

Expression
Name

Domai
n

Expression
Level

Expression

Last Name LAST_
NAME

Column ^(?:(?!portal\|ID).)*((la?st)_?(na?me?)\|l_?

name)(?:(?!portalname\|ID).)*$

7.5.16 Plate number

Below are the profile Expressions Delphix uses to identify plate numbers:

Expressio
n Name

Do
mai
n

Expressi
on Level

Expression

License
Plate

PLA
TE_
NO

Column ^(?:(?!template|ID|type).)*(license\|li?c)?_?plate_?

(num(ber)?\|nbr\|no)?(?:(?!template\|ID\|type).)*$

7.5.17 PO Box numbers

Below are the profile Expressions Delphix uses to identify PO box numbers:

Expression Name Domain Expression Level Expression

PO Box PO_BOX Column po_?box

Data - PO Box PO_BOX Data po box\|p\.o\

7.5.18 Precinct

Below are the profile Expressions Delphix uses to identify precincts:

Continuous Compliance – Continuous Compliance Home

Identifying sensitive data – 437

Expression Name Domain Expression Level Expression

Precinct PRECINCT Column (>?precinct\|prcnct)(?!\w*ID)

7.5.19 Record number

Below are the profile Expressions Delphix uses to identify record numbers:

Expression
Name

Domain Expression
Level

Expression

Record number RECORD_
NO

Column (?>rec(ord)?_?(num(ber)?\|nbr\|no))(?!

\w*(ID\|type))

7.5.20 School name

Below are the profile Expressions Delphix uses to identify school names:

Expression Name Domain Expression Level Expression

School Name SCHOOL_NM Column (?>school_?na?me?)(?!

\w*ID)

7.5.21 Security code

Below are the profile Expressions Delphix uses to identify security codes:

Expression Name Domain Expression Level Expression

Security Code SECURITY_COD
E

Column (?>se?cu?r(i?ty?)?_?co?de?)(?!

\w*ID)

7.5.22 Serial number

Below are the profile Expressions Delphix uses to identify serial numbers:

Continuous Compliance – Continuous Compliance Home

Identifying sensitive data – 438

Expression
Name

Domain Expression
Level

Expression

Serial number SERIAL_N
M

Column (?>(ser(ial)?)_?(num(ber)?\|nbr|no))

(?!\w*ID)

7.5.23 Signature

Below are the profile Expressions Delphix uses to identify signatures:

Expression Name Domain Expression Level Expression

Signature SIGNATURE Column signature(?!\w*(ID\|type))

7.5.24 Social security number

Below are the profile Expressions Delphix uses to social security numbers:

Expression Name Dom
ain

Expression
Level

Expression

Social Security
number

SSN Column ssn(?!\w*ID)

Data - SSN SSN Data \b(?!000)(?!666)[0-8]\d{2}[-](?!00)\d{2}

[-](?!0000)\d{4}\b

7.5.25 Tax ID

Below are the profile Expressions Delphix uses to identify tax IDs:

Expression Name Dom
ain

Expression
Level

Expression

Tax ID number TAX_I
D

Column tin$\|^tin\|_tin\|tin_

Continuous Compliance – Continuous Compliance Home

Identifying sensitive data – 439

Expression Name Dom
ain

Expression
Level

Expression

Tax ID Code or
number

TAX_I
D

Column (ta?x)_?(id(ent)?)?_?((co?de?)\|

(num(ber)?\|nbr\|no))?

7.5.26 Telephone number

Below are the profile Expressions Delphix uses to identify telephone numbers:

Expression Name Domain Expressio
n Level

Expression

Telphone or
Contact number

TELEPH
ONE_NO

Column (?>((tele?)?phone)\|(co?nta?ct\|tel)_?

(num(ber)?\|nbr\|no))(?!\w*(ID\|type))

Data - Phone
number

TELEPH
ONE_NO

Data \(?\b[0-9]{3}\)?[-.]?[0-9]{3}[-.]?[0-9]

{4}\b

Fax number TELEPH
ONE_NO

Data (?>fax_?(num(ber)?\|nbr\|no)?)(?!\w*(ID\|

type))

7.5.27 Vin number

Below are the profile Expressions Delphix uses to identify vin numbers:

Expression Name Domain Expression Level Expression

Vehicle VIN_NO Column vehicle

VIN VIN_NO Column vin$\|^vin\|_vin\|vin_

7.5.28 Web address

Below are the profile Expressions Delphix uses to identify web addresses:

Continuous Compliance – Continuous Compliance Home

Identifying sensitive data – 440

Expression
Name

Do
ma
in

Expressi
on Level

Expression

Web or URL
Address

WE
B

Column (?>(url\|web_?addre?s?s?))(?!\w*(ID\|type))

Data - Web
Address

WE
B

Data \b(?:(?:https?\|ftp\|file)://\|www\.\|ftp\.)[-A-

Z0-9+&-@#/%=~_\|$?!:,.]*[A-Z0-9+&-@#/%=~_\|$]

7.5.29 ZIP code

Below are the profile Expressions Delphix uses to identify zip codes:

Expression Name Domai
n

Expression Level Expression

zip or Postal Code ZIP Column (?>(zip\|post(al)?)_?((co?de?)?4?))(?!

\w*ID)

Data - Zip Code ZIP Data 1\b([0-9]{5})-([0-9]{4})\b

7.6 Configuring profile sets
A profile set defines the set of classifiers or expressions that will be used to identify sensitive information in
the rule set when a profiling job is run. Refer to Discovering Your Sensitive Data (see page 382) for an overview
of profile sets and related concepts.

To display, view, and manage the profile sets, click on the Settings tab and select Profiler Sets on the left-
hand side of the page.

Continuous Compliance – Continuous Compliance Home

Identifying sensitive data – 441

The Profiler Sets screen displays each available profile set, along with an action button containing view, edit,
duplicate, and delete options (assuming the user role allows those operations).

7.6.1 Creating and modifying profile sets

The content of a profiler set depends on the profiler implementation with which it is intended to be used.
Profile sets for the legacy profile contain search expressions and type expressions, while profile sets for the
ASDD profiler contain classifiers.

To add a Profiler set, click Add Profiler Set at the top of the Settings > Profile Sets screen. The Add Profiler
Set dialog appears:

Creating or modifying profile sets can also be done via the API and requires only two API calls.
See ASDD Profile Set Import and Export (see page 457) for usage instructions.



Continuous Compliance – Continuous Compliance Home

Identifying sensitive data – 442

1.

2.

3.

4.

5.

6.

7.

8.

9.

7.6.1.1 To add a profiler set for the legacy profiler

Click Add Profile Set at the top of the dialog window.

Enter a profiler Set Name. This name must be unique among all profile set names.

Optionally, enter a Description for this Profiler Set.

Leave the ASDD Support box unchecked.

Select the Search Expressions tab (it is selected by default).

Click the down arrow to the right of Select Search Expression to expand the tree. Click the box to the
left of each search expression you wish to add to the profile set. It is not recommended that All
Search Expressions be selected, as there is significant duplication among built-in search expressions.

Select the Type Expressions tab.

Click the down arrow to the right of Select Type Expression to expand the tree. Click the box to the
left of each type expression you wish to add to the profile set.

When you are finished adding expressions, click Submit to save the new profile set.

Continuous Compliance – Continuous Compliance Home

Identifying sensitive data – 443

1.

2.

3.

4.

5.

6.

7.

7.6.1.2 To add a profile set for the ASDD Profiler

Click Add Profile Set at the top of the dialog window.

Enter a profiler Set Name. This name must be unique among all profile set names.

Optionally, enter a Description for this Profiler Set.

Check the ASDD Support box.

Select the Classifiers tab (it is selected by default).

Click the down arrow to the right of Select Classifiers to expand the tree. Click the box to the left of
each classifier you wish to add to the profile set.

When finished with adding classifiers, click Submit to save the new profile set.

7.6.1.3 To edit an existing profile set

Select the Edit option from the ellipsis actions menu to the right of the profile set name. Expand the tab
corresponding to the type object you'd like to add or remove from the profile set, and check or uncheck the

Continuous Compliance – Continuous Compliance Home

Identifying sensitive data – 444

box to the left of each object to add/remove them from the profile set as desired. Click submit to save your
change.

7.6.1.4 To delete an existing profile set

Select the Delete option from the ellipsis actions menu to the right of the profile set name. You will be
blocked from deleting a profile set if it is currently assigned to any jobs.

7.7 Managing domains

7.7.1 Overview

This article describes how to create and manage domains. Refer to Discovering Your Sensitive Data (see page
382) for an overview of domains and related concepts.

7.7.2 Domains

Domains identify a specific type of sensitive data, along with the masking algorithm to use for that data.
From the Settings tab, click Domains to the left, the list of domains will be displayed. From here, you can add,
edit, or delete domains.

Delphix Continuous Compliance includes built-in domains and algorithms for many common types of
sensitive data. Users can choose to select a different default masking algorithm for a domain, and/or create
additional domains with their own default algorithms.

Additional created algorithms appear in the Algorithms drop-down menu. Because each domain has a single
default masking algorithm, a distinct domain (along with recognition logic) must exist or be created for each
distinct algorithm in order for the profiler to assign that algorithm in rule sets.

If the purpose for the environment where a profile job is run is set to Tokenization/Re-Identify, the
tokenization algorithm associated with the domain will be assigned instead of the masking algorithm. Each
domain referenced by any profile set used in tokenization environments should have a tokenization algorithm
value defined.

ASDD Support
It is not possible to change the value of the ASDD Support setting for an existing profile set. A
new profile set must be created.



Creating or modifying profile sets can also be done via the API and requires only two API calls.
See the ASDD Profile Set Import and Export (see page 457) article for usage instructions.



Continuous Compliance – Continuous Compliance Home

Identifying sensitive data – 445

1.

2.

3.

4.

5.

6.

The Settings > Domains tab is where to define domains, along with their default masking and tokenization
algorithms.

7.7.3 Adding a new domain

At the top of the Domains tab, click Add Domain.

Enter the new Domain Name. The domain name specified will appear as a menu option on the
Inventory screen elsewhere in the Delphix Masking Engine. Domain names must be unique.

Select a default Masking Algorithm for the new domain, and click Next.

Select a default Tokenization Algorithm for the new domain, if desired, and click Next.

Click Save.

To delete any domain, click the Actions button to the far right of the domain name and select the
option Delete.

Continuous Compliance – Continuous Compliance Home

Identifying sensitive data – 446

7.8 Managing classifiers
Classifier instances define the logic that the ASDD profiler uses to identify sensitive information. For an
overview of classifiers and related concepts, refer to Discovering Your Sensitive Data (see page 382). Each
classifier instance is based on a classifier framework that implements the recognition logic.

An overview of the available frameworks is available in the classifier concept (see page 382) section. The API
Calls for Managing Classifiers (see page 725)article describes how to use the API Client to retrieve a detailed
description of all classifier frameworks on the system, along with their configuration schemas.

To view a list of all classifier instances available, click Classifiers under the Settings tab:

Note that updating the default masking or tokenization algorithm assigned to a domain only
impacts algorithm assignments made by future profiling job executions, it does not have any
immediate affect on algorithm assignments in existing rule sets.

Continuous Compliance – Continuous Compliance Home

Identifying sensitive data – 447

1.

2.

7.8.1 To add a classifier

Click the Add Classifier button at the upper right.

Continuous Compliance – Continuous Compliance Home

Identifying sensitive data – 448

•

3.
a.
b.

4.

5.

6.
a.

7.
a.

8.
a.

9.
a.

10.

11.
a.

12.

Select a Domain from the Domain dropdown.

Domains are used by profiling jobs to determine the masking algorithm to apply to the
sensitive data. When a classifier is matched, the profiling job will associate the specified
domain with the sensitive data. The Masking Engine comes out of the box with over 30 pre-
defined domains. Domains can be added, edited, and deleted from the Settings Domains
screen. For more information on domains, refer to the Managing Domains (see page 444) article.

Enter the following information for the classifier:
Classifier name to create.
Description for the classifier (optional).

Select the Classifier Framework to create the classifier with (i.e. Data Type, Regex, Path, or List).

The bottom part of the form will change based on the classifier framework selected.

To Add a Regex Classifier:
Fill out the Profiling Regex field (mandatory), then click Add. For the rest of the fields, if left
unfilled/unselected, the default value will be selected and added to the table.

To Add a Data Type Classifier:
Choose a Data Type from the dropdown (mandatory), then click Add. For the rest of the fields,
if left unfilled/unselected, the default value will be selected and added to the table.

To Add a List Classifier:
Upload a File (mandatory), then click Add. For the rest of the fields, if left unfilled/unselected,
the default value will be selected and added to the table.

To Add a Path Classifier:
Add a Field Value (mandatory), then click Add. For the rest of the fields, if left unfilled/
unselected, the default value will be selected and added to the table.

Click Save to create the classifier. Users can add multiple configurations of the same framework type
to a classifier.

It also allows in-place editing/deleting of configurations.
To edit/delete, click the action button next to the configuration to edit/delete, then select the
corresponding option.

Clicking Edit will take all the information from the row to the form on the right side, where it can then
be modified.

Continuous Compliance – Continuous Compliance Home

Identifying sensitive data – 449

7.8.2 To edit a classifier

Click the ... indicator in the Action column, to the right of the Classifier on the classifier grid, and choose Edit.

7.8.3 To delete a classifier

Click the ... indicator in the Action column, to the right of the

Classifier on the classifier grid, and choose Delete.

7.8.4 Configuration considerations for classifiers

Classifier design is more complex than search or type expressions because classifiers offer more flexibility
in matching logic and configuration around match strength. Classifiers contain more configuration, typically
encompassing all logic of the framework's type for a particular domain. For example, a legacy profile set
might have three different column-level search expressions, but these would all be consolidated into a single
PATH type classifier. Classifiers also add the notion of rejection strength, which allows the profiling logic to
eliminate domains from consideration earlier in the profiling process.

Continuous Compliance – Continuous Compliance Home

Identifying sensitive data – 450

1.

2.

7.8.4.1 Strength values

Classifiers use a scale of -1.0 to 1.0 to represent match and reject strength, which correspond to the -100 to
100 confidence values used in the UI. The product currently does not display confidence values for non-
matches, so only values between 0 and 100 are typically visible.

A value of -1.0 indicates absolute rejection, and the domain in question is immediately eliminated from the
set of possible matches. Similarly, a value of 1.0 indicates absolute confirmation, and the domain is
assigned as a match without checking any other classifiers for that domain.

When multiple classifiers produce match or reject strength values, those results may be combined to get a
final confidence. If the results conflict, with opposite signs, the result with the highest absolute value takes
precedence. If the results have the same sign, the final result for that domain is a stronger match. The exact
values and formula applied are under development and may change in the future. Currently, only the
strongest column level result and strongest data level result are combined in this fashion.

7.8.4.1.1 Examples

A column named "ssn_present" matches a PATH classifier for the SSN domain with a match strength
of 0.67. However, the column is boolean type and does not match the TYPE classifier for the SSN
domain, which returns a -1.0 result. The verdict is -1.0 and the SSN domain is not assigned.

A column named "passport_no" contains 9-digit numeric values, which match the REGEX classifiers
for both the SSN and PASSPORT_NO domains. Both REGEX classifiers return a confidence of 0.5 for
this match. However, while the PATH classifier for the PASSPORT_NO domain matches and returns a
match strength of 0.67, the PATH classifier for the SSN domain does not match, returning 0. The final
confidence values are PASSPORT_NO at 0.84, and SSN at 0.5, so the PASSPORT_NO domain is the
best match and the PASSPORT_NO domain and associated masking algorithm are assigned to the
column.

7.8.4.1.2 Choosing values for match strength

The match strength value (typically called matchStrength in the classifier configuration) reflects how
confident the classifier is that a particular data element exclusively matches the associated domain. A
match strength of 0.01 indicates that the data element may belong to the domain, but might also belong to
any number of other domains or not be sensitive at all, while a value of 1.0 reflects absolute certainty that
this data matches this domain and no other domain. A value of 0 provides no information.

Default assignment threshold
The ASDD profiler has a default minimum confidence value of 1, which means that any positive
match, no matter how weak, will trigger an assignment. This is significantly different from the
legacy profiler, which by default requires an 80% match for data level expressions. The
application setting ASDD/DefaultAssignmentThreshold controls this value. For more details,
refer to this section.



Continuous Compliance – Continuous Compliance Home

Identifying sensitive data – 451

•

•

•

Not all classifiers have a match strength greater than 0. One example of this is TYPE classifiers, which
typically have a high reject strength, but 0 match strength (since it is impossible to match any of the built-in
domains based on the data type of a column alone).

PATH classifiers built-in to the product typically have a match strength of 0.67, so in order for a REGEX or
LIST classifier to override a PATH result, that classifier's match strength or reject strength would have to be
higher than this value. This can help eliminate false positive results from the PATH classifiers, but be wary of
the next recommendation before setting match strength to a high value.

When choosing match strength for REGEX classifiers, consider whether the pattern is unique to the type of
sensitive data being detected. If it is not, it is safer to give a relatively low match strength in the range of 0.1
to 0.5, so that PATH level results can contribute information. Consider this example of REGEX detection of
US Social Security numbers. These might be stored as a string value with a more distinct pattern like
"001-23-4567", or simply as a 9-digit number "001234567". A 9-digit number might be any number of other
numeric identifiers, like account number, passport number, a row identifier for rows in another table, etc. so
the match strength for the [0-9]{9} regex should be quite low. The distinct text pattern with dashes has a
much higher match strength since it is unlikely to be any other kind of information.

For LIST classifiers that utilize tokenization of inputs and reuse the same lists as other classifiers, consider
lowering the match strength for each of these files used for tokenization. For example, list classifiers for
First Name and Full Name may reference the same list of values, but during discovery with tokenization, the
same values that match the First Name classifier will also match the Full Name classifier. Ideally, this
configuration should allow the first name column to have a higher match to the First Name classifier.

Here are some additional tips for choosing match strength:

Use a higher match strength for patterns that are more likely to be unique to the type of sensitive data
being detected.
Use a lower match strength for patterns that are less likely to be unique to the type of sensitive data
being detected.
Use a match strength of 0 for patterns that are not unique to the type of sensitive data being
detected.

7.8.4.1.3 Choosing values for reject strength

The reject strength (typically called rejectStrength in the classifier configuration) value reflects how likely it
is that a value matches the classifier's domain when the classifier does not match. If you are certain that
your classifier configurations will match every possible value for the domain, the reject strength should be
set to 1.0; however, this degree of certainty is rare. Similar to match strength, not all classifiers provide any
rejection capability. This is true of PATH classifiers, for example, as we cannot rely on an unknown database
schema to use predictable or human-readable names for columns.

The reject strength for classifiers applies any time there is no match. For example, if a REGEX classifier
contains 4 regular expressions, each expression would be tested against the column data value, and if none
match, the reject strength defines the result. For this reason, it can be useful to add a pattern that matches
quite broadly, even if it's not particularly selective for the domain in question, with a low match strength. This
prevents a full rejection for values that might match this classifier's domain as well as one or more other
domains.

For LIST and REGEX classifiers where the set of patterns or list values is known to be only a subset of
possible values for the domain, reject strength should be below 0.5 to allow column-level matches to take
precedence, even if none of the data values match. For example, the value lists built-in for first and last name
LIST classifier only contain English values, and names might be in other languages. These classifiers have

Continuous Compliance – Continuous Compliance Home

Identifying sensitive data – 452

•
•
•

"reject strength" set relatively low, to prevent the LIST classifiers from overriding the PATH classifier match
if, for example, the column contains only Japanese names.

Here are some additional tips for choosing reject strength:

Use a higher reject strength for classifiers that are more likely to match all values in the domain.
Use a lower reject strength for classifiers that are less likely to match all values in the domain.
Use a reject strength of 0 for classifiers that are not designed to match all values in the domain.

7.8.4.2 Regex configuration

The PATH and REGEX classifier types consume regular expressions using Java 8 regex syntax and matching
logic. These classifiers have additional configuration options to control whether these patterns should match
the entire input, and whether they are case-sensitive. For this reason, avoid using regex constructs such as
"^(pattern)$" for these purposes.

7.8.4.3 Type classifiers

The TYPE classifier framework uses the same four types as Type Expressions, as described in the Managing
expressions (see page 452) section. However, the type-matching system is more versatile and provides better
type identification across all database variants. This framework also supports the identification of auto-
incrementing columns. The property matchAutoIncrement defines whether auto-incrementing columns
should be considered for profiling (true) or completely skipped (false) for the domain. The default value is
false.

7.8.4.4 Tokenization in list classifiers

List classifiers to identify complex data can be created by combining multiple sets of list files and enabling
tokenizeInput. In such list classifiers, the input is tokenized to individual tokens which are split by delimiter
values specified by the tokenizationDelimiter field. The default value for this field is a space " ", but can be a
string of individual characters such as -_.\n where each character is a delimiter. The confidence value for
each input value is calculated by summing the match strengths of all matching tokens divided by the total
number of tokens in the input.

For example, to identify a FULL_NAME which is a combination of FIRST_NAME & LAST_NAME, it's unrealistic
to create a list with all possible combinations of first and last names, but by providing separate lists and
turning on tokenization, discovery can match each token of the input to the value lists.

7.9 Managing expressions
The search and type expressions define logic used by the legacy profiler to identify sensitive information.
Refer to Discovering Your Sensitive Data (see page 382) for an overview of expressions and related concepts.

7.9.1 Profile expressions

The column and data level expressions use regex text patterns on column meta-data and the data within the
column, respectively, to identify sensitive data.

Continuous Compliance – Continuous Compliance Home

Identifying sensitive data – 453

•

•

•

•

Type expressions can limit matches with column-level expressions by data type. A Type Expression consists
of a user-chosen name, a data type, an optional minimum field length, and a domain to which the constraint
applies. The supported data types are String, Number, Date, and Binary. Each type represents a number of
native datatypes in the database.

For String type, all character types supported by the database such as VARCHAR, NVARCHAR, CLOB,
and NCLOB are considered String types for profiling. The minLength parameter considers the length
specification of the column type, which may be characters or bytes. For example, Oracle supports
VARCHAR2 fields measuring in either characters or in bytes. A VARCHAR2(20) column can hold 20
characters, whereas a VARCHAR2(20 BYTE) column can hold 20 bytes, which may be fewer than 20
characters if multibyte characters are present. A type expression with a minLength of 20 will match
to both.
For Number type, all numeric types are considered Number types by the profiling logic, including
INTEGER, FLOAT, BIG_INTEGER, etc. The minLength parameter considers the number of base-10
digits supported by the type. For floating-point values, minLength refers to the integral part of the
number.
For Date type, the Date type includes all calendar date and date/time types, such as DATE and
LOCAL_DATE_TIME types. The minLength parameter is not permitted for Date Type Expressions.
For Binary type, the Binary type includes large object types such as BLOB and BINARY. The
minLength parameter considers the maximum storage size of the column in bytes.

If there is more than one Type Expression assigned to a domain, then a column will match for the domain if
the regular expression matches, and at least one of the type expressions match. For example, dates of birth
are often stored in string types instead of dates, so you might have a string type expression and a date type
expression assigned to the Date of Birth domain to allow columns of either type to match. Two Type
Expressions of the same type cannot be assigned to the same domain in the same profile set. If there are no
Type Expressions assigned to a domain, then the profile expression alone will determine matching without
regard to data type.

Like Profile Expressions, Profile Type Expressions must be part of a profile set to be effective. Profile Type
Expressions have no effect on Data Level Profiling.

Column and data level expressions are case insensitive.

Profile Type Expressions are only supported for database profiling. They have no effect on
profiling of file data.

As of version 9.0, only Oracle and MSSQL Server are fully supported. On other platforms, Type
Expressions may result in unexpected matches.

Continuous Compliance – Continuous Compliance Home

Identifying sensitive data – 454

1.

2.

3.

•

4.

7.9.2 Managing expressions

In order to manage search and Type Expressions, select Expressions using the navigation panel on the left-
hand side of the Settings tab.

This panel has Search Expression and Type Expression tabs that select which type of expression is visible.

7.9.2.1 To add a search expression

Click the Search Expression tab near the top of the Expressions screen.

Click the Add Search Expression button at the upper right.

Select a Domain from the Domain dropdown.

Domains are used by Profiling jobs to determine the masking algorithm to apply to your
sensitive data. When an Expression is matched, the Profiling job will associate the specified
Domain to the sensitive data. The Masking Engine comes out of the box with over 30 pre-
defined Domains. Domains can be added, edited, and deleted from the Settings Domains
screen.

Enter the following information for the Expression:

Continuous Compliance – Continuous Compliance Home

Identifying sensitive data – 455

•

5.

•

•

6.

•

•

•

•

•

Expression Name: The name used to select this expression as part of a Profiler Set.

Select an Expression Level for the Expression:

Column Level: To identify sensitive data based on column names.

Data Level: To identify sensitive data based on data values, not column names.

Enter the Expression Text: The regular expression used to identify sensitive data.

To add a type of expression

Click the Type Expression tab near the top of the Expressions screen.

Click the Add Type Expression button at the upper right.

Set a value for Expression Name and select a Domain as you would for a search expression.

Select Constraints (Data Type) for the expression: String, Numeric, Binary, Date.

Set a Minimum Column Length for the data type if desired.

Note: Length constraints are not applied to large object types such as CLOBs and BLOBs.

For example, to ensure that column-level profiling only identifies a column with the FIRST_NAME
domain, if the column is a string type and has a capacity of at least 5 characters, add the type
constraint shown below.

Continuous Compliance – Continuous Compliance Home

Identifying sensitive data – 456

7. When you are finished, click Save.

7.9.2.2 To edit an expression

Click the ... indicator in the Action column to the right of the Expression and choose Edit.

7.9.2.3 To delete an expression

Click the ... indicator in the Action column to the right of the Expression and choose Delete. Deletion will be
blocked if the expression is currently assigned to one or more profile sets.

7.9.2.4 Searching and filtering expressions

The profile-expressions/search and profile-type-expressions/search endpoints allow
for searching and filtering of profile expressions and profile type expressions. More information on syntax
can be found at API Calls for Searching and Filtering (see page 732).

Continuous Compliance – Continuous Compliance Home

Identifying sensitive data – 457

1.

•

•

2.

•

•

3.

•

•

7.10 ASDD profile set import and export
The ASDD Asynchronous Discovery set upgrade allows users to seamlessly create and update an ASDD
profile set and its associated domains and classifiers. For usage instructions, see API Calls for ASDD Profile
Set Import and Export (see page 721).

7.10.1 ASDD profile set import

ASDD profile set import facilitates a quicker and simpler option for the creation or update of the following
masking objects:

A profile set

A new profile set can be created.

An existing profile set can be updated if there are no active profiling jobs using the specified
profile set.

Domains

New domains can be created along with their assigned masking and tokenization algorithms.

Existing domains can have their assigned masking and tokenization algorithms updated.

Classifiers

New classifiers can be created.

Existing classifiers' configuration can be modified if there are no active profiling jobs using a
profile set that includes the specified classifiers.

The profile set configuration is exported in the form of a dynamically generated JSON file, formatted just like
the ASDD Standard profile set JSON (see page 385), including any files used by the classifiers that are a part of
the profile set, all packaged in a single zip file.

7.10.1.1 Limitations

ASDD profile set import does not support importing multiple profile sets at a time; it only allows for a single
profile set configuration to be installed at a time.

7.10.2 ASDD profile set export

Like the import function, the ASDD profile set export allows for for an easy option to export a given profile set
configuration in a zip file. This can be used to easily import the profile set onto another engine, or
modifications can be made to the profile set JSON and then imported to the same engine to make updates
to the given profile set.

Continuous Compliance – Continuous Compliance Home

Identifying sensitive data – 458

7.11 Creating a profiling job
This section describes how users can create a Profiling job. You can create Profiling jobs for databases,
XML, mainframe files, delimited files, and fixed-width file rule sets. It is not currently possible to profile XML
or JSON documents stored in database columns.

When a profiling job runs, it applies all of the recognition logic specified in the profile set to each data
element present in the rule set. The behavior of the profiler is also influenced by several application settings,
refer to the Profile group settings section of this article (see page 658).

The Profiler assigns each sensitive data element to a domain, with each domain having a default masking
algorithm. Then, in the inventory, masking algorithms can be manually updated as needed to establish the
masking rulesets for your data sources.

Profiling Jobs are grouped within environments on the Environment Overview page along with all masking
jobs. In order to navigate to the Overview screen, click on an environment and the Overview tab should
automatically display.

7.11.1 Creating a new profiling job

To create a new Profiling job:

Column and Field Priority
If you wish to prevent the profiler from updating the domain and algorithm assignments for a
particular column or file field, set the Priority value for the column or field to USER.



Continuous Compliance – Continuous Compliance Home

Identifying sensitive data – 459

1.

2.

3.

•

•

•

•

•

•

Click the Profile button on the upper side of the page.

The Create Profiling Job window appears.

You will be prompted for the following information:

Job Name: A free-form name for the job you are creating. Must be unique.

Multi Tenant: Check the box if the job is for a multi-tenant database. This option allows
existing rulesets to be re-used to mask identical schemas via different connectors. The
connector is selected at job execution time.

Rule Set: Select the rule set that this job will profile.

No. of Streams: The number of parallel streams to use when running the jobs. For example,
you can select two streams to profile two tables in the ruleset concurrently in the job instead
of one table at a time.

Min Memory (MB) (optional): Minimum amount of memory to allocate for the job, in
megabytes.

Max Memory (MB) (optional): Maximum amount of memory to allocate for the job, in
megabytes. When an ASDD profile set is selected, the max memory for the job must be at
least 1024MB for each stream. For example, if No. of Streams is 4, this value would need to
be 4096 or higher.

Continuous Compliance – Continuous Compliance Home

Identifying sensitive data – 460

•

•

•

•

•

4.

Feedback Size (optional): The number of rows to process before writing a message to the
logs. Set this parameter to the appropriate level of detail required for monitoring your job. For
example, if you set this number significantly higher than the actual number of rows in a job,
the progress for that job will only show 0 or 100%.

Multiple Profiler Expression Check: By default, the profiler stops testing Profiler Expressions
on a column or data value after the first expression matches. Check this box if the job should
check all Profiler Expressions. If multiple Profiler Expressions match, the Profiler report will
indicate multiple matches and the algorithm specified by the
DefaultMultiphiAlgorithm application setting will be assigned. This setting applies to

both the legacy and ASDD profilers.

Profile Sets: The name of the Profile Set to use. A Profile Set is a set of Profile Expressions
(for example, a set of financial expressions) or classifiers. The profile set selected determines
whether the legacy or ASDD profiler will run. If the current data source is not supported by the
ASDD profiler, selecting an ASDD profile set will result in an error and another profile set must
be selected. Refer to this section (see page 468) for information regarding which connectors are
supported by ASDD.

Comments (optional): Add comments related to this job.

Email (optional): Add e-mail address(es) to which to send status messages. Separate
addresses with a comma (,).

When you are finished, click Save.

7.12 Running a profiling job
This section describes how users can run a profiling job from the Environment Overview screen.

Continuous Compliance – Continuous Compliance Home

Identifying sensitive data – 461

•
•
•

1.

2.

3.

To run or rerun a job from the Environment Overview screen:

Click the Run icon (play icon) in the Action column for the desired job.
The Run icon changes to a Stop icon while the job is running.
When the job is complete, the Status changes.

To stop a running job from the Environment Overview screen:

Locate the job you want to stop.

In the job's Action column, click the Stop icon.

A popup appears asking, "Are you sure you want to stop job?" Click OK.

When the job has been stopped, its status changes.

7.13 Reporting profiling results
This section describes the different ways of sharing/exploring the results of a profiling job.

7.13.1 Monitor page

After a Job has been started from the Environment Overview screen, clicking on the Job Name will result in
the display of the profiling job from the Monitor tab. Clicking on the Results tab in the middle of the screen
after the job has been completed will display the sensitive data findings on a table-column by table-column
or file-field by file-field basis.

Continuous Compliance – Continuous Compliance Home

Identifying sensitive data – 462

7.13.2 PDF report

To retrieve a PDF report from the Results tab, click on the Profiling Report link near the top of the page.

Continuous Compliance – Continuous Compliance Home

Identifying sensitive data – 463

7.13.3 Inventory page

Alternatively, after a job completes successfully, the profiling results can be displayed through the Inventory
screen. The inventory differs by connection type as shown below.

7.13.3.1 Database inventory

Profiling results can be determined by examining the assigned Algorithm for the table(s) in the Rule Set.

Continuous Compliance – Continuous Compliance Home

Identifying sensitive data – 464

7.13.3.2 File inventory

Profiling results can be determined by examining the assigned Domain and Algorithm for the files(s) in the
Rule Set.

Continuous Compliance – Continuous Compliance Home

Identifying sensitive data – 465

7.13.3.3 Mainframe Inventory

Profiling results can be determined by examining the assigned Domain and Algorithm for the files(s) in the
Rule Set.

Continuous Compliance – Continuous Compliance Home

Identifying sensitive data – 466

7.13.4 CSV

To get a spreadsheet capturing the profiling results for the inventory, click on Export near the top of the page
and a CSV file will be created.

The spreadsheet can then be shared and manually modified to correct the sensitive data findings by:

Continuous Compliance – Continuous Compliance Home

Identifying sensitive data – 467

1.

2.

Changing the Is Masked, Algorithm, and/or Domains fields for the respective Table/Column or File/
Field in the CSV file accordingly.

Importing the modified spreadsheet by clicking on Import near the top of the Inventory screen and
specifying the modified CSV file name.

7.13.5 API endpoint

Using the API endpoint /profileResultDatabase/{executionId} , profiling results can be retrieved
by providing the executionId. This method is only for database connections and will not work with other
connection types. Results will be returned in JSON format.

{
 "_pageInfo": {
 "numberOnPage": 4,
 "total": 4
 },
 "responseList": [
 {
 "columnMetadataId": 1,
 "columnName": "CITY",
 "tableName": "PROFILE_TEST",
 "domainName": "CITY",
 "algorithmName": "NullValueLookup",
 "dataType": "VARCHAR2",
 "isProfilerWritable": false
 },
 {
 "columnMetadataId": 2,
 "columnName": "COUNTRY",
 "tableName": "PROFILE_TEST",
 "dataType": "VARCHAR2",
 "isProfilerWritable": false
 },
 {
 "columnMetadataId": 3,
 "columnName": "DOB",
 "tableName": "PROFILE_TEST",
 "domainName": "DOB",
 "algorithmName": "DateShiftDiscrete",
 "dataType": "DATE",
 "confidence": 100,
 "isProfilerWritable": true
 },
 {
 "columnMetadataId": 4,
 "columnName": "ADDRESS",
 "tableName": "PROFILE_TEST",
 "domainName": "ADDRESS",

Continuous Compliance – Continuous Compliance Home

Identifying sensitive data – 468

•

•

•

•

•

•

•

•

 "algorithmName": "AddrLookup",
 "dataType": "VARCHAR2",
 "confidence": 100,
 "isProfilerWritable": true
 }
]
}

7.14 ASDD features and support
The ASDD profiler was introduced in Continuous Compliance version 9.0, and represents the future direction
for sensitive data discovery. It offers a number of advantages as compared to the legacy profiler, but
currently has some limitations as well.

The introduction of the ASDD profiler does not make any changes to the legacy profiler. Existing profiling
jobs should continue to function as they have in the past.

7.14.1 ASDD features

The ASDD profiler uses classifiers rather than search and type expressions. Classifiers support more
features and configuration options than expressions.

The LIST classifier framework is new and has no equivalent functionality in the legacy profiler.

The TYPE classifier framework uses standard Java SQLType values to identify data types,
which should provide broad support for type detection across all database variants.

The PATH classifier supports exact matching and can be configured to consider table name
in addition to column name when matching.

The REGEX classifier supports the detection of LUHN check digits for data level recognition of
credit card numbers and MOD97 check digits for data level recognition of IBANs.

The ASDD profiler provides better matching when the number of rows in a table is less than the target
number of rows for profiling, and in general provides more nuanced confidence value in profiling
results.
The ASDD profiler attempts to retrieve more data values when a large fraction of the data values for a
column are null or empty. The threshold to trigger an additional query is controlled by the application
setting (see page 658) ASDD/DefaultNullFilterThreshold.
The ASDD profiler supports statistical sampling for Oracle, SQL Server and SAP ASE databases, so
that the data sampled will better reflect the full range of values for each column across the entire
table.

Sample Percentage
When data sampling is employed, the sample percentage is always set to 1% - if this percentage
does not yield enough rows, the query is performed again without sampling.



Continuous Compliance – Continuous Compliance Home

Identifying sensitive data – 469

•

•

•

•

•
•

•

The ASDD Standard (see page 385) profile set contains data level logic by default, allowing some
columns containing sensitive information to be identified even if the column names are not
meaningful.

New or improved REGEX classifiers for Zip Code and Email Address domains.

New LIST classifiers are present for First and Last Name, Full Name, US City, US State, and
Country domains.

Classifiers and profile sets using them may be exported and imported using the Engine Sync
feature (see page 623). Classifiers are included when the Export Settings action is performed from
the Environments tab.

7.14.2 ASDD limitations

The primary limitation of the ASDD Profiler is that it is not yet supported for all connectors. The UI will report
an error if the user attempts to save a job using an ASDD profile set with an unsupported connector.

Currently, the following conditions must be met to use the ASDD Profiler:

File profiling is not supported.
Discovery may fail or produce lower-quality results for some extended connectors due to known
issues:

The SQL syntax used for column truncation is not compatible with all database variants. This
is known to cause failures in discovery jobs for the Informix database.

Continuous Compliance – Continuous Compliance Home

83 https://masking.delphix.com/docs/latest/general-ui-for-extended-algorithms
84 https://masking.delphix.com/docs/latest/algorithms-authoring-extensible-plugins
85 https://masking.delphix.com/docs/latest/accnolookup
86 https://masking.delphix.com/docs/latest/secure-lookup-algorithm-frameworks

Securing sensitive data – 470

•
•
•
•
•
•
•

8 Securing sensitive data
This section contains the following topics:

Algorithms (see page 470)

Builtin Driver Supports (see page 578)

Creating masking jobs (see page 589)

Managing jobs (see page 595)

Monitoring masking job (see page 597)

Masking job wizard (see page 604)

Running stopping jobs (see page 613)

8.1 Algorithms

8.1.1 Introduction to Masking algorithms

This article provides a brief outline of the different algorithm options that are available, along with other
general algorithm information. More specific algorithm details can be explored in the Out-Of-The-Box
Algorithm Instances or Algorithm Frameworks sections.

An algorithm plugin can be configured through the graphical user interface by entering the plugin's required
configuration in JSON format. For more information, visit the General UI for Extended Algorithms83 page.

8.1.2 Algorithm options

8.1.2.1 Out-of-the-box algorithm instances

Out-of-the-box algorithm instances are pre-configured ready to use algorithms. The out-of-the-box algorithms
with related frameworks can be customized using the corresponding extensible frameworks. For more
information on algorithm instance extensibility, see the Extensible algorithms84 page.

Algorithm Instances Extensible? Related Framework

AccNoLookup85 X Secure Lookup86

https://masking.delphix.com/docs/latest/general-ui-for-extended-algorithms
https://masking.delphix.com/docs/latest/algorithms-authoring-extensible-plugins
https://masking.delphix.com/docs/latest/accnolookup
https://masking.delphix.com/docs/latest/secure-lookup-algorithm-frameworks
https://masking.delphix.com/docs/latest/general-ui-for-extended-algorithms
https://masking.delphix.com/docs/latest/algorithms-authoring-extensible-plugins
https://masking.delphix.com/docs/latest/accnolookup
https://masking.delphix.com/docs/latest/secure-lookup-algorithm-frameworks

Continuous Compliance – Continuous Compliance Home

87 https://masking.delphix.com/docs/latest/addrlookup
88 https://masking.delphix.com/docs/latest/secure-lookup-algorithm-frameworks
89 https://masking.delphix.com/docs/latest/addrline2lookup
90 https://masking.delphix.com/docs/latest/secure-lookup-algorithm-frameworks
91 https://masking.delphix.com/docs/latest/secure-lookup-algorithm-frameworks
92 https://masking.delphix.com/docs/latest/businesslegalentitylookup
93 https://masking.delphix.com/docs/latest/secure-lookup-algorithm-frameworks
94 https://masking.delphix.com/docs/latest/dlpx-core-cm-alpha-numeric
95 https://masking.delphix.com/docs/latest/character-mapping-algorithm-frameworks
96 https://masking.delphix.com/docs/latest/dlpx-core-cm-digits
97 https://masking.delphix.com/docs/latest/character-mapping-algorithm-frameworks
98 https://masking.delphix.com/docs/latest/dlpx-core-cm-numeric
99 https://masking.delphix.com/docs/latest/commentlookup
100 https://masking.delphix.com/docs/latest/secure-lookup-algorithm-frameworks
101 https://masking.delphix.com/docs/latest/credit-card
102 https://masking.delphix.com/docs/latest/payment-card-algorithm-frameworks
103 https://masking.delphix.com/docs/latest/date-shift-discrete
104 https://masking.delphix.com/docs/latest/date-shift-fixed
105 https://masking.delphix.com/docs/latest/date-shift-algorithm-frameworks

Securing sensitive data – 471

Algorithm Instances Extensible? Related Framework

AddrLookup87 X Secure Lookup88

AddrLine2Lookup89 X Secure Lookup90

dlpx-core:Age SL X Secure Lookup91

BusinessLegalEntityLookup92 X Secure Lookup93

dlpx-core:CM Alpha-Numeric94 X Character Mapping95

dlpx-core:CM Digits96 X Character Mapping97

dlpx-core:CM Numeric98 X

CommentLookup99 X Secure Lookup100

Credit Card101 X Payment Card102

Date Shift Discrete103 X

Date Shift Fixed104 X Date Shift105

https://masking.delphix.com/docs/latest/addrlookup
https://masking.delphix.com/docs/latest/secure-lookup-algorithm-frameworks
https://masking.delphix.com/docs/latest/addrline2lookup
https://masking.delphix.com/docs/latest/secure-lookup-algorithm-frameworks
https://masking.delphix.com/docs/latest/secure-lookup-algorithm-frameworks
https://masking.delphix.com/docs/latest/businesslegalentitylookup
https://masking.delphix.com/docs/latest/secure-lookup-algorithm-frameworks
https://masking.delphix.com/docs/latest/dlpx-core-cm-alpha-numeric
https://masking.delphix.com/docs/latest/character-mapping-algorithm-frameworks
https://masking.delphix.com/docs/latest/dlpx-core-cm-digits
https://masking.delphix.com/docs/latest/character-mapping-algorithm-frameworks
https://masking.delphix.com/docs/latest/dlpx-core-cm-numeric
https://masking.delphix.com/docs/latest/commentlookup
https://masking.delphix.com/docs/latest/secure-lookup-algorithm-frameworks
https://masking.delphix.com/docs/latest/credit-card
https://masking.delphix.com/docs/latest/payment-card-algorithm-frameworks
https://masking.delphix.com/docs/latest/date-shift-discrete
https://masking.delphix.com/docs/latest/date-shift-fixed
https://masking.delphix.com/docs/latest/date-shift-algorithm-frameworks
https://masking.delphix.com/docs/latest/addrlookup
https://masking.delphix.com/docs/latest/secure-lookup-algorithm-frameworks
https://masking.delphix.com/docs/latest/addrline2lookup
https://masking.delphix.com/docs/latest/secure-lookup-algorithm-frameworks
https://masking.delphix.com/docs/latest/secure-lookup-algorithm-frameworks
https://masking.delphix.com/docs/latest/businesslegalentitylookup
https://masking.delphix.com/docs/latest/secure-lookup-algorithm-frameworks
https://masking.delphix.com/docs/latest/dlpx-core-cm-alpha-numeric
https://masking.delphix.com/docs/latest/character-mapping-algorithm-frameworks
https://masking.delphix.com/docs/latest/dlpx-core-cm-digits
https://masking.delphix.com/docs/latest/character-mapping-algorithm-frameworks
https://masking.delphix.com/docs/latest/dlpx-core-cm-numeric
https://masking.delphix.com/docs/latest/commentlookup
https://masking.delphix.com/docs/latest/secure-lookup-algorithm-frameworks
https://masking.delphix.com/docs/latest/credit-card
https://masking.delphix.com/docs/latest/payment-card-algorithm-frameworks
https://masking.delphix.com/docs/latest/date-shift-discrete
https://masking.delphix.com/docs/latest/date-shift-fixed
https://masking.delphix.com/docs/latest/date-shift-algorithm-frameworks

Continuous Compliance – Continuous Compliance Home

106 https://masking.delphix.com/docs/latest/date-shift-variable
107 https://masking.delphix.com/docs/latest/drivinglicensenolookup
108 https://masking.delphix.com/docs/latest/secure-lookup-algorithm-frameworks
109 https://masking.delphix.com/docs/latest/dummyhospitalnamelookup
110 https://masking.delphix.com/docs/latest/secure-lookup-algorithm-frameworks
111 https://masking.delphix.com/docs/latest/emaillookup
112 https://masking.delphix.com/docs/latest/secure-lookup-algorithm-frameworks
113 https://masking.delphix.com/docs/latest/dlpx-core-email-sl
114 https://masking.delphix.com/docs/latest/email-algorithm-frameworks
115 https://masking.delphix.com/docs/latest/dlpx-core-email-unique
116 https://masking.delphix.com/docs/latest/email-algorithm-frameworks
117 https://masking.delphix.com/docs/latest/dlpx-core-firstname
118 https://masking.delphix.com/docs/latest/name-algorithm-frameworks
119 https://masking.delphix.com/docs/latest/firstnamelookup
120 https://masking.delphix.com/docs/latest/secure-lookup-algorithm-frameworks
121 https://masking.delphix.com/docs/latest/dlpx-core-fullname
122 https://masking.delphix.com/docs/latest/full-name-algorithm-frameworks
123 https://masking.delphix.com/docs/latest/fullnmlookup
124 https://masking.delphix.com/docs/latest/secure-lookup-algorithm-frameworks
125 https://masking.delphix.com/docs/latest/lastcommafirstlookup
126 https://masking.delphix.com/docs/latest/secure-lookup-algorithm-frameworks

Securing sensitive data – 472

Algorithm Instances Extensible? Related Framework

Date Shift Variable106 X

DrivingLicenseNoLookup107 X Secure Lookup108

DummyHospitalNameLookup109 X Secure Lookup110

EmailLookup111 X Secure Lookup112

dlpx-core:Email SL113 X Email114

dlpx-core:Email Unique115 X Email116

dlpx-core:FirstName117 X Name118

FirstNameLookup119 X Secure Lookup120

dlpx-core:FullName121 X Full Name122

FullNMLookup123 X Secure Lookup124

LastCommaFirstLookup125 X Secure Lookup126

https://masking.delphix.com/docs/latest/date-shift-variable
https://masking.delphix.com/docs/latest/drivinglicensenolookup
https://masking.delphix.com/docs/latest/secure-lookup-algorithm-frameworks
https://masking.delphix.com/docs/latest/dummyhospitalnamelookup
https://masking.delphix.com/docs/latest/secure-lookup-algorithm-frameworks
https://masking.delphix.com/docs/latest/emaillookup
https://masking.delphix.com/docs/latest/secure-lookup-algorithm-frameworks
https://masking.delphix.com/docs/latest/dlpx-core-email-sl
https://masking.delphix.com/docs/latest/email-algorithm-frameworks
https://masking.delphix.com/docs/latest/dlpx-core-email-unique
https://masking.delphix.com/docs/latest/email-algorithm-frameworks
https://masking.delphix.com/docs/latest/dlpx-core-firstname
https://masking.delphix.com/docs/latest/name-algorithm-frameworks
https://masking.delphix.com/docs/latest/firstnamelookup
https://masking.delphix.com/docs/latest/secure-lookup-algorithm-frameworks
https://masking.delphix.com/docs/latest/dlpx-core-fullname
https://masking.delphix.com/docs/latest/full-name-algorithm-frameworks
https://masking.delphix.com/docs/latest/fullnmlookup
https://masking.delphix.com/docs/latest/secure-lookup-algorithm-frameworks
https://masking.delphix.com/docs/latest/lastcommafirstlookup
https://masking.delphix.com/docs/latest/secure-lookup-algorithm-frameworks
https://masking.delphix.com/docs/latest/date-shift-variable
https://masking.delphix.com/docs/latest/drivinglicensenolookup
https://masking.delphix.com/docs/latest/secure-lookup-algorithm-frameworks
https://masking.delphix.com/docs/latest/dummyhospitalnamelookup
https://masking.delphix.com/docs/latest/secure-lookup-algorithm-frameworks
https://masking.delphix.com/docs/latest/emaillookup
https://masking.delphix.com/docs/latest/secure-lookup-algorithm-frameworks
https://masking.delphix.com/docs/latest/dlpx-core-email-sl
https://masking.delphix.com/docs/latest/email-algorithm-frameworks
https://masking.delphix.com/docs/latest/dlpx-core-email-unique
https://masking.delphix.com/docs/latest/email-algorithm-frameworks
https://masking.delphix.com/docs/latest/dlpx-core-firstname
https://masking.delphix.com/docs/latest/name-algorithm-frameworks
https://masking.delphix.com/docs/latest/firstnamelookup
https://masking.delphix.com/docs/latest/secure-lookup-algorithm-frameworks
https://masking.delphix.com/docs/latest/dlpx-core-fullname
https://masking.delphix.com/docs/latest/full-name-algorithm-frameworks
https://masking.delphix.com/docs/latest/fullnmlookup
https://masking.delphix.com/docs/latest/secure-lookup-algorithm-frameworks
https://masking.delphix.com/docs/latest/lastcommafirstlookup
https://masking.delphix.com/docs/latest/secure-lookup-algorithm-frameworks

Continuous Compliance – Continuous Compliance Home

127 https://masking.delphix.com/docs/latest/dlpx-core-lastname
128 https://masking.delphix.com/docs/latest/name-algorithm-frameworks
129 https://masking.delphix.com/docs/latest/lastnamelookup
130 https://masking.delphix.com/docs/latest/secure-lookup-algorithm-frameworks
131 https://masking.delphix.com/docs/latest/regex-decompose-algorithm-frameworks
132 https://masking.delphix.com/docs/latest/nullvaluelookup
133 https://masking.delphix.com/docs/latest/dlpx-core-phone-unique
134 https://masking.delphix.com/docs/latest/dlpx-core-phone-us
135 https://masking.delphix.com/docs/latest/randomvaluelookup
136 https://masking.delphix.com/docs/latest/secure-lookup-algorithm-frameworks
137 https://masking.delphix.com/docs/latest/repeatfirstdigit
138 https://masking.delphix.com/docs/latest/schoolnamelookup
139 https://masking.delphix.com/docs/latest/secure-lookup-algorithm-frameworks
140 https://masking.delphix.com/docs/latest/secureshuffle
141 https://masking.delphix.com/docs/latest/segment-mapping-algorithm-frameworks

Securing sensitive data – 473

Algorithm Instances Extensible? Related Framework

dlpx-core:LastName127 X Name128

LastNameLookup129 X Secure Lookup130

dlpx-core:Lat_Long Coordinates X Regex Decompose131

NullValueLookup132 X

dlpx-core:Phone Unique133 X

dlpx-core:Phone US134 X

RandomValueLookup135 X Secure Lookup136

dlpx-core:Redact Digits-Zero X

RepeatFirstDigit137 X

SchoolNameLookup138 X Secure Lookup139

SecureShuffle140 X

dlpx-core:TimeRange X Segment Mapping141

https://masking.delphix.com/docs/latest/dlpx-core-lastname
https://masking.delphix.com/docs/latest/name-algorithm-frameworks
https://masking.delphix.com/docs/latest/lastnamelookup
https://masking.delphix.com/docs/latest/secure-lookup-algorithm-frameworks
https://masking.delphix.com/docs/latest/regex-decompose-algorithm-frameworks
https://masking.delphix.com/docs/latest/nullvaluelookup
https://masking.delphix.com/docs/latest/dlpx-core-phone-unique
https://masking.delphix.com/docs/latest/dlpx-core-phone-us
https://masking.delphix.com/docs/latest/randomvaluelookup
https://masking.delphix.com/docs/latest/secure-lookup-algorithm-frameworks
https://masking.delphix.com/docs/latest/repeatfirstdigit
https://masking.delphix.com/docs/latest/schoolnamelookup
https://masking.delphix.com/docs/latest/secure-lookup-algorithm-frameworks
https://masking.delphix.com/docs/latest/secureshuffle
https://masking.delphix.com/docs/latest/segment-mapping-algorithm-frameworks
https://masking.delphix.com/docs/latest/dlpx-core-lastname
https://masking.delphix.com/docs/latest/name-algorithm-frameworks
https://masking.delphix.com/docs/latest/lastnamelookup
https://masking.delphix.com/docs/latest/secure-lookup-algorithm-frameworks
https://masking.delphix.com/docs/latest/regex-decompose-algorithm-frameworks
https://masking.delphix.com/docs/latest/nullvaluelookup
https://masking.delphix.com/docs/latest/dlpx-core-phone-unique
https://masking.delphix.com/docs/latest/dlpx-core-phone-us
https://masking.delphix.com/docs/latest/randomvaluelookup
https://masking.delphix.com/docs/latest/secure-lookup-algorithm-frameworks
https://masking.delphix.com/docs/latest/repeatfirstdigit
https://masking.delphix.com/docs/latest/schoolnamelookup
https://masking.delphix.com/docs/latest/secure-lookup-algorithm-frameworks
https://masking.delphix.com/docs/latest/secureshuffle
https://masking.delphix.com/docs/latest/segment-mapping-algorithm-frameworks

Continuous Compliance – Continuous Compliance Home

142 https://masking.delphix.com/docs/latest/uscitieslookup
143 https://masking.delphix.com/docs/latest/secure-lookup-algorithm-frameworks
144 https://masking.delphix.com/docs/latest/usstatecodeslookup
145 https://masking.delphix.com/docs/latest/secure-lookup-algorithm-frameworks
146 https://masking.delphix.com/docs/latest/usstateslookup
147 https://masking.delphix.com/docs/latest/secure-lookup-algorithm-frameworks
148 https://masking.delphix.com/docs/latest/weburlslookup
149 https://masking.delphix.com/docs/latest/secure-lookup-algorithm-frameworks
150 https://masking.delphix.com/docs/latest/algorithms-authoring-extensible-plugins
151 https://masking.delphix.com/docs/latest/using-multi-column-algorithms
152 https://masking.delphix.com/docs/latest/binary-lookup-algorithm-frameworks
153 https://masking.delphix.com/docs/latest/character-mapping-algorithm-frameworks
154 https://masking.delphix.com/docs/latest/dlpx-core-cm-alpha-numeric
155 https://masking.delphix.com/docs/latest/dlpx-core-cm-digits
156 https://masking.delphix.com/docs/latest/data-cleansing-algorithm-frameworks
157 https://masking.delphix.com/docs/latest/date-replacement-algorithm-frameworks

Securing sensitive data – 474

Algorithm Instances Extensible? Related Framework

USCitiesLookup142 X Secure Lookup143

USstatecodesLookup144 X Secure Lookup145

USstatesLookup146 X Secure Lookup147

WebURLsLookup148 X Secure Lookup149

8.1.2.2 Algorithm frameworks

Algorithm frameworks allow for the creation of algorithm instances with a custom configuration. For more
information on algorithm framework extensibility, see the Extensible Algorithms150 page. More information
on multi-column algorithms can be found in the Using Multi-Column Algorithms151 page.

Algorithm Framework Extensible? Multi-Column? Out of the Box Instances

Binary Lookup152 X

Character Mapping153 X dlpx-core:CM Alpha-Numeric154

dlpx-core:CM Digits155

Data Cleansing156 X

Date Replacement157 X

https://masking.delphix.com/docs/latest/uscitieslookup
https://masking.delphix.com/docs/latest/secure-lookup-algorithm-frameworks
https://masking.delphix.com/docs/latest/usstatecodeslookup
https://masking.delphix.com/docs/latest/secure-lookup-algorithm-frameworks
https://masking.delphix.com/docs/latest/usstateslookup
https://masking.delphix.com/docs/latest/secure-lookup-algorithm-frameworks
https://masking.delphix.com/docs/latest/weburlslookup
https://masking.delphix.com/docs/latest/secure-lookup-algorithm-frameworks
https://masking.delphix.com/docs/latest/algorithms-authoring-extensible-plugins
https://masking.delphix.com/docs/latest/using-multi-column-algorithms
https://masking.delphix.com/docs/latest/binary-lookup-algorithm-frameworks
https://masking.delphix.com/docs/latest/character-mapping-algorithm-frameworks
https://masking.delphix.com/docs/latest/dlpx-core-cm-alpha-numeric
https://masking.delphix.com/docs/latest/dlpx-core-cm-digits
https://masking.delphix.com/docs/latest/data-cleansing-algorithm-frameworks
https://masking.delphix.com/docs/latest/date-replacement-algorithm-frameworks
https://masking.delphix.com/docs/latest/uscitieslookup
https://masking.delphix.com/docs/latest/secure-lookup-algorithm-frameworks
https://masking.delphix.com/docs/latest/usstatecodeslookup
https://masking.delphix.com/docs/latest/secure-lookup-algorithm-frameworks
https://masking.delphix.com/docs/latest/usstateslookup
https://masking.delphix.com/docs/latest/secure-lookup-algorithm-frameworks
https://masking.delphix.com/docs/latest/weburlslookup
https://masking.delphix.com/docs/latest/secure-lookup-algorithm-frameworks
https://masking.delphix.com/docs/latest/algorithms-authoring-extensible-plugins
https://masking.delphix.com/docs/latest/using-multi-column-algorithms
https://masking.delphix.com/docs/latest/binary-lookup-algorithm-frameworks
https://masking.delphix.com/docs/latest/character-mapping-algorithm-frameworks
https://masking.delphix.com/docs/latest/dlpx-core-cm-alpha-numeric
https://masking.delphix.com/docs/latest/dlpx-core-cm-digits
https://masking.delphix.com/docs/latest/data-cleansing-algorithm-frameworks
https://masking.delphix.com/docs/latest/date-replacement-algorithm-frameworks

Continuous Compliance – Continuous Compliance Home

158 https://masking.delphix.com/docs/latest/date-shift-algorithm-frameworks
159 https://masking.delphix.com/docs/latest/date-shift-fixed
160 https://masking.delphix.com/docs/latest/dependent-date-shift-algorithm-frameworks
161 https://masking.delphix.com/docs/latest/email-algorithm-frameworks
162 https://masking.delphix.com/docs/latest/dlpx-core-email-unique
163 https://masking.delphix.com/docs/latest/dlpx-core-email-sl
164 https://masking.delphix.com/docs/latest/free-text-redaction-algorithm-frameworks
165 https://masking.delphix.com/docs/latest/full-name-algorithm-frameworks
166 https://masking.delphix.com/docs/latest/dlpx-core-fullname
167 https://masking.delphix.com/docs/latest/mapping-algorithm-frameworks
168 https://masking.delphix.com/docs/latest/min-max-algorithm-frameworks
169 https://masking.delphix.com/docs/latest/name-algorithm-frameworks
170 https://masking.delphix.com/docs/latest/dlpx-core-firstname
171 https://masking.delphix.com/docs/latest/dlpx-core-lastname
172 https://masking.delphix.com/docs/latest/numeric-expression-algorithm-frameworks
173 https://masking.delphix.com/docs/latest/payment-card-algorithm-frameworks
174 https://masking.delphix.com/docs/latest/credit-card
175 https://masking.delphix.com/docs/latest/regex-decompose-algorithm-frameworks

Securing sensitive data – 475

Algorithm Framework Extensible? Multi-Column? Out of the Box Instances

Date Shift158 X Date Shift Fixed159

Dependent Date Shift160 X X

Email161 X dlpx-core:Email Unique162

dlpx-core:Email SL163

Free Text Redaction164 X

Full Name165 X dlpx-core:FullName166

Mapping167 X

Min Max168 X

Name169 X dlpx-core:FirstName170
dlpx-core:LastName171

Numeric Expression172 X

Payment Card173 X Credit Card174

Regex Decompose175 X dlpx-core:Lat_Long Coordinates

https://masking.delphix.com/docs/latest/date-shift-algorithm-frameworks
https://masking.delphix.com/docs/latest/date-shift-fixed
https://masking.delphix.com/docs/latest/dependent-date-shift-algorithm-frameworks
https://masking.delphix.com/docs/latest/email-algorithm-frameworks
https://masking.delphix.com/docs/latest/dlpx-core-email-unique
https://masking.delphix.com/docs/latest/dlpx-core-email-sl
https://masking.delphix.com/docs/latest/free-text-redaction-algorithm-frameworks
https://masking.delphix.com/docs/latest/full-name-algorithm-frameworks
https://masking.delphix.com/docs/latest/dlpx-core-fullname
https://masking.delphix.com/docs/latest/mapping-algorithm-frameworks
https://masking.delphix.com/docs/latest/min-max-algorithm-frameworks
https://masking.delphix.com/docs/latest/name-algorithm-frameworks
https://masking.delphix.com/docs/latest/dlpx-core-firstname
https://masking.delphix.com/docs/latest/dlpx-core-lastname
https://masking.delphix.com/docs/latest/numeric-expression-algorithm-frameworks
https://masking.delphix.com/docs/latest/payment-card-algorithm-frameworks
https://masking.delphix.com/docs/latest/credit-card
https://masking.delphix.com/docs/latest/regex-decompose-algorithm-frameworks
https://masking.delphix.com/docs/latest/date-shift-algorithm-frameworks
https://masking.delphix.com/docs/latest/date-shift-fixed
https://masking.delphix.com/docs/latest/dependent-date-shift-algorithm-frameworks
https://masking.delphix.com/docs/latest/email-algorithm-frameworks
https://masking.delphix.com/docs/latest/dlpx-core-email-unique
https://masking.delphix.com/docs/latest/dlpx-core-email-sl
https://masking.delphix.com/docs/latest/free-text-redaction-algorithm-frameworks
https://masking.delphix.com/docs/latest/full-name-algorithm-frameworks
https://masking.delphix.com/docs/latest/dlpx-core-fullname
https://masking.delphix.com/docs/latest/mapping-algorithm-frameworks
https://masking.delphix.com/docs/latest/min-max-algorithm-frameworks
https://masking.delphix.com/docs/latest/name-algorithm-frameworks
https://masking.delphix.com/docs/latest/dlpx-core-firstname
https://masking.delphix.com/docs/latest/dlpx-core-lastname
https://masking.delphix.com/docs/latest/numeric-expression-algorithm-frameworks
https://masking.delphix.com/docs/latest/payment-card-algorithm-frameworks
https://masking.delphix.com/docs/latest/credit-card
https://masking.delphix.com/docs/latest/regex-decompose-algorithm-frameworks

Continuous Compliance – Continuous Compliance Home

176 https://masking.delphix.com/docs/latest/secure-lookup-algorithm-frameworks
177 https://masking.delphix.com/docs/latest/secure-lookup-out-of-the-box-algorithm-instances
178 https://masking.delphix.com/docs/latest/segment-mapping-algorithm-frameworks
179 https://masking.delphix.com/docs/latest/tokenization-algorithm-frameworks

Securing sensitive data – 476

Algorithm Framework Extensible? Multi-Column? Out of the Box Instances

Secure Lookup176 X See the Secure Lookup (out of the box
algorithm instances)177 page.

Segment Mapping178 X dlpx-core:TimeRange

Tokenization179 X

8.1.3 Configuring your own algorithms

8.1.3.1 Algorithm settings

The Algorithm tab displays algorithm Names along with Type and Description. This is where you add (create)
new algorithms. The default algorithms and any algorithms you have defined appear on this tab.

At the top of the page, Nonconforming Data behavior is displayed to specify how all algorithms should
behave if they encounter data values in an unexpected format. Mark job as Failed instructs algorithms to
throw an exception that will result in the job failing. Mark job as Succeeded instructs algorithms to ignore the
non-conformant data and not throw an exception. Note that Mark job as Succeeded will result in the non-
conformant data not being masked should the job succeed, but the Monitor page will display a warning that
can be used to report the non-conformant data events.

https://masking.delphix.com/docs/latest/secure-lookup-algorithm-frameworks
https://masking.delphix.com/docs/latest/secure-lookup-out-of-the-box-algorithm-instances
https://masking.delphix.com/docs/latest/segment-mapping-algorithm-frameworks
https://masking.delphix.com/docs/latest/tokenization-algorithm-frameworks
https://masking.delphix.com/docs/latest/secure-lookup-algorithm-frameworks
https://masking.delphix.com/docs/latest/secure-lookup-out-of-the-box-algorithm-instances
https://masking.delphix.com/docs/latest/segment-mapping-algorithm-frameworks
https://masking.delphix.com/docs/latest/tokenization-algorithm-frameworks

Continuous Compliance – Continuous Compliance Home

Securing sensitive data – 477

1.

2.

3.

4.

8.1.3.2 Creating new algorithms

If none of the default algorithms meet your needs, you might want to create a new algorithm. An algorithm
that you create is called a "user-defined algorithm".

Algorithm Frameworks give you the ability to quickly and easily define the algorithms you want, directly on
the Settings page. After you create an algorithm, your algorithm will be available to all users.

To add an algorithm:

In the upper right-hand corner of the Algorithm settings tab, click Add Algorithm.

Select an algorithm type.

Complete the form to the right to name and describe your new algorithm.

Click Save.

8.1.3.3 Editing algorithms

Administrators, as well as users with EDIT Algorithm permission assigned in their Role, may edit any user-
defined algorithm on the system.

Continuous Compliance – Continuous Compliance Home

180 https://masking.delphix.com/docs/latest/firstnamelookup
181 https://masking.delphix.com/docs/latest/dependent-date-shift

Securing sensitive data – 478

•
•

The following algorithm instances cannot be modified:

Instances that ship with and are defined by the system
Instances defined by algorithm plugins

8.1.4 Algorithms Keys

Most masking algorithms include a key as part of their configuration. Changing this key changes the output
of these algorithms. For example, if the FirstNameLookup180 algorithm masks “Michelle” to “Rachael,”
changing the algorithm’s key might cause it to mask “Michelle” to “Ben”.

An algorithm’s key can be randomized using the following API endpoint:

PUT https://host.example.com/masking/api/algorithms/{algorithmName}/randomize-key

8.1.5 Multi-column algorithms

8.1.5.1 Overview

Multi-column algorithms are a special kind of algorithm that allow a single algorithm assignment to be made
spanning multiple columns or fields in inventory. This allows coordinated masking of multiple fields - for
example, masking two date-time values while preserving the interval between them.

The Dependent Date Shift181 algorithm is an example of a multi-column algorithm.

8.1.5.2 Usage

Each multi-column algorithm defines a set of Logical Fields; these logical fields are assigned to the actual
fields or columns in inventory, defining how each value will be treated by the algorithm. A particular logical
field may be read-only, indicating that it is considered as input but not masked by the multi-column algorithm,
and/or optional, meaning the logical field is not required in order for the masking assignment to be complete.
Furthermore, the Algorithm Group number allows a multi-column algorithm to be assigned multiple times in
the same table or file-format, with the group number indicating which set(s) of logical fields should be
processed together as a single assignment.

Incomplete multi-column masking assignments in the inventory may not be detected until such
time as a masking job is executed using that inventory. It is important to review each multi-
column assignment carefully to ensure that for each Algorithm Group, each non-optional Logical
Field is assigned to a column or field in the table or file-format.

https://masking.delphix.com/docs/latest/firstnamelookup
https://masking.delphix.com/docs/latest/dependent-date-shift
https://masking.delphix.com/docs/latest/firstnamelookup
https://masking.delphix.com/docs/latest/dependent-date-shift

Continuous Compliance – Continuous Compliance Home

Securing sensitive data – 479

•
•

•
•

•

•

•

•

•

8.1.6 Limitations

Multi-column algorithms may only be applied in inventories for data connectors where entire rows or records
are processed as a unit.

Specific limitations:

Multi-column algorithms are not supported for XML file masking.
Multi-column algorithm assignments must be contained with a single Record Type for delimited and
fixed-width files.
Multi-column algorithm assignments must not cross redefines in VSAM copybooks.
Multi-column algorithms may not be called by other algorithms through the algorithm chaining
feature.

8.1.7 Algorithm frameworks overview

8.1.7.1 Choosing an algorithm framework

See the Algorithm Frameworks section for a detailed description of each Algorithm Framework. The
algorithm framework you choose will depend on the format of the data and your internal data security
guidelines.

8.1.7.2 Choosing between character and segment mapping frameworks

The Character Mapping algorithm is intended to replace Segment Mapping for many use cases. That said, it
does not replicate every feature of that algorithm, so the specific masking application will determine which
one is appropriate.

Reasons to choose Character Mapping over Segment Mapping:

Character Mapping can mask all characters in the first Unicode plane. Segment Mapping can only
mask "[a-zA-Z]" + "[0-9]"
Character Mapping automatically preserves all non-masked characters. Segment Mapping requires
configuration of preserve characters. Character Mapping is much easier to use when the data is
potentially "dirty" or not consistently formatted.
Character Mapping can process preserve ranges in reverse, allowing the last positions of an input to
be preserved when inputs have different lengths. Segment Mapping preserve ranges are always
processed from the beginning of input.
Character Mapping uses a more complex masking computation, so that every maskable position
influences every other position in the masked value. Segment Mapping pre-computes the
permutations for each segment independently.

Reasons to choose Segment Mapping over Character Mapping:

Segment mapping can mask different parts of the input, determined by position, differently. Character
Mapping always masks the same groups of characters regardless of position.

Continuous Compliance – Continuous Compliance Home

182 https://delphixdocs.atlassian.net/continuous-compliance-10-0-0-0/docs/character-mapping

Securing sensitive data – 480

•

•

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

Segment mapping can map inputs to different outputs at a position, like { A, B, C, D } -> { W, X, Y, Z } by
specifying different Input and Mask values. This is not possible with Character Mapping.
Segment mapping supports numeric segments, with up to 6-digit segments masked to a specific
range. Character Mapping doesn't allow this kind of range limiting.

8.1.8 Out of the box algorithm instances

This section contains the following topics:

dlpx-core: CM Alpha-Numeric (see page 480)

dlpx-core: CM Digits (see page 481)

dlpx-core: CM Numeric (see page 482)

Credit Card (see page 482)

Date Shift Discrete (see page 483)

Date Shift Fixed (see page 483)

Date Shift Variable (see page 484)

dlpx-core: Email SL (see page 484)

dlpx-core: Email Unique (see page 485)

dlpx-core: FirstName (see page 486)

dlpx-core: FullName (see page 487)

dlpx-core: LastName (see page 488)

dlpx-core:Lat_Long Coordinates (see page 489)

NullValueLookup (see page 492)

dlpx-core: Phone Unique (see page 492)

dlpx-core: Phone US (see page 493)

dlpx-core:Redact Digits-Zero (see page 493)

RepeatFirstDigit (see page 494)

Secure Lookup (Out of the box algorithm instances) (see page 494)

dlpx-core:TimeRange (see page 504)

dlpx-core: IBAN (see page 505)

SecureShuffle (see page 507)

8.1.8.1 dlpx-core: CM Alpha-Numeric

Based >Extensible Algorithm Framework (see page 470)

The CM Alpha-Numeric algorithm is an instance of the C182haracter Mapping Algorithm Framework. (see page
509)

CM Alpha-Numeric should only be used on non-numeric data types.

https://delphixdocs.atlassian.net/continuous-compliance-10-0-0-0/docs/character-mapping
https://delphixdocs.atlassian.net/continuous-compliance-10-0-0-0/docs/character-mapping

Continuous Compliance – Continuous Compliance Home

Securing sensitive data – 481

•
•
•
•
•

•
•
•
•

This algorithm masks all ASCII digit, lowercase, and uppercase characters, as well as some extended latin
and cyrillic characters. Refer to the framework description for details of how masking is performed.

At least one character in the input must be masked, or Non-Conformant data handling will be triggered.

For example:

"6379315274824970" → "0345698341375224"
"ABCxyz123" → "HANwhp391"
"Sí" → "Cž"
"999-12-3456." → "668-23-1138."
"2000:a86f::1" → "3893:u55x::0"

8.1.8.2 dlpx-core: CM Digits

Based >Extensible Algorithm Framework (see page 470)

The CM Digits algorithm is an instance of the Character Mapping Algorithm Framework. (see page 509)

This algorithm masks all ASCII digits. Refer to the framework description for details of how masking is
performed. Be aware that this algorithm can produce value collisions when applied to Numeric data types.
This is because leading zeros are not significant in numeric types, so while "7" → "8" and "304" → "008" may
be different string results, when inserted into a numeric field, they represent the same value. If this behavior
is undesirable, consider using the CM Numeric (see page 482) algorithm.

At least one character in the input must be masked, or Non-Conformant data handling will be triggered.

For example:

"6379315274824970" → "8345698341375224"
"99" → "05"
"ABCxyz123" → "ABCxyz391"
"0" → "6"

The character mapping algorithm can be used for tokenization and reidentification jobs.

This algorithm may generate non-conformant data events.

This algorithm may generate non-conformant data events.

Continuous Compliance – Continuous Compliance Home

183 https://delphixdocs.atlassian.net/wiki/pages/createpage.action?
fromPageId=47582760&linkCreation=true&spaceKey=CC&title=Introduction+to+masking+algorithms

Securing sensitive data – 482

•
•
•
•
•

8.1.8.3 dlpx-core: CM Numeric

Based >Extensible Algorithm Framework (see page 470)

The CM Numeric algorithm is an algorithm based on logic in the Character Mapping Algorithm
Framework. (see page 509)

The framework this algorithm is based on is not configurable and cannot be reused to create additional
instances.

This algorithm masks all ASCII digit without the possibility of the first digit masking to "0". Leading and
trailing zeros are preserved. The value "0" always masks to "0". Unlike the "CM digits" instance, the number of
significant digits is always preserved for all numeric inputs.

Refer to the framework description for details of how masking is performed.

At least one character in the input must be masked, or Non-Conformant data handling will be triggered.

For example:

"6379315274824970" → "5210366768740261"
"99" → "75"
"000051.1230" → "000072.9040"
"ABCxyz123" → "ABCxyz391"
"0" → "0"

8.1.8.4 Credit Card

Based >Extensible Algorithm Framework183

CM Numeric algorithm should only be used for numeric data types.

This algorithm can only be used for integer data in tokenization and reidentification jobs.
Masking numbers with decimal points is not reversible.

This algorithm may generate non-conformant data events.

https://delphixdocs.atlassian.net/wiki/pages/createpage.action?fromPageId=47582760&linkCreation=true&spaceKey=CC&title=Introduction+to+masking+algorithms
https://delphixdocs.atlassian.net/wiki/pages/createpage.action?fromPageId=47582760&linkCreation=true&spaceKey=CC&title=Introduction+to+masking+algorithms

Continuous Compliance – Continuous Compliance Home

Securing sensitive data – 483

•
•
•

•
•
•
•

The Credit Card algorithm is an instance of the Payment Card Algorithm Framework (see page 552). The
algorithm requires input values to have at least 8 digits in the character group [0-9]. If an input value has less
than this, the algorithm will return an error. It preserves the first 6 digits of the input and requires at least one
position to be masked for masking to be considered successful. The algorithm masks all subsequent digits
by replacing them with a random value. All input characters that are not in the character group [0-9] are
preserved. The algorithm maintains Luhn check validity through masking so input values with a valid Luhn
check will mask to a value with a valid Luhn check. The out-of-the-box instance of this algorithm is called
CreditCard.

For example:

"6379315274824970" → "6379318341375224"
"6379.3152.7482.4970" → "6379.3183.4137.5224"
"abc5473defg04828hijkl0656253" → "abc5473defg04971hijkl6490341"

8.1.8.5 Date Shift Discrete

The Date Shift Discrete algorithm masks all dates with the same year-month combination to the same day. A
different day is returned for each year-month combination. As an example, any inputs with a year-month
combination of February 2020 may return a day value of 23 while any inputs with a year-month combination
of January 2020 may return a day value of 5. All values of the input other than the day value are preserved.
This algorithm is deterministic based on an algorithm key. The out-of-the-box instance of this algorithm is
called DateShiftDiscrete.

For example:

"1989-11-19 00:00:00" → "1989-11-30 00:00:00"
"1989-12-19 04:15:00" → "1989-12-24 04:15:00"
"2012-11-19 17:00:55" → "2012-11-08 17:00:55"
"2012-11-09 00:23:59" → "2012-11-08 00:23:59"

8.1.8.6 Date Shift Fixed

Based >Extensible Algorithm Framework (see page 470)

The Date Shift Fixed algorithm is an instance of the Date Shift Algorithm Framework (see page 515) masking
the input to 5 days in the future with roll enabled so only the day of the month will change, all other units will
remain the same. Dates at the end of the month will roll back to the beginning of the same month in the
same year. The out-of-the-box instance of this algorithm is called DateShiftFixed.

This algorithm may generate non-conformant data events.

This algorithm may generate non-conformant data events.

Continuous Compliance – Continuous Compliance Home

Securing sensitive data – 484

•
•
•

•
•
•
•

•
•
•
•
•

For example:

"2001-02-05 12:30:00" → "2001-02-10 12:30:00"
"2001-02-27 15:45:00" → "2001-02-04 15:45:00"
"2001-12-28 00:00:00" → "2001-12-02 00:00:00"

8.1.8.7 Date Shift Variable

The Date Shift Variable algorithm returns a random date within the same month-year as the input date. Dates
will not mask to the original input date. This algorithm may produce collisions. The out-of-the-box instance of
this algorithm is called DateShiftVariable.

For example:

"2019-02-05 10:00:00" → "2019-02-13 10:00:00"
"2019-02-12 15:30:00" → "2019-02-13 15:30:00"
"2019-02-27 00:45:30" → "2019-02-17 00:45:30"
"2020-02-27 00:00:00" → "2020-02-22 00:00:00"

8.1.8.8 dlpx-core: Email SL

Based >Extensible Algorithm Framework (see page 470)

The Email SL algorithm is an instance of the Email Algorithm Framework (see page 520). This algorithm splits
the input on the '@' symbol. Handling of malformed inputs (see page 0) is detailed on the Email Algorithm
Framework page (see page 520). This algorithm does not generate any non-conformant data events. The
algorithm will split the input into two parts: name and domain. Name is the portion before the '@' symbol and
domain is the portion after the '@' symbol.

A secure lookup is applied to the name portion of the input. The provided secure lookup file contains 20,000
unique lookup values in various formats. The following formats are used in the default lookup file:

FirstName.LastName
FirstName_LastName
FirstInitial.LastName
FirstNameLastName
FirstNameLastInitialNumber

This algorithm may generate non-conformant data events.

This algorithm may generate non-conformant data events.

Continuous Compliance – Continuous Compliance Home

Securing sensitive data – 485

•
•
•
•

•

•

•

•

The domain portion is replaced by the fixed value "example.com". This value is a reserved domain with a
valid DNS entry.

This algorithm is deterministic based on an algorithm key. It is possible that there may be collisions where
two different values mask to the same value due to the nature of secure lookup. The out-of-the-box instance
of this algorithm is called dlpx-core:Email SL.

For example:

"bob@gmail.com" → "E.Duboise@example.com"
"bob@hotmail.com" → "E.Duboise@example.com"
"alex@gmail.com" → "OrvinA436@example.com"
"joe_123@yahoo.com" → "Amil.Steidinger@example.com"

8.1.8.9 dlpx-core: Email Unique

Based >Extensible Algorithm Framework (see page 470)

The Email Unique algorithm is an instance of the Email Algorithm Framework. (see page 520) This algorithm
splits the input on the '@' symbol. Handling of malformed inputs (see page 0) is detailed on the Email Algorithm
Framework (see page 520) page. This algorithm does not generate any non-conformant data events. The
algorithm will split the input into two parts: name and domain. Name is the portion before the '@' symbol and
domain is the portion after the '@' symbol.

The name portion is masked by performing a SHA-256 hash of the entire input (including the domain). This
means that inputs with the same name portion but different domain portions will mask to different values.
The hashed value is then encoded using Base32 encoding. The result of these transformations is the
masked name portion.

The domain portion is replaced by the fixed value "example.com". This value is a reserved domain with a
valid DNS entry.

This algorithm is deterministic based on an algorithm key. This algorithm provides unique masked values for
each input. The out-of-the-box instance of this algorithm is called dlpx-core:Email Unique.

For example:

"bob@gmail.com" →
"XF35TNMKPPTMQF4CX5264ZRXOMJJL2DQVE3KTZNIJ2NS6EUH7GLA@example.com"
"bob@hotmail.com" →
"M2U3LCC24MP5XDQ7DH4RSDW6QXCWRTSJVQF22C7IKBXDQ3LBM7NQ@example.com"
"alex@gmail.com" →
"CQKOXVBPD3VT42XHLBBUHEWIAJ26X3NROEBZHMSC7B4NFSZSTBIQ@example.com"
"joe_123@yahoo.com" →
"JTJNSLWLK4TWQ7VKG2KMRMMMH4M3FRIXUXFR7TIEL6VJR3G6AU2Q@example.com"

This instance may produce masked name portions with lengths up to 52 characters.

Continuous Compliance – Continuous Compliance Home

Securing sensitive data – 486

8.1.8.10 dlpx-core: FirstName

Based > Extensible Algorithm Framework (see page 788)

The First Name algorithm is an instance of the Name Algorithm Framework (see page 541). The algorithm
requires String type input values.

The expected format for the valid input contains at least one word, which consist of at least one non-
whitespace character. If the input value does not match the expected format, the value will not be masked.
I.e. if input contains null or empty string or white spaces only, then the algorithm returns unmasked input
value.

No non-conformant data errors are thrown by that algorithm.

Single character is considered an abbreviation, i.e. it will be masked to a single character. Whether it is
followed by the dot (.) or not. Words separated by the hyphen (-) are considered as a single word (even if
divided from hyphen by spaces).

The default First Name instance is configured without particle files, so every input word is considered as a
valid part of the name. The maximum number of names masked and returned is 2; additional names are
dropped. Leading and trailing white spaces are not preserved.

For example:

Input Masked Output

null null

"" (empty string) ""

" " (white spaces only) " "

& (single non alphanumeric character) R

&? Michael

M S

M. S.

Ann- Marie Boris

Ann-Marie M. Boris S.

Ann-Marie Jane Jill Boris Shelby

Continuous Compliance – Continuous Compliance Home

Securing sensitive data – 487

Input Masked Output

von (particle not configured) tim

von Jane tim Shelby

8.1.8.11 dlpx-core: FullName

Based >Extensible Algorithm Framework (see page 788)

The Full Name algorithm is an instance of the Full Name Algorithm Framework (see page 526). The algorithm
requires String type input values.

If input value is non-conformant (for example: null or white spaces), it is not masked. Words containing any
character(s) are considered as a valid input and masked. Words separated by hyphen (-) are considered as a
single word (even if divided from hyphen by spaces). No non-conformant data errors are thrown by that
algorithm.

The default Full Name algorithm instance uses all default parameters, and chains "dlpx-core:FirstName"
algorithm instance for first names masking, and "dlpx-core:LastName" for last name masking.

Below are few examples of the Full Name default algorithm instance masking:

Input Masked Output

Manuel Maria Saxe-Coburgo-Gotha Nimisha Kum Mcneish

Manuel - Boris Maria Saxe-Coburgo-Gotha Simeon Kum Mcneish

Manuel Maria Saxe -Coburgo - Gotha Nimisha Kum Mcneish

Manuel Maria de Saxe-Coburgo-Gotha Nimisha Kum Mcneish

Manuel Maria de Saxe-Coburgo-Gotha (*) Nimisha Kum Casteleyn

Manuel Maria - de ? Saxe-Coburgo-Gotha : # Nimisha Muharrem E

Manuel Maria Saxe-Coburgo-Gotha (*) Nimisha Kum Casteleyn

Mr. Manuel Maria de Saxe-Coburgo-Gotha # Levar Nimisha E
(dlpx-core:FirstName does not have any configured
particles)

Continuous Compliance – Continuous Compliance Home

Securing sensitive data – 488

Input Masked Output

Saxe-Coburgo-Gotha, Manuel Maria Mcneish, Nimisha Kum

saxe-coburgo-gotha, Manuel Maria mcneish, Nimisha Kum

SAXE-COBURGO-GOTHA, MANUEL Maria MCNEISH, NIMISHA Kum

Saxe-Coburgo-Gotha: M. M Claudia T. S

M. G. Maria Saxe-Coburgo-Gotha T. E. Mcneish

M M Saxe-Coburgo-Gotha T T Mcneish

M M. Saxe-Coburgo-Gotha T T. Mcneish

M M. S T T. G

M M. S. T T. G.

m m. s. t t. g.

Max Grassi

Max Grassi

8.1.8.12 dlpx-core: LastName

Based > Extensible Algorithm Framework (see page 788)

The Last Name algorithm is an instance of the Name Algorithm Framework (see page 541). The algorithm
requires String type input values.

The expected format for the valid input contains at least one word, which consist of at least one non-
whitespace character. If the input value does not match the expected format, the value will not be masked.
I.e. if input contains null or empty string or white spaces only then the algorithm returns unmasked input
value.

No non-conformant data errors are thrown by that algorithm.

Continuous Compliance – Continuous Compliance Home

Securing sensitive data – 489

Single word input is not checked for configured particles. Single character is considered abbreviation, i.e. it
will be masked to a single character, whether it is followed by the dot (.) or not. Words separated by hyphen
(-) are considered as a single word (even if divided from hyphen by spaces).

The default Last Name instance is configured with a particleToRemove file. After configured particles are
removed from the input, a single word is masked and returned; additional words are dropped. Leading and
trailing white spaces are not preserved.

For example:

Input Masked Output

null null

"" (empty string) ""

" " (white spaces only) " "

? (single non alphanumeric character) K

?> Michael

M S

M. S.

Ann- Marie Boris

von (particle) wilke

Frout Smith

von Frout Smith

von Frout Weissman Smith

8.1.8.13 dlpx-core:Lat_Long Coordinates

Based >Extensible Algorithm Framework (see page 470)

Continuous Compliance – Continuous Compliance Home

Securing sensitive data – 490

The Lat_Long Coordinates algorithm is an instance of the Regex Decompose Algorithm Framework. (see page
554)

The algorithm can mask latitude & longitude individually and also a combination of latitude and longitude in
that order separated by delimiters- comma or space . The supported formats are:

Name Format Explanation valid ranges Valid examples that
the algorithm can
mask

DD -
Decimal
degrees

DD.DDDDDD
D°<dir>

DD: Degrees [-90, +90] for latitude
[-180, +180] for longitude.

41.40338

41.40338°

+39°98212343

-79.945790

89.1424342N

137.234543°E

+39°98212343,-7

9.945790

DDDDDD: Decimal
degrees

[0000-99999999]

DMM-
Degrees,
Decimal
Minutes

DD°MM.MM
MM'<dir>

DD: Degrees [-90, +90] for latitude
[-180, +180] for longitude.

41 24.2028

2 10.4418

65°24.342N

+84°59.1234'

MM: Minutes [0, 59]

MMMM': Decimal
minutes

[000-9999]

This algorithm recognizes and masks only the EPSG:4326 coordinate system (WGS84)
containing latitude and longitude.



Lat_Long Coordinates algorithm should only be used for string or numeric data types and does
not support spatial or geometric column data-types.

Continuous Compliance – Continuous Compliance Home

184 https://spatialreference.org/ref/epsg/

Securing sensitive data – 491

•

•

•

•

•

•

•

•

•

Name Format Explanation valid ranges Valid examples that
the algorithm can
mask

DMS-
Degrees
Minutes
Seconds

DD°MM'
SS.SS"<dir>

DD: Degrees [-90, +90] for latitude
[-180, +180] for longitude.

41°24'12.2"N

41°16'35.8"N

2°10'26"E

173°41′53.88″W

MM': Minutes [0, 59]

SS: Seconds [0, 59]

SS”: Decimal
Seconds

[0, 99]

<dir> can be one of the four directions - N, S, E & W

The algorithm will preserve the degrees (DD), the prefix direction (+/-), the direction character suffix (N, E, W,
S) at the end, and any non-digits (symbols – . , ° , ′ , ' , " , “). It masks the decimal parts to valid
decimals, minutes, and seconds (0-59) to valid minutes and seconds (0-59) respectively.

Valid input masking examples:

+41.939390 → +41.684362

41°24'12.2"N → 41°16'35.8"N

41°24'12"N 2°10'26"E → 41°16'35"N 2°50'05"E

41 24.2028, 2 10.4418 → 41 16.3542, 2 50.5383

32°00′05″N 173°41′53″W → 32°15′07″N 173°30′02″W

+41.939390 → +41.684362

Fallback action and non-conforming inputs:

The above coordinate formats of latitude and longitude are one of the most widely adopted coordinate
systems. There are several other coordinate formats and spatial systems which can be found online184.
When the current algorithm is used to mask such coordinates, they are treated as non-conforming inputs as
they do not match any of the regex patterns defined in the algorithm. For all such data, a fallback action
masks or redacts all the digits of the input value to “0” keeping the format, directions, degrees, minutes,
seconds symbols, and any other characters intact. As a result, non-conformant events are not produced for
this algorithm.

Non-conforming input masking examples:

41°65'35.8"N → 00°00'00.0"N

189.98212343°W → 000.00000000°W

ABCxyz391 → ABCxyz000

https://spatialreference.org/ref/epsg/
https://spatialreference.org/ref/epsg/

Continuous Compliance – Continuous Compliance Home

Securing sensitive data – 492

•

•

•

•
•
•
•
•

•
•
•
•
•
•

To keep the algorithm regexes reasonably simple and readable (which also impacts performance), the
outermost values of the allowed latitude and longitude ranges are also masked or redacted to 0.

90°00′00.0″N → 00°00′00.0″N

180°00′00.00″W → 000°00′00.00″W

-90°00′00.0″ → -00°00′00.0″

8.1.8.14 NullValueLookup

Based >Extensible Algorithm Framework (see page 470)

This algorithm replaces the input with a null or empty value, depending on the context.

For example:

"6379315274824970" → null
"ABCxyz123" → null
"Sí" → null
"999-12-3456." → null
"2000:a86f::1" → null

8.1.8.15 dlpx-core: Phone Unique

Based >Extensible Algorithm Framework (see page 470)

The Phone Unique algorithm masks the last 7 digits in the character group [0-9] with the hash value of the
digits. All characters outside of this character group remain unmasked and are preserved in the masked
value.

The maximum acceptable input length is 30 symbols, longer inputs will trigger non-conformant data
handling. The input must contain at least one character in the character group [0-9], or non-conformant data
handling will be triggered.

For example:

"12-765" → "29-540"
"(123)456-7890" → "(123)012-3901"
"1(800) FLOWERS" → "2(746) FLOWERS"
"+1-650-513-0514" → "+1-650-409-9747"
"(512) 333-1234 ext 123" → "(512) 333-2905 ext 908"
"CALL-ME-FLOWERS" → "CALL-ME-FLOWERS" (and generates a non-conformant data event)

The algorithm's name is chosen for backward compatibility only. It does not perform any kind of
lookup and is not related to the Secure Lookup framework.



Continuous Compliance – Continuous Compliance Home

Securing sensitive data – 493

•
•
•
•
•
•

•
•
•
•
•

8.1.8.16 dlpx-core: Phone US

Based >Extensible Algorithm Framework (see page 470)

The Phone US algorithm masks the last 4 digits in the character group [0-9] with the hash value of the digits
and the 3 preceding digits are replaced with the value '555'. All characters outside of this character group
remain unmasked and are preserved in the masked value.

The maximum acceptable input length is 30 symbols, longer inputs will trigger non-conformant data
handling. The input must contain at least one character in the character group [0-9], or non-conformant data
handling will be triggered.

For example:

"12-765" → "58-504"
"(123)456-7890" → "(123)555-3085"
"1(800) FLOWERS" → "2(746) FLOWERS"
"+1-650-513-0514" → "+1-650-555-9202"
"(512) 333-1234 ext 123" → "(512) 333-5550 ext 497"
"CALL-ME-FLOWERS" → "CALL-ME-FLOWERS" (and generates a non-conformant data event)

8.1.8.17 dlpx-core:Redact Digits-Zero

Based >Extensible Algorithm Framework (see page 470)

This algorithm replaces all the digits of the input with a 0.

For example:

"98034209" → "000000000"
"ABCxyz123" → "ABCxyz000"
"Si" → "Si"
"999-12-3456." → "000-00-0000."
"" → ""

This algorithm may generate non-conformant data events.

This algorithm may generate non-conformant data events.

Continuous Compliance – Continuous Compliance Home

Securing sensitive data – 494

•
•
•

•

•
•
•
•
•

•
•
•
•
•
•
•
•
•

8.1.8.18 RepeatFirstDigit

Based >Extensible Algorithm Framework (see page 470)

This algorithm masks the "+4" component of a zip code by repeating its first digit four times, unless the first
digit is zero, in which case '1' is repeated four times.

The input must contain a 4-character string "DDDD" (where each 'D' is a numeric digit). The following formats
are valid inputs:

4-character string "DDDD" where 'D' is a digit
9-character string "cccccDDDD" where 'D' is a digit, and 'c' can be any character
10-character string "ccccccDDDD" where 'D' is a digit, and 'c' can be any character but must contain at
least one hyphen or period
14-character string "cccccDDDDccccc" where 'D' is a digit, and 'c' can be any character

For example:

"6912" → "6666"
"0123" → "1111"
"941173564" → "941173333"
"43556-9703" → "43556-9999"
"009078377 SJPR" → "009078888"

8.1.8.19 Secure Lookup (Out of the box algorithm instances)

This section covers the following topics:

AccNoLookup (see page 495)

AddrLookup (see page 495)

AddrLine2Lookup (see page 496)

Age SL (see page 496)

BusinessLegalEntityLookup (see page 497)

CommentLookup (see page 497)

DrivingLicenseNoLookup (see page 498)

DummyHospitalNameLookup (see page 498)

EmailLookup (see page 498)

14-character "cccccDDDDccccc" inputs will be truncated to "cccccDDDD"

This algorithm may generate non-conformant data events.

Continuous Compliance – Continuous Compliance Home

185 https://delphixdocs.atlassian.net/wiki/pages/createpage.action?
fromPageId=47613002&linkCreation=true&spaceKey=CC&title=Introduction+to+masking+algorithms

186 https://delphixdocs.atlassian.net/wiki/pages/createpage.action?
fromPageId=47580819&linkCreation=true&spaceKey=CC&title=Introduction+to+masking+algorithms

Securing sensitive data – 495

•
•
•
•
•
•
•
•
•
•
•

•
•
•
•
•

FirstNameLookup (see page 499)

FullNMLookup (see page 500)

LastCommaFirstLookup (see page 500)

LastNameLookup (see page 501)

RandomValueLookup (see page 501)

SchoolNameLookup (see page 502)

USCitiesLookup (see page 502)

USCountiesLookup (see page 503)

USstatecodesLookup (see page 503)

USstatesLookup (see page 503)

WebURLsLookup (see page 504)

8.1.8.19.1 AccNoLookup

Based >Extensible Algorithm Framework185

The AccNoLookup algorithm is an instance of the Secure Lookup Algorithm Framework. (see page 556)

This algorithm performs a lookup on the input value and returns a value from the provided lookup file. It is
possible for this algorithm to produce the same output value for different input values. Inputs to this
algorithm are case-sensitive so two inputs with the same value in different cases may mask to different
values. Leading and trailing whitespaces are preserved by this algorithm.

The lookup values for this algorithm are 5 digit account numbers.

For example:

"6379315274824970" → "64893"
"ABCxyz123" → "72345"
"ID3938491" → "72433"
"999-12-3456" → "25326"
"2000:a86f::1" → "86432"

8.1.8.19.2 AddrLookup

Based >Extensible Algorithm Framework186

The AddrLookup algorithm is an instance of the Secure Lookup Algorithm Framework. (see page 556)

This algorithm performs a lookup on the input value and returns a value from the provided lookup file. It is
possible for this algorithm to produce the same output value for different input values. Inputs to this
algorithm are case-sensitive so two inputs with the same value in different cases may mask to different
values. Leading and trailing whitespaces are preserved by this algorithm.

The lookup values for this algorithm are line one address values.

https://delphixdocs.atlassian.net/wiki/pages/createpage.action?fromPageId=47613002&linkCreation=true&spaceKey=CC&title=Introduction+to+masking+algorithms
https://delphixdocs.atlassian.net/wiki/pages/createpage.action?fromPageId=47580819&linkCreation=true&spaceKey=CC&title=Introduction+to+masking+algorithms
https://delphixdocs.atlassian.net/wiki/pages/createpage.action?fromPageId=47613002&linkCreation=true&spaceKey=CC&title=Introduction+to+masking+algorithms
https://delphixdocs.atlassian.net/wiki/pages/createpage.action?fromPageId=47580819&linkCreation=true&spaceKey=CC&title=Introduction+to+masking+algorithms

Continuous Compliance – Continuous Compliance Home

187 https://delphixdocs.atlassian.net/wiki/pages/createpage.action?
fromPageId=47580842&linkCreation=true&spaceKey=CC&title=Introduction+to+masking+algorithms

Securing sensitive data – 496

•
•
•

•
•
•

•
•
•
•

For example:

"49 Main St" → "55 BLUE DR"
"1947 Highway 5" → "92 GREEN ST"
"9 County Route 52.5" → "1049 ORANGE CIRCLE"

8.1.8.19.3 AddrLine2Lookup

Based >Extensible Algorithm Framework187

The AddrLine2Lookup algorithm is an instance of the Secure Lookup Algorithm Framework. (see page 556)

This algorithm performs a lookup on the input value and returns a value from the provided lookup file. It is
possible for this algorithm to produce the same output value for different input values. Inputs to this
algorithm are case-sensitive so two inputs with the same value in different cases may mask to different
values. Leading and trailing whitespaces are preserved by this algorithm.

The lookup values for this algorithm are line two address values such as apartment number.

For example:

"#483" → "UNIT 29"
"APT 3D" → "P.O. BOX 934"
"unit 13B" → "APARTMENT 1"

8.1.8.19.4 Age SL

Based >Extensible Algorithm Framework (see page 470)

The AgeLookup algorithm is an instance of the Secure Lookup Algorithm Framework (see page 556).

This algorithm performs a lookup on the input value and returns a value from the provided lookup file. It is
possible for this algorithm to produce the same output value for different input values. Leading and trailing
whitespaces are preserved by this algorithm.

The lookup values for this algorithm are numbers ranging between 1-99, but with duplicated values between
20-55. This gives more probability of a lookup number value between 20-55.

For example:

"55" → "24"
"99" → "23"
"123" → "45"
"1" → "57"

https://delphixdocs.atlassian.net/wiki/pages/createpage.action?fromPageId=47580842&linkCreation=true&spaceKey=CC&title=Introduction+to+masking+algorithms
https://delphixdocs.atlassian.net/wiki/pages/createpage.action?fromPageId=47580842&linkCreation=true&spaceKey=CC&title=Introduction+to+masking+algorithms

Continuous Compliance – Continuous Compliance Home

188 https://delphixdocs.atlassian.net/wiki/pages/createpage.action?
fromPageId=47547808&linkCreation=true&spaceKey=CC&title=Introduction+to+masking+algorithms

189 https://delphixdocs.atlassian.net/wiki/pages/createpage.action?
fromPageId=47515425&linkCreation=true&spaceKey=CC&title=Introduction+to+masking+algorithms

Securing sensitive data – 497

•
•
•

•

•

•

•

•

8.1.8.19.5 BusinessLegalEntityLookup

Based >Extensible Algorithm Framework188

The BusinessLegalEntityLookup algorithm is an instance of the Secure Lookup Algorithm Framework. (see
page 556)

This algorithm performs a lookup on the input value and returns a value from the provided lookup file. It is
possible for this algorithm to produce the same output value for different input values. Inputs to this
algorithm are case-sensitive so two inputs with the same value in different cases may mask to different
values. Leading and trailing whitespaces are preserved by this algorithm.

The lookup values for this algorithm are legal business names.

For example:

"XYZ Corp." → "Boeing"
"Alpha LLC" → "3M"
"ABC Inc." → "Campbell Soup"

8.1.8.19.6 CommentLookup

Based >Extensible Algorithm Framework189

The CommentLookup algorithm is an instance of the Secure Lookup Algorithm Framework (see page 556).

This algorithm performs a lookup on the input value and returns a value from the provided lookup file. It is
possible for this algorithm to produce the same output value for different input values. Inputs to this
algorithm are case-sensitive so two inputs with the same value in different cases may mask to different
values. Leading and trailing whitespaces are preserved by this algorithm. All non-empty and non-null inputs
to this algorithm will mask to the same value.

The lookup value for this algorithm is a generic comment value.

For example:

"6379315274824970" → "This data has been masked in all non-production environments as per
Enterprise Information Security Policy(2013)."
"ABCxyz123" → "This data has been masked in all non-production environments as per Enterprise
Information Security Policy(2013)."
"Sí" → "This data has been masked in all non-production environments as per Enterprise Information
Security Policy(2013)."
"999-12-3456." → "This data has been masked in all non-production environments as per Enterprise
Information Security Policy(2013)."
"2000:a86f::1" → "This data has been masked in all non-production environments as per Enterprise
Information Security Policy(2013)."

https://delphixdocs.atlassian.net/wiki/pages/createpage.action?fromPageId=47547808&linkCreation=true&spaceKey=CC&title=Introduction+to+masking+algorithms
https://delphixdocs.atlassian.net/wiki/pages/createpage.action?fromPageId=47515425&linkCreation=true&spaceKey=CC&title=Introduction+to+masking+algorithms
https://delphixdocs.atlassian.net/wiki/pages/createpage.action?fromPageId=47547808&linkCreation=true&spaceKey=CC&title=Introduction+to+masking+algorithms
https://delphixdocs.atlassian.net/wiki/pages/createpage.action?fromPageId=47515425&linkCreation=true&spaceKey=CC&title=Introduction+to+masking+algorithms

Continuous Compliance – Continuous Compliance Home

190 https://delphixdocs.atlassian.net/wiki/pages/createpage.action?
fromPageId=47547852&linkCreation=true&spaceKey=CC&title=Introduction+to+masking+algorithms

191 https://delphixdocs.atlassian.net/wiki/pages/createpage.action?
fromPageId=47548004&linkCreation=true&spaceKey=CC&title=Introduction+to+masking+algorithms

192 https://delphixdocs.atlassian.net/wiki/pages/createpage.action?
fromPageId=47547960&linkCreation=true&spaceKey=CC&title=Introduction+to+masking+algorithms

Securing sensitive data – 498

•
•
•

•
•
•
•

8.1.8.19.7 DrivingLicenseNoLookup

Based >Extensible Algorithm Framework190

The DrivingLicenseNoLookup algorithm is an instance of the Secure Lookup Algorithm Framework (see page
556).

This algorithm performs a lookup on the input value and returns a value from the provided lookup file. It is
possible for this algorithm to produce the same output value for different input values. Inputs to this
algorithm are case-sensitive so two inputs with the same value in different cases may mask to different
values. Leading and trailing whitespaces are preserved by this algorithm.

The lookup values for this algorithm are 9-digit driver's license IDs.

For example:

"6379315274824970" → "865345234"
"ABCxyz123" → "952731585"
"US949382" → "164927562"

8.1.8.19.8 DummyHospitalNameLookup

Based >Extensible Algorithm Framework191

The DummyHospitalNameLookup algorithm is an instance of the Secure Lookup Algorithm Framework (see
page 556).

This algorithm performs a lookup on the input value and returns a value from the provided lookup file. It is
possible for this algorithm to produce the same output value for different input values. Inputs to this
algorithm are case-sensitive so two inputs with the same value in different cases may mask to different
values. Leading and trailing whitespaces are preserved by this algorithm.

The lookup values for this algorithm are non-real hospital names.

For example:

"Hospital 1" → "Community Hospital"
"New York General Hospital" → "St. Patrick's Medical Center"
"California Health Institute" → "Gotham City Mental Hospital"
"Children's Hospital of Philadelphia" → "Hogwarts Medical Clinic"

8.1.8.19.9 EmailLookup

Based >Extensible Algorithm Framework192

https://delphixdocs.atlassian.net/wiki/pages/createpage.action?fromPageId=47547852&linkCreation=true&spaceKey=CC&title=Introduction+to+masking+algorithms
https://delphixdocs.atlassian.net/wiki/pages/createpage.action?fromPageId=47548004&linkCreation=true&spaceKey=CC&title=Introduction+to+masking+algorithms
https://delphixdocs.atlassian.net/wiki/pages/createpage.action?fromPageId=47547960&linkCreation=true&spaceKey=CC&title=Introduction+to+masking+algorithms
https://delphixdocs.atlassian.net/wiki/pages/createpage.action?fromPageId=47547852&linkCreation=true&spaceKey=CC&title=Introduction+to+masking+algorithms
https://delphixdocs.atlassian.net/wiki/pages/createpage.action?fromPageId=47548004&linkCreation=true&spaceKey=CC&title=Introduction+to+masking+algorithms
https://delphixdocs.atlassian.net/wiki/pages/createpage.action?fromPageId=47547960&linkCreation=true&spaceKey=CC&title=Introduction+to+masking+algorithms

Continuous Compliance – Continuous Compliance Home

Securing sensitive data – 499

•
•
•

•
•
•

The EmailLookup algorithm is an instance of the Secure Lookup Algorithm Framework (see page 556).

formation.

This algorithm performs a lookup on the input value and returns a value from the provided lookup file. It is
possible for this algorithm to produce the same output value for different input values. Inputs to this
algorithm are case-sensitive so two inputs with the same value in different cases may mask to different
values. Leading and trailing whitespaces are preserved by this algorithm.

The lookup values for this algorithm are non-resolving email addresses.

For example:

"bob@gmail.com" → "Andy.Samberg@nytimes.edu"
"Albert_Einstein@nasa.gov" → "John.Smith@aol.gov"
"abc123@delphix.com" → "Fred.James@yahoo.net"

8.1.8.19.10 FirstNameLookup

Based >Extensible Algorithm Framework (see page 470)

The FirstNameLookup algorithm is an instance of the Secure Lookup Algorithm Framework (see page 556).

This algorithm performs a lookup on the input value and returns a value from the provided lookup file. It is
possible for this algorithm to produce the same output value for different input values. Inputs to this
algorithm are case-sensitive so two inputs with the same value in different cases may mask to different
values. Leading and trailing whitespaces are preserved by this algorithm.

The lookup values for this algorithm are first names.

For example:

"lucas" → "Jacob"
"Gabby Elizabeth" → "Dennis"
"John Jacob Jingleheimer Schmidt" → "Ray"

A new email framework and two new email algorithm instances were introduced in version
6.0.9.0 and are the preferred methods for masking email values. See Email (see page 691), Email
SL (see page 484), and Email Unique (see page 485) for more in

A new name framework and a new first name algorithm instance was introduced in version
6.0.8.0 and are the preferred methods for masking name values. See Name (see page 541) and
FirstName (see page 486) for more information.

Continuous Compliance – Continuous Compliance Home

193 https://delphixdocs.atlassian.net/wiki/pages/createpage.action?
fromPageId=47515604&linkCreation=true&spaceKey=CC&title=Introduction+to+masking+algorithms

194 https://delphixdocs.atlassian.net/wiki/pages/createpage.action?
fromPageId=47547917&linkCreation=true&spaceKey=CC&title=Introduction+to+masking+algorithms

Securing sensitive data – 500

•
•
•
•

8.1.8.19.11 FullNMLookup

Based >Extensible Algorithm Framework193

The FullNMLookup algorithm is an instance of the Secure Lookup Algorithm Framework (see page 556).

This algorithm performs a lookup on the input value and returns a value from the provided lookup file. It is
possible for this algorithm to produce the same output value for different input values. Inputs to this
algorithm are case-sensitive so two inputs with the same value in different cases may mask to different
values. Leading and trailing whitespaces are preserved by this algorithm.

The lookup values for this algorithm are full names (first & last name).

For example:

"Harry Potter" → "John Wick"
"joe" → "Carol Reed"
"Robert Downey Jr." → "Aaron Burr"
"Queen Elizabeth II" → "Ferris Bueller"

8.1.8.19.12 LastCommaFirstLookup

Based >Extensible Algorithm Framework194

The LastCommaFirstLookup algorithm is an instance of the Secure Lookup Algorithm Framework (see page
556).

This algorithm performs a lookup on the input value and returns a value from the provided lookup file. It is
possible for this algorithm to produce the same output value for different input values. Inputs to this
algorithm are case-sensitive so two inputs with the same value in different cases may mask to different
values. Leading and trailing whitespaces are preserved by this algorithm.

A new full name framework and a new full name algorithm instance was introduced in version
6.0.8.0 and are the preferred methods for masking full name values. See FullName (see page

526)(framework) and FullName (see page 487)(instance) for more information.

A new full name framework was introduced in version 6.0.8.0 and is the preferred methods for
masking full name values. See Full Name (see page 526) for more information.

https://delphixdocs.atlassian.net/wiki/pages/createpage.action?fromPageId=47515604&linkCreation=true&spaceKey=CC&title=Introduction+to+masking+algorithms
https://delphixdocs.atlassian.net/wiki/pages/createpage.action?fromPageId=47547917&linkCreation=true&spaceKey=CC&title=Introduction+to+masking+algorithms
https://delphixdocs.atlassian.net/wiki/pages/createpage.action?fromPageId=47515604&linkCreation=true&spaceKey=CC&title=Introduction+to+masking+algorithms
https://delphixdocs.atlassian.net/wiki/pages/createpage.action?fromPageId=47547917&linkCreation=true&spaceKey=CC&title=Introduction+to+masking+algorithms

Continuous Compliance – Continuous Compliance Home

195 https://delphixdocs.atlassian.net/wiki/pages/createpage.action?
fromPageId=47613593&linkCreation=true&spaceKey=CC&title=Introduction+to+masking+algorithms

196 https://delphixdocs.atlassian.net/wiki/pages/createpage.action?
fromPageId=47515676&linkCreation=true&spaceKey=CC&title=Introduction+to+masking+algorithms

Securing sensitive data – 501

•
•
•

•
•
•

The lookup values for this algorithm are full names in the format Last Name, First Name.

For example:

"Lincoln, Abe" → "Campbell, Allison"
"George Washington" → "Douglas, Alfred"
"teddy" → "Smith, Jack"

8.1.8.19.13 LastNameLookup

Based >Extensible Algorithm Framework195

The LastNameLookup algorithm is an instance of the Secure Lookup Algorithm Framework (see page 556).

This algorithm performs a lookup on the input value and returns a value from the provided lookup file. It is
possible for this algorithm to produce the same output value for different input values. Inputs to this
algorithm are case-sensitive so two inputs with the same value in different cases may mask to different
values. Leading and trailing whitespaces are preserved by this algorithm.

The lookup values for this algorithm are last names.

For example:

"Smith" → "Blair"
"santa-cruz" → "Carney"
"von Trapp" → "Washington"

8.1.8.19.14 RandomValueLookup

Based >Extensible Algorithm Framework196

The RandomValueLookup algorithm is an instance of the Secure Lookup Algorithm Framework (see page 556).

This algorithm performs a lookup on the input value and returns a value from the provided lookup file. It is
possible for this algorithm to produce the same output value for different input values. Inputs to this
algorithm are case-sensitive so two inputs with the same value in different cases may mask to different
values. Leading and trailing whitespaces are preserved by this algorithm.

The lookup values for this algorithm are 50-character random value strings.

For example:

A new name framework and a new last name algorithm instance was introduced in version
6.0.8.0 and are the preferred methods for masking name values. See Name (see page 541) and
LastName (see page 488) for more information.

https://delphixdocs.atlassian.net/wiki/pages/createpage.action?fromPageId=47613593&linkCreation=true&spaceKey=CC&title=Introduction+to+masking+algorithms
https://delphixdocs.atlassian.net/wiki/pages/createpage.action?fromPageId=47515676&linkCreation=true&spaceKey=CC&title=Introduction+to+masking+algorithms
https://delphixdocs.atlassian.net/wiki/pages/createpage.action?fromPageId=47613593&linkCreation=true&spaceKey=CC&title=Introduction+to+masking+algorithms
https://delphixdocs.atlassian.net/wiki/pages/createpage.action?fromPageId=47515676&linkCreation=true&spaceKey=CC&title=Introduction+to+masking+algorithms

Continuous Compliance – Continuous Compliance Home

197 https://delphixdocs.atlassian.net/wiki/pages/createpage.action?
fromPageId=47548128&linkCreation=true&spaceKey=CC&title=Introduction+to+masking+algorithms

198 https://delphixdocs.atlassian.net/wiki/pages/createpage.action?
fromPageId=47548103&linkCreation=true&spaceKey=CC&title=Introduction+to+masking+algorithms

Securing sensitive data – 502

•
•
•
•
•

•
•
•
•

•
•
•
•

"6379315274824970" → "ufGcYiFgzC6RBmcBPC7Mvb0oOqEhjEVDUJZLHo6OYNWoi5PZKC"
"ABCxyz123" → "Wk4iq8Y6Ngz8j84AhueDmHQo6uQgMjmnMLuGFxuPEPmDBLzzNf"
"Sí" → "8pz8lnVeQqNCe3jnQREPH2bfbQHkNRir6CHliwq1fMTY3sKFIY"
"999-12-3456." → "37cq1Lve2rOi3kwrNjDE2p1CNPSeAUtnZYNRfUcDuGnikx6DE9"
"2000:a86f::1" → "UUWWeetRXJXMR6puAk8414nrHWmN5nanrOxoWw7DesbHHZPLs1"

8.1.8.19.15 SchoolNameLookup

Based >Extensible Algorithm Framework197

The SchoolNameLookup algorithm is an instance of the Secure Lookup Algorithm Framework (see page 556).

This algorithm performs a lookup on the input value and returns a value from the provided lookup file. It is
possible for this algorithm to produce the same output value for different input values. Inputs to this
algorithm are case-sensitive so two inputs with the same value in different cases may mask to different
values. Leading and trailing whitespaces are preserved by this algorithm.

The lookup values for this algorithm are schools and colleges in the format School Name, State, USA.

For example:

"Columbia University" → "Smith College, Massachusetts, USA"
"clown college" → "Ithaca College, New York, USA"
"The Culinary Institute" → "Stanford University, California, USA"
"UCLA" → "Rensselaer Polytechnic Institute, New York, USA"

8.1.8.19.16 USCitiesLookup

Based >Extensible Algorithm Framework198

The USCitiesLookup algorithm is an instance of the Secure Lookup Algorithm Framework (see page 556).

This algorithm performs a lookup on the input value and returns a value from the provided lookup file. It is
possible for this algorithm to produce the same output value for different input values. Inputs to this
algorithm are case-sensitive so two inputs with the same value in different cases may mask to different
values. Leading and trailing whitespaces are preserved by this algorithm.

The lookup values for this algorithm are United States cities.

For example:

"Los Angeles" → "Chicago"
"New England" → "Oklahoma City"
"cape town, south africa" → "Houston"
"Princeton, New Jersey" → "Redwood City"

https://delphixdocs.atlassian.net/wiki/pages/createpage.action?fromPageId=47548128&linkCreation=true&spaceKey=CC&title=Introduction+to+masking+algorithms
https://delphixdocs.atlassian.net/wiki/pages/createpage.action?fromPageId=47548103&linkCreation=true&spaceKey=CC&title=Introduction+to+masking+algorithms
https://delphixdocs.atlassian.net/wiki/pages/createpage.action?fromPageId=47548128&linkCreation=true&spaceKey=CC&title=Introduction+to+masking+algorithms
https://delphixdocs.atlassian.net/wiki/pages/createpage.action?fromPageId=47548103&linkCreation=true&spaceKey=CC&title=Introduction+to+masking+algorithms

Continuous Compliance – Continuous Compliance Home

199 https://delphixdocs.atlassian.net/wiki/pages/createpage.action?
fromPageId=47515463&linkCreation=true&spaceKey=CC&title=Introduction+to+masking+algorithms

200 https://delphixdocs.atlassian.net/wiki/pages/createpage.action?
fromPageId=47548362&linkCreation=true&spaceKey=CC&title=Introduction+to+masking+algorithms

201 https://delphixdocs.atlassian.net/wiki/pages/createpage.action?
fromPageId=47581585&linkCreation=true&spaceKey=CC&title=Introduction+to+masking+algorithms

Securing sensitive data – 503

•
•
•

•
•
•
•

8.1.8.19.17 USCountiesLookup

Based >Extensible Algorithm Framework199

The USCountiesLookup algorithm is an instance of the Secure Lookup Algorithm Framework (see page 556).

This algorithm performs a lookup on the input value and returns a value from the provided lookup file. It is
possible for this algorithm to produce the same output value for different input values. Inputs to this
algorithm are case-sensitive so two inputs with the same value in different cases may mask to different
values. Leading and trailing whitespaces are preserved by this algorithm.

The lookup values for this algorithm are United States counties.

For example:

"Schuyler County" → "Rock Island County"
"orange co." → "Price County"
"Yellowstone County, Montana" → "McKinley County"

8.1.8.19.18 USstatecodesLookup

Based >Extensible Algorithm Framework200

The USstatecodesLookup algorithm is an instance of the Secure Lookup Algorithm Framework (see page 556).

This algorithm performs a lookup on the input value and returns a value from the provided lookup file. It is
possible for this algorithm to produce the same output value for different input values. Inputs to this
algorithm are case-sensitive so two inputs with the same value in different cases may mask to different
values. Leading and trailing whitespaces are preserved by this algorithm.

The lookup values for this algorithm are 2-letter United States state and territory codes.

For example:

"AL" → "CA"
"Maine" → "UT"
"west virginia" → "SD"
"Italy" → "PR"

8.1.8.19.19 USstatesLookup

Based >Extensible Algorithm Framework201

The USstatesLookup algorithm is an instance of the Secure Lookup Algorithm Framework (see page 556).

https://delphixdocs.atlassian.net/wiki/pages/createpage.action?fromPageId=47515463&linkCreation=true&spaceKey=CC&title=Introduction+to+masking+algorithms
https://delphixdocs.atlassian.net/wiki/pages/createpage.action?fromPageId=47548362&linkCreation=true&spaceKey=CC&title=Introduction+to+masking+algorithms
https://delphixdocs.atlassian.net/wiki/pages/createpage.action?fromPageId=47581585&linkCreation=true&spaceKey=CC&title=Introduction+to+masking+algorithms
https://delphixdocs.atlassian.net/wiki/pages/createpage.action?fromPageId=47515463&linkCreation=true&spaceKey=CC&title=Introduction+to+masking+algorithms
https://delphixdocs.atlassian.net/wiki/pages/createpage.action?fromPageId=47548362&linkCreation=true&spaceKey=CC&title=Introduction+to+masking+algorithms
https://delphixdocs.atlassian.net/wiki/pages/createpage.action?fromPageId=47581585&linkCreation=true&spaceKey=CC&title=Introduction+to+masking+algorithms

Continuous Compliance – Continuous Compliance Home

202 https://delphixdocs.atlassian.net/wiki/pages/createpage.action?
fromPageId=47581606&linkCreation=true&spaceKey=CC&title=Introduction+to+masking+algorithms

Securing sensitive data – 504

•
•
•

•
•
•

•
•
•
•

This algorithm performs a lookup on the input value and returns a value from the provided lookup file. It is
possible for this algorithm to produce the same output value for different input values. Inputs to this
algorithm are case-sensitive so two inputs with the same value in different cases may mask to different
values. Leading and trailing whitespaces are preserved by this algorithm.

The lookup values for this algorithm are United States state and territory names.

For example:

"Hawaii" → "Iowa"
"KS" → "District of Columbia"
"california" → "Northern Marianas Islands"

8.1.8.19.20 WebURLsLookup

Based >Extensible Algorithm Framework202

The WebURLsLookup algorithm is an instance of the Secure Lookup Algorithm Framework (see page 556).

This algorithm performs a lookup on the input value and returns a value from the provided lookup file. It is
possible for this algorithm to produce the same output value for different input values. Inputs to this
algorithm are case-sensitive so two inputs with the same value in different cases may mask to different
values. Leading and trailing whitespaces are preserved by this algorithm.

The lookup values for this algorithm are website addresses.

For example:

"www.google.com" → "http://www.blogspot.com"
"delphix.com" → "http://www.gaurdian.co.uk"
"https://en.wikipedia.org/wiki/Syslog#References" → "http://www.newegg.com"

8.1.8.20 dlpx-core:TimeRange

Based >Extensible Algorithm Framework (see page 470)

The TimeRange algorithm is an instance of the Segment Mapping Algorithm Framework (see page 558),
masking the numeric values between ranges 0-59. This algorithm is appropriate for masking time units –
usually minutes or seconds which range between 0 and 59.

For example:

"0" → "46"
"59" → "35"
"1" → "13"
"abc" → "abc" (and generates a non-conformant data event)

https://delphixdocs.atlassian.net/wiki/pages/createpage.action?fromPageId=47581606&linkCreation=true&spaceKey=CC&title=Introduction+to+masking+algorithms
https://delphixdocs.atlassian.net/wiki/pages/createpage.action?fromPageId=47581606&linkCreation=true&spaceKey=CC&title=Introduction+to+masking+algorithms

Continuous Compliance – Continuous Compliance Home

203 https://www.iban.com/
204 https://commons.apache.org/proper/commons-validator/

Securing sensitive data – 505

8.1.8.21 dlpx-core: IBAN

Extensible Algorithm Framework (see page 470)

The IBAN algorithm allows you to mask International Bank Account Numbers203. It takes IBAN as an input
and replaces each numeric character with another numeric character, and the same for alphabet characters.
The first two characters of a valid IBAN are its country code. The country code is preserved, it is not masked.
The second two characters of a valid IBAN are a checksum, generated from the other characters using the
MOD97 method. This is regenerated by the algorithm after masking to ensure checksum validity. The
replacement characters are sourced from a hash of the original input IBAN. This hash remains stable for an
instance of the algorithm, so the output will always be the same for a given input. A small set of delimiters
are preserved if present in the input IBAN: space, period, and hyphen. Delimiters will not be preserved in the
first 4 characters of an input, as these are reserved for country code and checksum.

The algorithm attempts to mask all inputs even if they are not valid IBAN and will still replace numeric
characters with numeric, and alphabet with alphabet. Unsupported delimiters or punctuation will be replaced
with an alphanumeric character. If possible, a new checksum is calculated even if the input did not have a
valid checksum. The algorithm cannot proceed with masking invalid data that has less than 4 characters. If
this input is received, it will be padded to 4 characters and masking will reattempt.

8.1.8.21.1 Creating an Instance / Configuration Options

The default instance of the IBAN algorithm cannot be configured. Newly created instances of the IBAN
algorithm have two options that can be configured. As with other algorithms, enter a name and an optional
description. You can then choose to enable input validation and select how many characters to mask.

The number of characters to mask maximum is 64, but the longest country supported IBAN is currently
Russia with 33 characters. Numbers higher than the length of an IBAN input will mask all characters
possible. The minimum number is 6. Lower numbers will speed up the performance of the algorithm, but be
conscious of reduction in data obfuscation as the number of changed characters goes down.

There is an option for IBAN input validation. This can be useful to identify corrupted or otherwise invalid input
data. It does come at a moderate performance cost. The validation uses the Apache Commons Validator204.
This tool validates that the country code is supported, the checksum is valid and that the structure of the
IBAN is appropriate for the given country. It is updated with new countries as they adopt the IBAN standard.
The current version used is 1.7. If invalid IBAN are found, they are treated as non-conformant data. This will
not stop the masking job and the value will not be masked but a warning will be shown and details recorded
in the job log.

This algorithm may generate non-conformant data events.

https://www.iban.com/
https://commons.apache.org/proper/commons-validator/
https://www.iban.com/
https://commons.apache.org/proper/commons-validator/

Continuous Compliance – Continuous Compliance Home

Securing sensitive data – 506

1.

2.

3.

4.

5.

6.

•
•

•
•

In the upper right-hand region of the Algorithm tab under Settings, click Add Algorithm.

Select IBAN. The "Create IBAN Algorithm" window will appear.

Enter an Algorithm Name.
Info: Name MUST be unique.

Enter a Description (optional).

Set Number of Characters to Mask. This value is the number of characters from the right that will be
masked. Values for this field must be in the range [6-64].

When finished, click Save.

8.1.8.21.2 Examples

Valid IBAN inputs and masked outputs:

NO8330001234567 → NO0631216940542
GL8964710123456789 → GL3640635860760239

Invalid IBAN inputs and masked outputs:

????A????b????C????d????E???? → ??29S1076R7076M0100E0222J0177
ABC123 → AB6447

Notice that it still respects a character's type and the first two as if they were a country code.

Continuous Compliance – Continuous Compliance Home

Securing sensitive data – 507

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

8.1.8.22 SecureShuffle

This algorithm masks by shuffling the values is a particular field or column to different lines or rows. For
example, values for the FIRST_NAME column might be shuffled among a number database rows within a
table. It guarantees that each value is moved to a different line or row, but will not prevent an input from
masking to the same output in the case where the values shuffled are not unique.

The SecureShuffle algorithm may only be used with masking jobs that support batching, and will not be
presented as an option in the inventory screen when it is not supported. The maximum number positions any
particular value will be moved within the input is equal to the batch size.

Please refer to the Batch Masking section here (see page 789)for a full description of the Batch Masking
mechanism, as well as details on batch size and which jobs support batching.

This algorithm will report non-conformant data whenever only one value is available to mask, meaning that
no shuffling is possible.

8.1.9 Algorithm frameworks

This section covers the following topics:

Binary Lookup(Algorithm frameworks) (see page 508)

Character Mapping (Algorithm frameworks) (see page 509)

Data Cleansing (Algorithm frameworks) (see page 511)

Date Replacement (Algorithm frameworks) (see page 513)

Date Shift (Algorithm frameworks) (see page 515)

Dependent Date Shift (Algorithm frameworks) (see page 517)

Email (Algorithm frameworks) (see page 520)

Free Text Redaction (Algorithm frameworks) (see page 523)

Full Name (Algorithm frameworks) (see page 526)

Mapping (Algorithm frameworks) (see page 530)

Min Max (Algorithm frameworks) (see page 539)

Name (Algorithm frameworks) (see page 541)

Numeric Expression (Algorithm frameworks) (see page 545)

Payment Card (Algorithm frameworks) (see page 552)

Regex Decompose (Algorithm frameworks) (see page 554)

Secure Lookup (Algorithm frameworks) (see page 556)

Segment Mapping (Algorithm frameworks) (see page 558)

Tokenization (Algorithm frameworks) (see page 564)

Because shuffling data does not redact or modify the individual data values in any way, careful
consideration must be given to whether this form of obfuscation is sufficient to meet your
security requirements.



Continuous Compliance – Continuous Compliance Home

205 https://delphixdocs.atlassian.net/wiki/pages/createpage.action?
fromPageId=47516212&linkCreation=true&spaceKey=CC&title=Introduction+to+masking+algorithms

Securing sensitive data – 508

1.

2.

3.

8.1.9.1 Binary Lookup(Algorithm frameworks)

Extensible Algorithm Framework205

A Binary Lookup algorithm is much like the Secure Lookup algorithm but is used when entire files are stored
in a specific column. This algorithm replaces objects that appear in object columns. For example, if a bank
has an object column that stores images of checks, you can use a Binary Lookup algorithm to mask those
images. The Delphix Engine cannot change data within images themselves, such as the names on X-rays or
driver’s licenses. However, you can replace all such images with a new, fictional image. This fictional image
is provided by the owner of the original data.

8.1.9.1.1 Creating a Binary Lookup algorithm via UI

At the top right of the Algorithm tab, click Add Algorithm.

Select Binary Lookup Algorithm. The Create Binary SL Algorithm pane appears.

Enter an Algorithm Name.

https://delphixdocs.atlassian.net/wiki/pages/createpage.action?fromPageId=47516212&linkCreation=true&spaceKey=CC&title=Introduction+to+masking+algorithms
https://delphixdocs.atlassian.net/wiki/pages/createpage.action?fromPageId=47516212&linkCreation=true&spaceKey=CC&title=Introduction+to+masking+algorithms

Continuous Compliance – Continuous Compliance Home

Securing sensitive data – 509

4.

5.

6.

•
•

•

•

Info: This MUST be unique.

Enter a Description.

Select a Binary Lookup File on your filesystem. A maximum of 50 Lookup Files can be selected.

Click Save.

For information on creating Binary Lookup algorithms through the API, see API Calls for Creating Algorithms
- Binary Lookup. (see page 681)

8.1.9.2 Character Mapping (Algorithm frameworks)

Extensible Algorithm Framework (see page 788)

The Character Mapping framework maps text values, defined by a set of character groups, to other text
values generated from the same character groups. Mappings are calculated algorithmically, so it is not
necessary to provide the set of mapping values. The algorithm preserves any characters not assigned to a
group. Any characters from the first Unicode plane can be mapped - this covers most characters used in
modern languages. Other (supplementary) characters can only be preserved.

The particular set of permutations used is determined by the algorithm's key, so rekeying the algorithm will
cause different outputs to be generated for each input.

The algorithm has the following properties:

The masked value for each input is consistent unless the algorithm is rekeyed.
No two text inputs produce the same text output. Collisions are possible for some data types, such as
Numeric, where multiple text values, such as "001" and "1", are treated as the same value.
As long as at least one maskable character is present in the input, the masked value will never match
the input.
Each masked position influences the mapping done at every other masked position.

For these reasons, this algorithm is useful for masking columns with uniqueness requirements, such as
primary and foreign key columns.

This algorithm was introduced in version 6.0.5.0, and uses the algorithm extensibility framework, allowing it
to be called from other algorithms using that framework.

To decide whether Character Mapping or Segment Mapping is the correct option for your use case, see
Choosing Between Character and Segment Mapping Frameworks (see page 470).

The character mapping algorithm can be used for tokenization and reidentification jobs.

Continuous Compliance – Continuous Compliance Home

Securing sensitive data – 510

1.

2.

3.

4.

5.

8.1.9.2.1 Creating a character mapping algorithm via UI

In the upper right-hand region of the Algorithm tab under Settings, click Add Algorithm.

Select Character Mapping Algorithm. The "Create Character Mapping Algorithm" pane appears.

Enter an Algorithm Name.

Info: This MUST be unique.

Enter a Description.

Define Character Groups for each group of characters among which you would like to map. Each
group may defined either by specifying each literal character in the group, such as "0123456789", or
using Java Regular Expression style character ranges, such as "[0-9]". The algorithm will freely map
characters to other characters within the same group, so by defining groups "[0-9]" and "[A-Z]",
numbers would be replaced by other numbers, and letters by other letters, but a number would never
be replaced by a letter. Groups should not contain duplicate characters, and each character may
belong to only one group. Any character that is not assigned to a group will be preserved (not

Continuous Compliance – Continuous Compliance Home

206 http://delphixdocs.atlassian.net/continuous-compliance-10-0-0-0/docs/algorithms-introduction#algorithm-
frameworks

Securing sensitive data – 511

6.

7.

8.

9.

a.
b.
c.

•
•
•

masked) by the algorithm. The box below the entry area allows selection of character groups defined
for other, preexisting Character Mapping algorithms.

Check the Case Sensitive box to cause the algorithm to treat upper and lower case characters as
distinct characters for mapping.

Select a value for Minimum Masked Position, which sets the minimum number of characters that the
algorithm must mask; fewer positions triggers non-conformant data handling. Null, empty, and all-
whitespace values never trigger non-conformant data handling.

Check the Preserve Leading Zerosbox to cause the algorithm to preserve any number of '0'
characters at the beginning of each input. This is only useful if '0' has been assigned to a character
group in step 5.
Warning: Masked results are not guaranteed to be unique if Preserve Leading Zeros is used, and the
algorithm cannot be used for tokenization/re-identification jobs.

If desired, define ranges of the input value to ignore using the Preserve Ranges controls. For
Character Mapping algorithms, only characters that would otherwise be masked count when
determining position for preserve ranges. Each preserve range is defined by:

Start Position - The position at which to start preserving, starting from 0.
Length - The number of characters to preserve.
Direction- The direction, either forward or reverse, determining whether to process from the
beginning or end of input for this range.

8.1.9.2.2 Examples

As an example, a Character Mapping algorithm could be defined with a single character group, "[0-9]". It
might mask as follows:

"(603) 867-5309" → "(463) 638-0193"
"999-12-3456" → "453-71-6283"
"Call Tom at 8:00PM" → "Call Tom at 2:75PM"

8.1.9.3 Data Cleansing (Algorithm frameworks)

Extensible Algorithm Framework206

A data cleansing algorithm is used to standardize varied spellings, misspellings, and abbreviations for the
same name. For example, “Ariz,” “Az,” and “Arizona” can all be cleansed to “AZ.” Use this algorithm if the
target data needs to be in a standard format prior to masking.

http://delphixdocs.atlassian.net/continuous-compliance-10-0-0-0/docs/algorithms-introduction#algorithm-frameworks
http://delphixdocs.atlassian.net/continuous-compliance-10-0-0-0/docs/algorithms-introduction#algorithm-frameworks

Continuous Compliance – Continuous Compliance Home

Securing sensitive data – 512

1.

2.

3.

8.1.9.3.1 Creating a data cleansing algorithm via UI

Enter an Algorithm Name.

Info:

This MUST be unique.

Enter a Description (optional).

Choose whether to use Case Sensitive Lookup. If this box is checked, the data to be cleansed must
match the case of the value in the lookup file in order to be replaced.

For example, if the lookup file contains Arizona=AZ :

Original Cleansed Case Sensitive Lookup

Arizona AZ checked or not checked

arizona AZ not checked

Continuous Compliance – Continuous Compliance Home

207 https://delphixdocs.atlassian.net/wiki/pages/createpage.action?
fromPageId=47516015&linkCreation=true&spaceKey=CC&title=Introduction+to+masking+algorithms

Securing sensitive data – 513

4.

5.

6.

7.

Original Cleansed Case Sensitive Lookup

arizona arizona checked

Choose whether to Trim Whitespace. If this box is checked, the leading and trailing whitespace of the
data to be cleansed is removed prior to checking if the value is in the lookup file. This allows a single
value=replacement in the lookup file to cleanse data containing extraneous leading and trailing

whitespace.

Info

This must be checked to cleanse fixed-width files and fixed-length database data types such as
CHAR and NCHAR.

Specify a Lookup File. You can either click the Select... button to choose a local file or enter the
fileReferenceId value returned from the fileUpload API endpoint for uploading files to the Masking
Engine. The file should contain a newline separated list of {value, replacement} pairs separated by the
delimiter.

Specify a Lookup File Delimiter (value and replacement separator) up 50 characters long. The default
delimiter is = . You can change this to match the lookup file.

Click Save.

Below is an example of a lookup file. It does not require a header. Make sure there are no spaces or returns
at the end of the last line in the file. The following is sample file content:

NYC=NY
NY City=NY
New York=NY
Manhattan=NY

For information on creating Data Cleansing algorithms through the API, see API Calls for Creating Algorithms
- Data Cleansing. (see page 684)

8.1.9.4 Date Replacement (Algorithm frameworks)

Extensible Algorithm Framework207

The Date Replacement framework masks a date value based on specified beginning and end dates. Masked
output values are calculated algorithmically using the algorithm's key, so rekeying the algorithm will cause a
different output value to be generated for each input. It is possible for an input to be masked to itself.

https://delphixdocs.atlassian.net/wiki/pages/createpage.action?fromPageId=47516015&linkCreation=true&spaceKey=CC&title=Introduction+to+masking+algorithms
https://delphixdocs.atlassian.net/wiki/pages/createpage.action?fromPageId=47516015&linkCreation=true&spaceKey=CC&title=Introduction+to+masking+algorithms

Continuous Compliance – Continuous Compliance Home

Securing sensitive data – 514

1.

2.

3.

4.

5.

6.

7.

8.

8.1.9.4.1 Creating a Date Replacement Algorithm via UI

In the upper right-hand region of the Algorithm tab under Settings, click Add Algorithm.

Select Date. The "Create Date Algorithm" pane appears.

Enter an Algorithm Name.

Info: This MUST be unique.

Enter a Description.

Under Select Algorithm type choose Replacement.

Enter Min Date and Max Date. These define the range from which the algorithm will select output
values. The range is inclusive of both values. All units of time less than the specified unit must be set
to 0. For example, a configuration with the unit set to Days must have the time portion set to
00:00:00.

Choose the Unit of time form the drop-down: Days, Hours, Minutes, or Seconds. This represents the
unit of time the range is expressed in. Any unit smaller than the specified unit will be set to 0 in the
masked output. For example, with a unit of Days, all masked time values will be 00:00:00. For a more
detailed explanation, see the Examples (see page 515) section.

When you are finished, click Save.

Continuous Compliance – Continuous Compliance Home

208 https://delphixdocs.atlassian.net/wiki/pages/createpage.action?
fromPageId=47548853&linkCreation=true&spaceKey=CC&title=Introduction+to+masking+algorithms

Securing sensitive data – 515

•
•
•

•
•
•

•
•
•
•
•

For information on creating Date Replacement algorithms through the API, see API Calls for Creating
Algorithms - Date Replacement. (see page 686)

8.1.9.4.2 Examples

As an example, a Date Replacement algorithm with a minimum range of "2020-01-01 00:00:00" and a
maximum range of "2020-01-05 00:00:00" with the unit set to Days will replace the input value with a date in
the specified range. Dates may mask as follows:

"1995-03-05 13:25:00" → "2020-01-02 00:00:00"
"2021-10-13 01:59:59" → "2020-01-04 00:00:00"
"1856-07-31 00:00:00" → "2020-01-01 00:00:00"

Another example with a minimum range of "2020-01-01 01:00:00" and a maximum range of "2020-01-01
03:00:00" with the unit set to Hours provides 3 possible mask values:

"2020-01-01 01:00:00"
"2020-01-01 02:00:00"
"2020-01-01 03:00:00"

Using the same range of "2020-01-01 01:00:00" to "2020-01-01 03:00:00" but with the unit set to Minutes,
there are 121 possible output values as the unit is the granularity at which time is subdivided. Note that the
range is inclusive of both range values. Possible masked values may be as follows:

"2020-01-01 01:00:00"
"2020-01-01 01:14:00"
"2020-01-01 01:59:00"
"2020-01-01 02:23:00"
"2020-01-01 03:00:00"

All inputs with the same value masked with the same algorithm configuration will result in the same output
values.

8.1.9.5 Date Shift (Algorithm frameworks)

Extensible Algorithm Framework208

The Date Shift framework masks date values to different dates based on a specified range around the input
value. Masked values are calculated algorithmically using the algorithm's key, so rekeying the algorithm will
cause different outputs to be generated for each input. All valid input values will be masked to a new value,
and the new value will never match the input.

https://delphixdocs.atlassian.net/wiki/pages/createpage.action?fromPageId=47548853&linkCreation=true&spaceKey=CC&title=Introduction+to+masking+algorithms
https://delphixdocs.atlassian.net/wiki/pages/createpage.action?fromPageId=47548853&linkCreation=true&spaceKey=CC&title=Introduction+to+masking+algorithms

Continuous Compliance – Continuous Compliance Home

Securing sensitive data – 516

1.

2.

3.

4.

5.

6.

8.1.9.5.1 Creating a date shift algorithm via UI

In the upper right-hand region of the Algorithm tab under Settings, click Add Algorithm.

Select Date. The "Create Date Algorithm" pane appears.

Enter an Algorithm Name.

Info: This MUST be unique.

Enter a Description.

Under Select Algorithm type choose Shift.

Enter Min Value and Max Value. These values provide a range in which the masked value will differ
from the input given a specified unit of time. The range is inclusive of both values where negative
values represent units of time in the past and positive values represent units of time in the future. 0
may be included in the range or as one of the range values, but the input will not mask to the same
value. A minimum value and maximum value that are equal will result in a fixed shift of that amount
of time. For example, entering 3 as a min value and 3 as a max value with a unit of Days will mask all
input values to 3 days in the future.

Continuous Compliance – Continuous Compliance Home

209 https://delphixdocs.atlassian.net/wiki/spaces/CC/pages/9963078

Securing sensitive data – 517

7.

8.

9.

•
•
•

•
•
•

•
•

•

Check the Roll box to preserve all units of time larger and smaller than the specified unit. Only the
value of the specified unit will change. This option is supported for units months, days, hours,
minutes, and seconds.

Choose the Unit of time from the drop-down: Years, Months, Days, Hours, Minutes, or Seconds. This
represents the unit of time the range is expressed in.

When you are finished, click Save.

For information on creating Date Shift algorithms through the API, see API Calls for Creating Algorithms -
Date Shift. (see page 687)

8.1.9.5.2 Examples

As an example, a Date Shift algorithm with a minimum value of 3 and a maximum value of 5 with the unit set
to Days will shift the input value from 3 to 5 days into the future. Dates may mask as follows:

"2021-02-03 12:30:00" → "2021-02-06 12:30:00"
"1905-12-10 00:00:00" → "1905-12-15 00:00:00"
"2001-07-31 23:45:30" → "2001-08-04 23:45:30"

With roll enabled and the same configuration, a date at the end of a month will wrap around to the beginning
of the month. Dates may mask as follows:

"2021-02-25 10:00:00" → "2021-02-01 10:00:00"
"1932-05-03 01:15:15" → "1932-05-08 01:15:15"
"1999-08-31 18:30:00" → "1999-08-03 18:30:00"

All inputs with the same value masked with the same algorithm configuration will result in the same output
values.

8.1.9.6 Dependent Date Shift (Algorithm frameworks)

Extensible Algorithm Framework209

The Dependent Date Shift algorithm masks two dates while maintaining a dependency between them.
Examples of such dependent date pairs include:

date of admission and date of discharge
date of birth and date of death.

If dependent date pairs are masked independently, two problems can occur. First, the chronological order of
the dates might be reversed. For example, the masked date of discharge might be chronologically earlier
than the masked date of admission. Second, the interval between the masked dates might be too small or
too large. By interval, we mean the difference in time between two dates. For example, suppose a given
patient’s record has an 80 year interval between date of birth and date of death. Independently masking
the date of birth and date of death might result in a 5 month interval. This would turn an 80 year old patient
into a 5 month old patient which might make the patient ineligible for certain procedures, benefits, etc.

The Dependent Date Shift algorithm addresses these problems by masking dependent date pairs while:

maintaining the chronological relationship between the dates (i.e., the later date always stays later)

https://delphixdocs.atlassian.net/wiki/spaces/CC/pages/9963078
https://delphixdocs.atlassian.net/wiki/spaces/CC/pages/9963078

Continuous Compliance – Continuous Compliance Home

Securing sensitive data – 518

•

•

•

•

•

•

•

•

1.

2.

3.

4.

5.

6.

7.

maintaining a configurable interval between the dates

The Dependent Date Shift algorithm takes as input:

date1 : a primary date that will be masked with the Date Shift (see page 515) algorithm

date2 : a secondary (dependent) date

minRange , maxRange , unit , roll : parameters to the Date Shift algorithm

intervalRange :

Negative values are not allowed.

A value of zero (0) indicates that the interval between the date1 and date2 will also be

the interval between date1_masked and date2_masked . For example if the unmasked

dates were 1970-01-01 and 1970-01-15, unit was Days, and the intervaleRange was 0,
then the interval between the unmasked dates is 14 days and that would also be the interval
between the masked dates.

Values greater than zero (0) generate an inclusive set of possible interval adjustment values.
For example, a value of 3 would generate the following set of possible interval adjustment
values: [-3, -2, -1, 0, 1, 2, 3] . The generated set is automatically adjusted to
omit any values that would change the chronological order of the dates. For example, if the
interval difference between date1 and date2 is 2 and the specified intervalRange is

3, then the set of possible interval adjustment values would be [-1, 0, 1, 2, 3] .

At a high level, the masking process is as follows:

If date2 is not provided (null), mask date1 with Date Shift and return

If date1 is not provided (null), mask date2 with Date Shift and return

Calculated date1_masked by applying the Date Shift algorithm to date1

Calculate the set of possible interval adjustment values using the intervalRange

Using the value of date2 , select an interval adjustment value from the set of possible interval
adjustment values

Calculate the new interval using the original interval and the selected interval adjustment value

Calculate date2_masked using date1_masked and the new interval

The masked results are deterministic for the same algorithm key and inputs. The algorithm’s output will
never be equal to the input.

Continuous Compliance – Continuous Compliance Home

Securing sensitive data – 519

1.

2.

3.

4.

5.

6.

7.

8.

9.

8.1.9.6.1 Creating a dependent date shift algorithm via UI

In the upper right-hand region of the Algorithm tab under Settings, click Add Algorithm.

Select Dependent Date Shift. The "Create Dependent Date Shift Algorithm" pane appears.

Enter an Algorithm Name.

Info: This MUST be unique.

Enter a Description.

Enter a Minimum Range.

Enter a Maximum Range.

Enter an Interval Range.

Configure the Roll.

Choose the Unit of time from the drop-down: Years, Months, Days, Hours, Minutes, or Seconds. .

Continuous Compliance – Continuous Compliance Home

210 https://delphixdocs.atlassian.net/wiki/pages/createpage.action?
fromPageId=47582362&linkCreation=true&spaceKey=CC&title=Introduction+to+masking+algorithms

Securing sensitive data – 520

10.

•
•
•

•
•
•

•

When you are finished, click Save.

For information on creating Dependent Date Shift algorithms through the API, see API Calls for Creating
Algorithms - Dependent Date Shift. (see page 689)

8.1.9.6.2 Examples

As an example, a Dependent Date Shift algorithm with a Minimum Range value of 3,a Maximum Range value
of 5, and an Interval Range of 5 with the unit set to Days will shift the date1 input value by 3 to 5 days into the
future. It will then change the interval by a range of +/-5 days from the original interval to mask date2. Dates
may mask as follows:

1905-12-10 00:00:00, 1907-08-01 10:14:00 → 1905-12-13 00:00:00, 1907-08-06 00:00:00
2001-07-31 23:45:30, 2005-04-12 07:13:00 → 2001-08-03 23:45:30, 2005-04-12 23:45:30
2021-02-03 12:30:00, 2021-02-07 12:34:00 → 2021-02-06 12:30:00, 2021-02-14 12:30:00

With roll enabled and the same configuration, a date at the end of a month will wrap around to the beginning
of the month. Dates may mask as follows:

1905-12-10 00:00:00, 1907-08-01 10:14:00 → 1905-12-13 00:00:00, 1907-08-04 00:00:00
2001-07-31 23:45:30, 2005-04-12 07:13:00 → 2001-07-03 23:45:30, 2005-03-18 23:45:30
2021-02-03 12:30:00, 2021-02-07 12:34:00 → 2021-02-06 12:30:00, 2021-02-14 12:30:00

8.1.9.7 Email (Algorithm frameworks)

Extensible Algorithm Framework210

The Email framework masks string values by splitting the input on the '@' symbol and independently masking
the name and domain portions of the email address. Masked values are calculated algorithmically using the
algorithm's key, so rekeying the algorithm will cause different outputs to be generated for each input. All
inputs to this framework are valid and the framework will not generate non-conformant data events. Note
that it is possible for chained algorithms specified for the Algorithm option to generate non-conformant data
events.

8.1.9.7.1 Malformed input handling

Inputs without an '@' symbol: apply the name action to the entire input

https://delphixdocs.atlassian.net/wiki/pages/createpage.action?fromPageId=47582362&linkCreation=true&spaceKey=CC&title=Introduction+to+masking+algorithms
https://delphixdocs.atlassian.net/wiki/pages/createpage.action?fromPageId=47582362&linkCreation=true&spaceKey=CC&title=Introduction+to+masking+algorithms

Continuous Compliance – Continuous Compliance Home

Securing sensitive data – 521

•
•
•

1.

2.

3.

4.

5.

•

•

•

Inputs with no name portion: apply the domain action to the entire input
Inputs with no domain portion: apply the name action to the entire input
Inputs with no name portion and no domain portion: return an '@' symbol

8.1.9.7.2 Creating an email algorithm via UI

In the upper right-hand region of the Algorithm tab under Settings, click Add Algorithm.

Select Email. The "Create Email Algorithm" pane appears.

Enter an Algorithm Name.

Info: This MUST be unique.

Enter a Description.

From the dropdown Mask Name With, choose one of the following options:

Unique Value: applies a SHA-256 hash of the entire input then Base32 encodes the hash value

Lookup Value: applies a secure lookup using the values provided in the uploaded file or file
reference

Algorithm: applies the specified string type extensible algorithm

Continuous Compliance – Continuous Compliance Home

Securing sensitive data – 522

6.

•

•

7.

•

•

8.

•

•

9.

•
•
•

•
•

Info:
The Unique Value option may produce masked name portions with lengths up to 52
characters.

If applicable, complete the configuration for masking the name portion as follows:

Lookup Value: upload a lookup file with new line separated values or provide a file reference

Algorithm: select a string type extensible algorithm to be used to mask the name portion of
the input

From the dropdown Mask Domain With, choose one of the following options:

Replacement Text: replaces the domain portion with a fixed value

Algorithm: applies the specified extensible algorithm instance

Complete the configuration for masking the domain portion as follows:

Replacement Text: enter a value to replace the entire domain portion

Algorithm: applies the specified extensible algorithm instance

When you are finished, click Save.

For information on creating Email algorithms through the API, see API Calls for Creating Algorithms -
Email. (see page 691)

8.1.9.7.3 Examples

As an example, an Email algorithm that uses Lookup Value to mask the name portion and Replacement Text
to mask the domain portion with the following configuration:

Lookup File:

Amy
Bob
Jake
Katherine

Replacement text: example.com

May mask as follows:

"albert@delphix.com" → "Bob@example.com"
"albert@gmail.com" → "Bob@example.com"
"andrew_smith_123@delphix.com" → "Katherine@example.com"

Another example that uses the Algorithm option for both the name and domain portion with the following
configuration:

Name algorithm: dlpx-core:FirstName (see page 486)

Domain algorithm: dlpx-core:CM Alpha-Numeric (see page 480)

May mask as follows:

"bob@gmail.com" → "alton@dqpnx.fsy"
"bob@hotmail.com" → "alton@poatzdw.bya"

Continuous Compliance – Continuous Compliance Home

211 https://delphixdocs.atlassian.net/wiki/pages/createpage.action?
fromPageId=47582330&linkCreation=true&spaceKey=CC&title=Introduction+to+masking+algorithms

Securing sensitive data – 523

•
•

"alex@gmail.com" → "jameel@dqpnx.fsy"
"joe_123@yahoo.com" → "miryam@wbpaq.kts"

All inputs with the same value masked with the same algorithm configuration will result in the same output
values.

8.1.9.8 Free Text Redaction (Algorithm frameworks)

Extensible Algorithm Framework211

A Free Text Redaction Algorithm Framework helps you remove sensitive data that appears in free-text
columns such as “Notes.” This type of algorithm requires some expertise to use because you must set it to
recognize sensitive data within a block of text.

The algorithm uses a list of lookup words to determine what information it needs to mask. You can decide
which words the algorithm uses to search for material such as addresses. For example, you can set the
algorithm to look for “St,” “Cir,” “Blvd,” and other words that suggest an address. You can also use pattern
matching to identify potentially sensitive information. For example, a number that takes the form
123-45-6789 is likely to be a Social Security Number. Lookup words and regular expressions will match
individual words within the input text, rather than phrases.

You can use a Free Text Redaction Algorithm Framework to show or hide information by displaying either a
“DenyList” or an “AllowList.”

DenyList – Designated material will be redacted (removed). For example, you can set a deny list to hide
patient names and addresses. The deny list feature will match the data in the lookup file to the input.

AllowList – ONLY designated material will be visible. For example, if a drug company wants to assess how
often a particular drug is being prescribed, you can use an allow list so that only the name of the drug will
appear in the notes.

The Email framework will not generate non-conformant data events, but the chained algorithm
may generate such events.



https://delphixdocs.atlassian.net/wiki/pages/createpage.action?fromPageId=47582330&linkCreation=true&spaceKey=CC&title=Introduction+to+masking+algorithms
https://delphixdocs.atlassian.net/wiki/pages/createpage.action?fromPageId=47582330&linkCreation=true&spaceKey=CC&title=Introduction+to+masking+algorithms

Continuous Compliance – Continuous Compliance Home

Securing sensitive data – 524

1.

2.

3.

4.

5.

6.

8.1.9.8.1 Creating a free text redaction algorithm via UI

Enter an Algorithm Name.

Enter a Description.

Select a Redact Type: the Deny List or Allow List.

Select a Lookup File and enter a Redaction Value OR/AND

Enter Regular Expressions separated by a new line and enter a Redaction Value.

Click Save.

Continuous Compliance – Continuous Compliance Home

Securing sensitive data – 525

1.

2.

3.

4.

5.

1.

2.

3.

4.

a.

8.1.9.8.1.1 Existing limitations:

The maximum number of supported Regular Expressions is 50. Exceeding this number will lead to
the Component Configuration exception.

The maximum number of supported words in the Lookup File is 1000. Exceeding this number may
affect the algorithm performance.

The Lookup File format must be txt.

Every entry in the Lookup File must be a new line separated. Phrases are not supported. Case
sensitive.

The maximum length of an input text to mask is 32768. Exceeding this number will lead to the Non-
Conformant data exception.

For information on creating Free Text Redaction algorithms through the API, see API Calls for Creating
Algorithms - Free Text Redaction. (see page 693)

8.1.9.8.2 Examples

Input:

The customer Bob Jones is satisfied with the terms of the sales
agreement. Please call to confirm at 718-223-7896.

8.1.9.8.2.1 Algorithm configuration:

The Redact Type is DenyList

Lookup File entries:

Bob
Jones
agreement

The Lookup File Redaction Value is XXXX

Regular Expressions entry:

[0-9]{3}-[0-9]{3}-[0-9]{4}

The Regular Expression Redaction Value is YYYY

Continuous Compliance – Continuous Compliance Home

Securing sensitive data – 526

8.1.9.8.2.2 Masking result:

The customer XXXX XXXX is satisfied with the terms
of the sales XXXX. Please call to confirm at YYYY.

"Bob", "Jones", "agreement" and the phone number are redacted.

8.1.9.9 Full Name (Algorithm frameworks)

Extensible Algorithm Framework (see page 788)

The Full Name algorithm (introduced in Masking Engine version 6.0.8.0) has logic to separate the input into
two parts: First and Last names. It can also limit the number of masked names (removing the rest) and
“smart trim” the result (masked) output to the required length.

If Name framework algorithm instances are used, the Full Name algorithm can consider particles. The Full
Name algorithm uses the Last Name algorithm’s particles when determining which part of the input is the
last name. The remainder of the input is considered the first name and the First Name algorithm’s particles
apply to that.

After distinguishing the parts of the input string, the Full Name algorithm feeds each word from the first
name part (which also includes middle names, treated the same as first names) individually to the First
Name algorithm instance, and the whole last name part to the Last Name algorithm instance. Then it
combines the masking results, according the embedded logic and the configuration.

If the input string contains only a single word - this word is considered as a first name or last name
(depending on the Consider Single Word Input as Last Name flag) and forwarded for masking to the
corresponding chained algorithm instance. A single word input is always masked, even if it is a configured
particle.

Main features of the Full Name Framework:

Continuous Compliance – Continuous Compliance Home

Securing sensitive data – 527

•

•
•

•

•
•

•

•

Deterministic output: The masked result for each input is consistent when using the same algorithm
key, same configuration and same chained algorithm instances.
Not unique: The masked result might be the same for different inputs.
Garbage in garbage out: the algorithm returns the unmasked input / null / empty string if input is one
of the following: null, empty string “”, white spaces only “ ”.
Single word input: considered either as a Last Name (default) or as a First Name, even if configured in
one of the particles files.
When particle is configured in both particles files: the remove action takes precedence.
Multiple first names: masks only first N names (1-4, as configured, default = 2), the rest are removed.
(Note: only one name can be considered the last name; the rest are masked as first names.)
Full Name Convention: if a configured last name separator is detected, or the configured convention
is “last-first-middle”, then the input is interpreted as last-first-middle. Otherwise, it is first-middle-last
(default). Leading/trailing and duplicate white spaces are not preserved.
Smart trim: if trimming of the masked value is required, it's done in a way to keep the full name as
long and realistic looking as possible. For instance, first we trim the leading/trailing preserved
particles. If that’s not enough, we abbreviate the masked first/middle names (one by one, starting
with the last one). If that’s still no enough, we remove the particles prior to the last name, etc.

Below is an example of smart trim. Let's suppose our masked result (prior to checking of the maxLength) is:

“President George Herbert Walker Van Bush Jr.”

The chained instances for First Name and Last name masking can be any existing extensible algorithm
instance that masks the String type. However, it is recommended to use the instances based on the Name

Continuous Compliance – Continuous Compliance Home

Securing sensitive data – 528

1.

2.

3.

4.

framework. Particles can only be considered for Name framework algorithms, and it’s recommended that the
First Name and Last Name algorithm instances have the same particle files.

8.1.9.9.1 Creating a Full Name algorithm via UI

In the upper right-hand corner of the Algorithm tab, click Add Algorithm.

Select the Full Name Framework. The Create Full Name Algorithm pane appears.

Enter an Algorithm Name. (Required)

Info:

This MUST be unique on the Masking Engine.

Enter a Description. (Optional)

Continuous Compliance – Continuous Compliance Home

Securing sensitive data – 529

5.

6.

7.

8.

9.

10.

11.

12.

Choose the First Name Algorithm. (Required) In the dropdown menu you will be suggested to choose
from the existing extensible algorithms of String type.

Choose the Last Name Algorithm. (Required) In the dropdown menu you will be suggested to choose
from the existing extensible algorithms of String type.

Choose the Maximum First Names configuration. (Optional. Integer. min value = 1, max value = 4,
default = 2) Total number of first/middle names to be masked. The rest would be ignored.

Choose the Maximum Masked Full Name Length. (Optional. Integer. Default is 0) This number should
be >= 0 (i.e. not negative). This is the maximum number of characters for the masked output string.
The masked result is “smart trimmed” to fit that length (see explanation and example table above for
details on smart trimming). Value 0 means length is unlimited.

Info:

We also try to detect the length of the destination field. Some Data Sources provide that value, while
others don't. For example: if Data Source provides value 10 for the destination column length and
current configuration field is set to 0 or any value longer than 10 - the shortest value wins, i.e. in this
example masked result would be trimmed to 10 characters.

Specify a Full Name Convention. (Optional. Enum. Default: "First-Middle-Last") Dropdown menu
provides choice of 2 values:

First-Middle-Last
Last-First-Middle

This configurations helps the Full Name algorithm distinguish between first name(s) and last name, if
Last Name Separator(s) are not configured or not detected in the input string.

Choose the Consider Single Word Input as Last Name. (Optional. Boolean. Default is true) If chosen
(default case) - consider the single word input as a last name. Otherwise as a first name.

Configure Last Name Separators (Optional. List. Default: contains comma ',') Here you can specify
comma separated single punctuation marks (but hyphen '-' and dot '.', which are reserved for another
logic) which will serve for identifying the last name in the input. First identified separator makes that
distinguishing, rest are ignored. To choose comma ',' there is a separate field aside Include comma.
By default comma is included as a separator.
Here is an example of how last name separator works:
Let's suppose our configured separators are comma ',' and colon ':'.
Input: "dela Cruz, Maria Cristina: Manansala"
The first detected separator (framework reads the input left to right) is after word "Cruz".
So "dela Cruz" will be detected as a last name part, and "Maria Cristina: Manansala" as a first names.
Masking result would be in the same order with the same separator, for example: "Maritnas, Antonio
Stephan".

When you are finished, click Save.

For the description of any configurable field you can open a popup window by pressing on the blue "? Learn
More" link in the upper right corner:

Continuous Compliance – Continuous Compliance Home

212 https://delphixdocs.atlassian.net/wiki/spaces/CC/pages/9963078

Securing sensitive data – 530

For information on creating Full Name algorithms through the API, see API Calls for Creating Algorithms -
Full Name. (see page 695)

8.1.9.10 Mapping (Algorithm frameworks)

Extensible Algorithm Framework212

A Mapping algorithm allows you to state what values will replace the original data. It maps original data
values to masked values that are pre-populated to a lookup table through the Masking Engine user interface.
There will be no collisions in the masked data because it always matches the same input to the same output.
For example “David” will always become “Ragu,” and “Melissa” will always become “Jasmine.” The algorithm
checks whether an input has already been mapped; if so, the algorithm changes the data to its designated
output.

You can use a Mapping algorithm on any set of values, of any length, but you must know how many values
you plan to mask. You must supply AT MINIMUM the same number of values as the number of unique values
you are masking; more is acceptable. For example, if there are 10,000 unique values in the column you are
masking you must give the Mapping algorithm AT LEAST 10,000 values.

The Mapping Algorithm can be configured for mappings managed locally on the Masking Engine or remotely
on a customer managed PostgreSQL database. The remote configuration should be used if the customer
wishes to more easily manage the storage allocated for mappings, or if there is a desire to share the same

https://delphixdocs.atlassian.net/wiki/spaces/CC/pages/9963078
https://delphixdocs.atlassian.net/wiki/spaces/CC/pages/9963078

Continuous Compliance – Continuous Compliance Home

Securing sensitive data – 531

1.

2.

1.

2.

3.

4.

5.

Mapping Algorithm mappings across multiple Masking Engines. More information about remote mapping
configuration can be found here (see page 538).

8.1.9.10.1 Tokenization/Reidentification

Given the nature of Mapping Algorithms, they can be used with Tokenization and Reidentification jobs.
However, if ignoreCharacters are configured for the algorithm, Tokenization/Reidentification cannot be
used.

8.1.9.10.2 Sync

Mapping Algorithm can be synced in 1 of 2 ways:

Syncing a locally managed Mapping Algorithm: This can be done to effectively make a copy of an
algorithm from one Masking Engine to another. In addition to syncing the algorithm, the mappings
must be manually exported from the source engine and imported into the target engine. Once this is
complete, the 2 algorithms (on the source and target) will have the same names and initial set of
mappings (at the time of sync) but will function as 2 separate algorithms. That is to say, adding new
mappings on the source will not have any impact on the algorithm on the target.

Syncing a remotely managed Mapping Algorithm: This can be done to share the same Mapping
Algorithm across Masking Engines. In this case, once synced, the algorithm on the source and
target(s) would point to the SAME remote mapping database. This would mean that adding/
removing/manipulating the mappings would affect the algorithm on all engines that use it.

For more information on sync, see here (see page 623).

8.1.9.10.3 Creating a mapping algorithm via UI

In the upper right-hand corner of the Algorithm tab, click Add Algorithm.

Select Mapping.

The Create Mapping Algorithm pane appears.

Enter an Algorithm Name. Info: This MUST be unique.

Enter a Description.

Masking Engine 6.0.9.0 and earlier: When you use a Mapping algorithm, you cannot mask more
than one table at a time. You must mask tables serially.
Masking Engine 6.0.10.0 and later: A single Mapping Algorithm can have multiple jobs running
concurrently.



Continuous Compliance – Continuous Compliance Home

Securing sensitive data – 532

6.

7.

Select whether or not the mappings will live locally or remotely, by toggling the Local Mapping
Storecheckbox appopriately. If using a local mapping store, proceed to step 9. Info: For more
information about remote mapping stores, click here (see page 538).

Specify Host/IP, Port, Mapping Database, and Schema of the remote database.

Continuous Compliance – Continuous Compliance Home

Securing sensitive data – 533

8.

9.

10.

11.

Enter any remaining connection parameters in a properties file specifed by the Mapping Connection
Properties field.

To ignore specific characters, enter one or more characters in the Ignore Character List box.
Separate values with a comma.

To ignore the comma character (,), select the Ignore comma (,) checkbox.

When you are finished, click Save.

Before you can use the algorithm by specifying it in a profiling job, you must add it to a domain. If you are not
using the Masking Engine Profiler to create your inventory, you do not need to associate the algorithm with a
domain.

For information on creating Mapping algorithms through the API, see API Calls for Managing Algorithms -
Mapping. (see page 696)

8.1.9.10.4 Managing mappings via UI

Regardless of where the mappings reside (local or remote), the management process is the same.

To start go to the Edit Mapping Algorithm screen and select Manage Mappings

Continuous Compliance – Continuous Compliance Home

Securing sensitive data – 534

1.

2.

At the top there are 2 statistics provided for the mappings:

Total Mappings is the number of mapping outputs that exist for this algorithm.

Available Mappingsis the number of mappings that have not yet been assigned to an input value.

In addition to the mapping statistics there are 4 actions to choose for managing mappings:

8.1.9.10.4.1 Delete mappings

This action will delete all input/output combinations and effectively start this algorithm fresh. For this option
to take effect you must select the Delete Mappings action and then click Delete.

8.1.9.10.4.2 Export mappings

This action will export all mappings into a file that can then be used to seed another mapping algorithm or to
simply have a list of established mappings. For security purposes a passphrase is required to encrypt the file
on export.

1. When a job using the Mapping Algorithm runs, the mappings are loaded into memory. This
means that enough memory must be provided to the job to load the mappings. A Mapping
Algorithm with 2GB worth of mappings will require a job with a larger configured XMX than
what is needed for a Mapping Algorithm with 2MB worth of mappings.



Continuous Compliance – Continuous Compliance Home

Securing sensitive data – 535

To export mappings select the Export Mappings action and provide a passphrase and then click Export.

Once the export file has been generated a link that says Click here to Download File will appear. Click this to
download the export file.

8.1.9.10.4.3 Import mappings

This action will add mappings to the mapping algorithm. Mappings can be provided in 2 different formats -
PLAINTEXT and CSV.

If you wish to decrypt the exported file from the command line, run the following command:
openssl enc -aes-128-cbc -a -d -pass stdin -pbkdf2 -iter 100000 -md SHA256 -in
PATH_TO_EXPORT_FILE



Continuous Compliance – Continuous Compliance Home

Securing sensitive data – 536

PLAINTEXT

A PLAINTEXT mapping file can ONLY provide mapping outputs (i.e.: values you want to mask to). The file
must have NO header. Make sure there are no spaces or returns at the end of the last line in the file. The
following is sample file content. Notice that there is no header and only a list of values.

Smallville
Clarkville
Farmville
Townville
Cityname
Citytown
Towneaster

CSV

A CSV mapping file can provide both mapping inputs and outputs. That is, you can determine beforehand
what you want your mappings to be. The CSV file MUST have ONLY 2 columns - input and output. The first

Continuous Compliance – Continuous Compliance Home

Securing sensitive data – 537

line of the file MUST be the header "input,output". Make sure there are no spaces or returns at the end of the
last line in the file. The following is a sample CSV mapping file.

input,output
New York,Smallville
Boston, Clarkville
San Francisco, Towville
"",Cityname
"",Citytown
"",Towneaster

Once a File Type is selected, choose the mapping file in the Import Mappings/Outputs field.

When the appropriate selections have been made, click Import.

8.1.9.10.4.4 Reset mappings

Ths is action will delete all inputs for provided mappings, giving you a mapping algorithm with as many
outputs as you had before, but with all of them available for assignment the next time the mapping algorithm
is used.

You may opt not to specify an input, but you must specify an output for a line to be considered
valid. Invalid lines are silently ignored.



If providing a previously exported mapping file which has been encrypted with a passphrase,
select the CSV file type, provide the unaltered encrypted file and provide a passphrase.



Any duplicate values provided will be silently ignored.

Continuous Compliance – Continuous Compliance Home

Securing sensitive data – 538

•
•

8.1.9.10.5 Remote Mapping

With the release of version 6.0.10.0 of the Masking Engine, the Mapping Algorithm now provides support for
storing all mappings on a user-supplied database. This enables users to share mappings for the same
Mapping Algorithm across engines. The mapping database connection info can be provided when a Mapping
Algorithm is added or edited.

In order to serve as a mapping database, the following requirements must be met:

The database must be a PostgreSQL database version 9.5 or newer.
The database must be reachable by the Masking Engine

Continuous Compliance – Continuous Compliance Home

213 https://jdbc.postgresql.org/documentation/datasource/
214 https://delphixdocs.atlassian.net/wiki/pages/createpage.action?

fromPageId=47514525&linkCreation=true&spaceKey=CC&title=Introduction+to+masking+algorithms

Securing sensitive data – 539

•
•
•
•

All necessary tables and functions to successfully run the Mapping Algorithm will be created by the Masking
Engine upon connection to the remote mapping database.

Remote mappings are managed in the same way as local mappings via the Masking Engine GUI or APIs.

8.1.9.10.5.1 Expectations

By opting to manage their own mappings, the user agrees to be responsible for:

Database uptime
Database security
Network connectivity
Database storage

8.1.9.10.5.2 Configuring the connection

The user may opt to configure their PostgreSQL database however they wish. With the exception of host,
port, database and schema, all other connection properties may be provided via a properties file, per the
PostgreSQL JDBC Driver documentation213.

For databases with SSL/TLS connections, the correct properties should be supplied via the properties file.

8.1.9.11 Min Max (Algorithm frameworks)

Extensible Algorithm Framework214

The Continuous Compliance Engine provides two Min Max algorithm frameworks: "MinMax Date" and
"MinMax Number" to normalize data within a range. Values that are extremely high or low in certain
categories allow viewers to infer someone’s identity, even if their name has been masked. For example, a
salary of $1 suggests a company’s CEO, and some age ranges suggest higher insurance risk. You can use a
Min Max algorithm to move all values of this kind into the midrange. This algorithm allows you to make sure
that all the values in the database are within a specified range. The algorithm frameworks are applicable to
numeric or date data types.

It is completely fine to use the same remote database for multiple Mapping Algorithms on the
same Masking Engine or across many Masking Engines.



Given that the Masking Engine will need to query the remote database, network latency will have
an effect on how fast a job running a Mapping Algorithm will run, especially on the "initial" run of
a Mapping Algorithm when the majority of new mappings are established.



https://jdbc.postgresql.org/documentation/datasource/
https://delphixdocs.atlassian.net/wiki/pages/createpage.action?fromPageId=47514525&linkCreation=true&spaceKey=CC&title=Introduction+to+masking+algorithms
https://jdbc.postgresql.org/documentation/datasource/
https://delphixdocs.atlassian.net/wiki/pages/createpage.action?fromPageId=47514525&linkCreation=true&spaceKey=CC&title=Introduction+to+masking+algorithms

Continuous Compliance – Continuous Compliance Home

Securing sensitive data – 540

1.

2.

3.

4.

5.

The Replacement Value for Nonconforming Data value is used when the underlying data to be masked is of
type String and conversion to a date or a number is required.

8.1.9.11.1 Creating a Min Max Algorithm via UI

Enter the Algorithm Name.

Info: This MUST be unique.

Enter the Description.

Enter the Min Number and the Max Number.

Enter the Replacement Value for Nonconforming Data if needed.

Click Save.

For information on creating Min Max algorithms through the API, see API Calls for Creating Algorithms - Min
Max. (see page 699)

8.1.9.11.2 Examples

Example: Age less than 18 years - enter Min Number 0 and Max Number 18.

Continuous Compliance – Continuous Compliance Home

215 https://delphixdocs.atlassian.net/wiki/spaces/CC/pages/9963078

Securing sensitive data – 541

8.1.9.12 Name (Algorithm frameworks)

Extensible Algorithm Framework215

Starting in version 6.0.8.0, Delphix has introduced a builtin Extensible Name Algorithm Framework, co-
existing with the legacy FIRST NAME SL and LAST NAME SL ones. Name Framework provides masking
functionality for String type input. It's based on Secure Lookup mechanism, and includes additional
configuration flags making it more flexible and robust.

Similar to Secure Lookup it creates masking results which are deterministic (i.e. the same algorithm with the
same configuration and security key will provide the same result for the same input) and not unique. If you
are looking for a framework whose algorithm(s) will provide unique masking results, you should consider
using other frameworks (for example Character Mapping).

The new framework uses SHA256 hashing method and allows case configurations for input and output (i.e.
masked) values. It also allows filtering accents and configuring the maximum length of the masked value
and the maximum number of masked names returned. A multi-word input name may contain particles, such
as prefixes, suffixes, titles, etc. The new framework allows configuring which particles are to be preserved
and removed.

https://delphixdocs.atlassian.net/wiki/spaces/CC/pages/9963078
https://delphixdocs.atlassian.net/wiki/spaces/CC/pages/9963078

Continuous Compliance – Continuous Compliance Home

Securing sensitive data – 542

1.

2.

3.

4.

8.1.9.12.1 Creating a Name Algorithm via UI

In the upper right-hand corner of the Algorithm tab, click Add Algorithm.

Select the Name Framework. The Create Name Algorithm pane appears.

Enter an Algorithm Name. (Required)

Info:

This MUST be unique on the Masking Engine.

Enter a Description. (Optional)

Continuous Compliance – Continuous Compliance Home

Securing sensitive data – 543

5.

6.

7.

8.

9.

Choose the Case Sensitive Lookup configuration. The default is false (unchecked), which means
lookup is not case sensitive, so the same input of different cases will be masked to the same value.
For example:

Peter -> John
peter -> john

If the Case Sensitive Lookup box is checked, then the same input of different cases will be masked to
the different values, for example:

Peter -> John
peter -> andrew

Choose the Filter Accent configuration. The default is true (checked). If the Filter Accent box is
checked, then similar input with and without accented symbols will be masked to the same values.
For example:

Adrián -> John
Adrian -> John

If the Filter Accent box is unchecked, it will be masked to the different values, for example:

Adrián -> John
Adrian -> Peter

Choose the Maximum Number of Names. (Range 1-4, default 2). This is the maximum number of
names to be masked and returned. The rest are dropped.

Choose the Maximum Masked Name Length. (A number greater than or equal to 0, default is 0). This
is the maximum number of characters or length of the masked output string. The masked result is
trimmed to fit that length. Value 0 means length is unlimited.

Info:

We also try to detect the length of the destination field. Some Data Sources provide that value, while
others don't. For example: if Data Source provides value 10 for the destination column length and
current configuration field is set to 0 or any value longer than 10 - the shortest value wins, i.e. in this
example masked result would be trimmed to 10 characters.

Warning:

Some UTF-8 characters might take 2 bytes. If lookup file contains those characters - the trimmed
result might be not as expected, since we trim by the number of characters and not number of bytes.
There is a bug open for that mismatch.

Choose the Output (Masked) Case configuration. (Default is Preserve Input Case)

Output (Masked) case options:

Continuous Compliance – Continuous Compliance Home

Securing sensitive data – 544

•

•

•

•

•

•

•

10.

11.

12.

13.

Preserve Lookup File Case - keep masked value as found in the Lookup File.

Preserve Input Case (Default) - check the input case, which can be one of the following three:

All uppercase - in that case force whole masked value to uppercase

All lowercase - in that case force whole masked value to lowercase

Mixed (if at least 1 character case is different from others) - in that case keep masked
value as found in the Lookup File

Force all Uppercase - forces whole masked value to uppercase

Force all lowercase - forces whole masked value to lowercase

Specify a Particles to Preserve File. (Optional. A locally chosen file or a FileReference) Contains a list
of particles to be preserved. These particles are not masked. For example, if the file contains the
particle "von":

von Froum -> von Smith

Specify a Particles to Remove File. (Optional. A locally chosen file or a FileReference) Contains a list
particles to be removed. These particles are removed prior to masking and do not affect masking
result. For example, if the file contains the particle "von":

von Froum -> Smith
Froum -> Smith

Info:

If particle is found in both "Preserve" and "Remove" files - it will be removed.
If the input contains only particles, a particle will be masked as if it were a name.

Specify a Lookup File. (Required. A locally chosen file or a FileReference)

This file is a single list of values. It does not require a header. Every line of the Lookup File might be
used as a masked value. The Lookup File must be ASCII or UTF-8 encoding compatible. The following
is sample file content:

Ann
Marie
Tomas
Ann-Marie
Basil
Mark

When you are finished, click Save.

For information on creating Name algorithms through the API, see API Calls for Creating Algorithms -
Name. (see page 701)

Continuous Compliance – Continuous Compliance Home

216 https://delphixdocs.atlassian.net/wiki/pages/createpage.action?
fromPageId=47514585&linkCreation=true&spaceKey=CC&title=Introduction+to+masking+algorithms

Securing sensitive data – 545

8.1.9.13 Numeric Expression (Algorithm frameworks)

Extensible Algorithm Framework216

Numeric Expression algorithms mask numeric input by evaluating it within a one-line, mathematical
expression written by the user in the Java programming language. The expression can reference the current
unmasked value via an implicit variable called input .

For example, to mask a numeric column by always multiplying the input by 50%, the following expression
could be used:

input * 0.5

In addition to input , the expression can reference user-defined constant variables whose values are
determined at the beginning of a masking job and remain fixed for the life of the masking job.

See below for examples of expressions and constants.

https://delphixdocs.atlassian.net/wiki/pages/createpage.action?fromPageId=47514585&linkCreation=true&spaceKey=CC&title=Introduction+to+masking+algorithms
https://delphixdocs.atlassian.net/wiki/pages/createpage.action?fromPageId=47514585&linkCreation=true&spaceKey=CC&title=Introduction+to+masking+algorithms

Continuous Compliance – Continuous Compliance Home

Securing sensitive data – 546

1.

2.

3.

4.

5.

8.1.9.13.1 Creating a numeric expression algorithm via UI

In the upper right-hand corner of the Algorithms tab, click Add Algorithm.

Select Numeric Expression Framework. The Create Numeric Expression Algorithm pane appears.

Enter an Algorithm Name. (Required)

Info

This MUST be unique on the Masking Engine.

Enter an optional Description.

Enter an Expression. This must be a one-line, mathematical expression written in the Java
programming language that references input (the current unmasked value), e.g. input * 0.5

or input + Math.random() . See below for more examples of expressions.

Continuous Compliance – Continuous Compliance Home

Securing sensitive data – 547

6.

7.

8.

9.

Choose the Input Type. This is the data type that input conforms to within the expression. The

default double option causes input to be treated as a double-precision floating point variable in
expressions such as:

input * 0.5

or

input + Math.random()

Input Type can also be set to long, which causes input to be treated as a long integer variable in
expressions such as:

Long.sum(input, 50L)

The final Input Type option is BigDecimal, which causes input to be treated as a

java.math.BigDecimal variable in expressions such as:

input.scaleByPowerOfTen(3)

Enter an optional Replacement Value for Nonconforming Data if necessary. This is the default
masked value to be used if the unmasked input is not a numeric data type and can't automatically be
converted to one.

Optional: define any constants used by the expression. Constants are variables that the expression
can reference by name and whose values remain fixed for the life of a masking job. For example, to
mask every column value in a masking job by multiplying them all by the same random number, you
could use an expression such as:

input * theSameRandomNumber

but theSameRandomNumber would need to be defined as a constant whose Name is
theSameRandomNumber and whose Value is something like new

java.util.Random().nextDouble() . See below for more examples of constants.

When you are finished, click Save.

For information on creating Numeric Expression algorithms through the API, see API Calls for Creating
Algorithms - Numeric Expression. (see page 703)

Continuous Compliance – Continuous Compliance Home

217 https://www.eclipse.org/downloads/packages/
218 https://www.jetbrains.com/idea/
219 https://docs.oracle.com/javase/8/docs/api/java/lang/Math.html
220 https://docs.oracle.com/javase/8/docs/api/java/math/BigDecimal.html

Securing sensitive data – 548

8.1.9.13.2 Writing good expressions & constants

Expressions and the Java programming language are powerful. Care must be taken to avoid writing bad
expressions, which will manifest in the form of failed masking jobs. It is highly recommended to stage
complex expressions with a Java IDE such as Eclipse217 or IntelliJ IDEA218 before using them in a masking
job.

The requirement that expressions must be written in Java might be intimidating to non-programmers, but
simple mathematical equations in Java look similar to simple mathematical equations in general. The four
most common operators are supported: addition (+), subtraction (-), multiplication (*), and division (/).
For operators not supported by Java, use methods from the java.lang.Math219 library. For example, one
might expect input ^ 5 to mean "take input to the fifth power," but ^ is not a power operator in Java.

Instead, use Math.pow(input, 5.0) .

To isolate parts of the expression for clarity or to enforce order of operations, use open and closed
parentheses () only. Do not use square braces [] or curly braces {} .

8.1.9.13.3 Expression do's and don'ts

Do use an Input Type (explained above) that corresponds to the data type of the column being masked. For
columns whose values are floating-point numbers (i.e. numbers that have digits to the right of the decimal
point) set Input Type to double (the default) or BigDecimal if the expression needs to treat the input as a
java.math.BigDecimal220 object in order to perform more complex math. For columns whose values are
integers (whole numbers), set Input Type to long.

Don't write expressions that do mathematically impossible things (e.g. divide by zero) or will result in
numeric overflow or values that are too large or too small to fit in the database column being masked.

Don't use line breaks or other whitespace to force an expression to be longer than one line.

Don't attempt to assign an expression to a variable. For example, this won't work:

output = input * 0.5

but this will:

input * 0.5

The result of the expression will be automatically assigned as the masked value. It's not necessary or
allowed to assign it to anything else.

Don't use the return keyword or end the expression with a semicolon.

Don't write expressions that return a non-numeric value, e.g.

https://www.eclipse.org/downloads/packages/
https://www.jetbrains.com/idea/
https://docs.oracle.com/javase/8/docs/api/java/lang/Math.html
https://docs.oracle.com/javase/8/docs/api/java/math/BigDecimal.html
https://www.eclipse.org/downloads/packages/
https://www.jetbrains.com/idea/
https://docs.oracle.com/javase/8/docs/api/java/lang/Math.html
https://docs.oracle.com/javase/8/docs/api/java/math/BigDecimal.html

Continuous Compliance – Continuous Compliance Home

221 https://docs.oracle.com/javase/tutorial/java/nutsandbolts/variables.html#naming

Securing sensitive data – 549

java.util.Arrays.asList(input)

The above expression would return a List object, which can't be converted into a numeric value.

Expressions must return a value whose type is numeric: an int , short , long , float , or double

Java primitive type (or their object wrappers) as well as java.math.BigDecimal and

java.math.BigInteger . Returning String and char[] (character array) values is also acceptable
as long as they can be converted into a numeric value.

Do fully-qualify any Java class the expression references that isn't in the java.lang package, e.g.

input * new java.util.Random().nextDouble()

This won't work:

input * new Random().nextDouble()

because Java's Random class is in the java.util package rather than java.lang .

Don't use the import keyword in an attempt to import non- java.lang classes that are referenced
frequently by the expression and/or constants. Fully-qualify such Java classes every time they're referenced.

8.1.9.13.4 Constants

Constants are variables that the expression can reference by name and whose values remain fixed for the
life of a masking job. Constant names must be valid Java variable names221. No two constants can have the
same name, nor can "input" or "seed" be used as a constant name.

Constant values are very much like the expression: one-line Java expressions that must return a value.
However, unlike the algorithm's main expression, constant values aren't required to be numeric.

Constants can reference by name other constants defined before them.

8.1.9.13.4.1 seed

There is a built-in constant named seed . Its value is a long integer that's based on the algorithm key, so the

value of seed is guaranteed to remain the same across multiple masking jobs as long as the algorithm key

remains the same. A common use case for seed is to seed a random number generator to produce the
same (i.e. predictable) "random" number(s) among different masking jobs.

https://docs.oracle.com/javase/tutorial/java/nutsandbolts/variables.html#naming
https://docs.oracle.com/javase/tutorial/java/nutsandbolts/variables.html#naming

Continuous Compliance – Continuous Compliance Home

Securing sensitive data – 550

8.1.9.13.5 Numeric Expression Examples

8.1.9.13.5.1 Example 1

A numeric column must be masked by multiplying all of its values by the same random percentage. The
random percentage must remain the same across every masking job.

Solution:

A single constant is required for the random percentage:

Name Value

randomPercentage new java.util.Random(seed).nextDouble()

Note that the built-in seed constant is being used to seed the random number generator, an instance of

java.util.Random , which is used to produce a single random number.

The expression can then reference randomPercentage like this:

input * randomPercentage

8.1.9.13.5.2 Example 2

A numeric column must be masked by taking the square root of each value, then rounding it to a certain
number of decimal places. Initially, it will be rounded to two decimal places, but the number of decimal
places will be changed frequently, so it should be easily adjustable by the user.

Solution:

We'll define two constants this time:

Name Value

decimalPlaces 2

multiplier Math.pow(10.0, decimalPlaces)

then use this expression:

Math.floor(Math.sqrt(input) * multiplier + 0.5) / multiplier

Continuous Compliance – Continuous Compliance Home

Securing sensitive data – 551

The heavy lifting is being done by the main expression, which uses the multiplier constant. Note that

multiplier references decimalPlaces , whose value could be easily changed by someone who is not
inclined mathematically and doesn't understand how the expression is rounding numbers.

8.1.9.13.5.3 Example 3

We must mask a numeric column that represents the day of the current month, e.g. 1-31 (or 1-28, 1-29, 1-30).
This column will be masked by adding to it a random number of days, which can be between 1 and the
highest day in the current month, inclusive. If the masked value exceeds the highest day in the current month,
it will simply be set to the highest day in the current month.

Solution:

First, since the day of the current month is an integer (whole number), set the algorithm's Input Type to long
(integer) instead of the default double (floating point).

Then define three constants:

Name Value

calendar java.util.Calendar.getInstance()

lastDayOfMo

nth

calendar.getActualMaximum(java.util.Calendar.DAY_OF_MONTH)

randomDays new java.util.Random().ints(1, lastDayOfMonth +

1).iterator().nextInt()

calendar is a new instance of java.util.Calendar set to the current date and time.

lastDayOfMonth uses calendar to determine the last day of the current month.

randomDays uses lastDayOfMonth to generate a random number between 1 and lastDayOfMonth
(inclusive).

The expression will then look like this:

(input + randomDays > lastDayOfMonth) ? lastDayOfMonth.longValue() : input +
randomDays

This expression leverages Java's ternary operator to mask conditionally. If the unmasked input plus
randomDays exceeds lastDayOfMonth , then the masked value will simply be lastDayOfMonth .

Otherwise, the masked value will be the unmasked input plus randomDays .

Continuous Compliance – Continuous Compliance Home

222 https://delphixdocs.atlassian.net/wiki/pages/createpage.action?
fromPageId=47547083&linkCreation=true&spaceKey=CC&title=Introduction+to+masking+algorithms

Securing sensitive data – 552

8.1.9.14 Payment Card (Algorithm frameworks)

Extensible Algorithm Framework222

The Payment Card framework masks payment card numbers based on the starting digits to be preserved
and the minimum number of positions to be masked. This framework is built on top of the Character
Mapping Algorithm Framework (see page 509) with a character set of [0-9]. All characters outside of this
character group remain unmasked. Masked values are calculated algorithmically using the algorithm's key,
so rekeying the algorithm will cause different outputs to be generated for each input. The last digit may
remain the same if the calculated check digit is equivalent to the last digit of the input. Any inputs with more
than one digit will never mask to the original value.

This framework preserves the validity of the payment card number using the Luhn check. All input values
with valid Luhn checks will be masked to values with valid Luhn checks. All invalid values with invalid Luhn
checks will be masked to values with invalid Luhn checks.

Any inputs with a single digit will remain unmasked.

https://delphixdocs.atlassian.net/wiki/pages/createpage.action?fromPageId=47547083&linkCreation=true&spaceKey=CC&title=Introduction+to+masking+algorithms
https://delphixdocs.atlassian.net/wiki/pages/createpage.action?fromPageId=47547083&linkCreation=true&spaceKey=CC&title=Introduction+to+masking+algorithms

Continuous Compliance – Continuous Compliance Home

Securing sensitive data – 553

1.

2.

3.

4.

5.

6.

7.

8.1.9.14.1 Creating a payment algorithm via UI

In the upper right-hand region of the Algorithm tab under Settings, click Add Algorithm.

Select Payment Card. The "Create Payment Card Algorithm" pane appears.

Enter an Algorithm Name.

Info: This MUST be unique.

Enter a Description.

Set Minimum Masked Positions. This value is the minimum number of positions that must be
replaced for masking to be considered successful. If fewer positions are masked, a non- conforming
data handling error is triggered. Values for this field must be in the range [0-32].

Set Preserve Starting Digits. This value specifies how many maskable characters should be
preserved from the beginning of the input. Only maskable characters are included in this count.
Values for this field must be in the range [0-32].

When you are finished, click Save.

For information on creating Payment Card algorithms through the API, see API Calls for Creating Algorithms -
Payment Card. (see page 705)

Continuous Compliance – Continuous Compliance Home

223 https://delphixdocs.atlassian.net/wiki/pages/createpage.action?
fromPageId=47612538&linkCreation=true&spaceKey=CC&title=Introduction+to+masking+algorithms

224 https://docs.oracle.com/javase/8/docs/api/java/util/regex/Pattern.html

Securing sensitive data – 554

•
•
•

8.1.9.14.2 Examples

As an example, a Payment Card algorithm with a minMaskedPositions value of 6 and a preserve value of 6
may mask as follows:

"5419033646326699" → "5419036803270758"
"5419-0336-4632-6699" → "5419-0368-0327-0758"
"5319abc0339def4632ghi6599!" → "5319abc0364def1507ghi4137!"

All inputs with the same sequence of digits masked with the same algorithm configuration will result in the
same output values.

8.1.9.15 Regex Decompose (Algorithm frameworks)

Extensible Algorithm Framework223

The Regex Decompose framework masks values that match specified Java 8 regular expressions224. The
algorithm attempts to match the algorithm input against each regular expression, and once a match is found,
the associated action is applied to transform either the entire input, or each capturing group (parts of the
input) defined by the expression. A fallback action may be provided for use when none of the defined regular
expressions match the input. If no fallback action is defined and an input fails to match any of the defined
regular expressions, the algorithm may be configured to generate a non-conformant data exception.

Capturing groups are used in regular expressions to create subgroups. These can be expressed in regular
expressions using parentheses to group characters together. This algorithm allows for different capturing
groups to be assigned different mask actions. Nested capturing groups are unsupported and may lead to
unpredictable behavior. If no capturing groups are defined, the first action is applied to the entire match. In
this case, the action list should contain only one action.

Creation of Regex Decompose algorithms can only be done through the API, see API Calls for Creating
Algorithms - Regex Decompose. (see page 706)

8.1.9.15.1 Examples

As an example, a Regex Decompose algorithm with the following configuration:

Mask Pattern:
 Regular Expression: "[0-9]*"
 Action: Redact
 Redact String: "redacted"
 Require Mask: false
 Trim Input: true
 Maximum Input Length: 10

Will produced masked results as follows:

https://delphixdocs.atlassian.net/wiki/pages/createpage.action?fromPageId=47612538&linkCreation=true&spaceKey=CC&title=Introduction+to+masking+algorithms
https://docs.oracle.com/javase/8/docs/api/java/util/regex/Pattern.html
https://delphixdocs.atlassian.net/wiki/pages/createpage.action?fromPageId=47612538&linkCreation=true&spaceKey=CC&title=Introduction+to+masking+algorithms
https://docs.oracle.com/javase/8/docs/api/java/util/regex/Pattern.html

Continuous Compliance – Continuous Compliance Home

Securing sensitive data – 555

•
•
•

•
•

•

•
•

•
•
•

•

•

•

"12345" → "redacted"
" 6789 " → " redacted "
"12345678901" → non-conformant data

exceeds maximum input length
"abc123" → "abc123"

remains unmasked since it does not match the regex pattern

The provided regular expression matches any inputs with 0 or more digits in the range [0-9] and any inputs
that match will be replaced with the string "redacted". Any inputs that contain characters outside of the range
[0-9] will not be masked. If require mask was set to true, the last example "abc123" would trigger a non-
conformant data event as the value would not be masked by the algorithm.

Another example that includes capturing groups with the following configuration:

Mask Pattern:
 Regular Expression: "([1-9]*)-([a-z]*)"
 Action 1: Redact
 Redact Character: 'X'
 Action 2: Preserve
 Require Mask: true
 Trim Input: true
 Maximum Input Length: 10
 Fallback Action: Redact
 Redact String: "redacted"

Will produce masked results as follows:

"12345-abc" → "XXXXX-abc"
"abc-123" → "redacted"

does not match the pattern so the fallback action is applied
"1-a" → "X-a"
"-" → "redacted"

does match the pattern but the masked output would be "-" which breaks the requirement that
the output must be different from the input so the fallback action is applied

"redacted" → non-conformant data

does not match the pattern so the fallback action is applied but the fallback action does not
change the value so it fails the requirement that the input must be masked

The provided regular expression matches any inputs with 0 or more digits in the range [1-9], a dash, and 0 or
more characters in the range [a-z]. Any inputs that do not match that pattern will be masked by the fallback
action. If the fallback action fails to change the input, a non-conformant data event will occur.

All inputs with the same input value masked with the same algorithm configuration will result in the same
output values.

Continuous Compliance – Continuous Compliance Home

225 https://delphixdocs.atlassian.net/wiki/pages/createpage.action?
fromPageId=47514494&linkCreation=true&spaceKey=CC&title=Introduction+to+masking+algorithms

Securing sensitive data – 556

1.

8.1.9.16 Secure Lookup (Algorithm frameworks)

Extensible Algorithm Framework225

Secure Lookup is the most commonly used type of algorithm. It is easy to generate and works with different
languages. When this algorithm replaces real, sensitive data with fictional data, it is possible that it will
create repeating data patterns, known as “collisions.” For example, the names “Tom” and “Peter” could both
be masked as “Matt”. Because names and addresses naturally recur in real data, this mimics an actual data
set. However, if you want the Masking Engine to mask all data into unique outputs, you should use Character
Mapping.

Starting in version 6.0.4.0, we introduced a built in Extensible Secure Lookup Algorithm Framework. The new
framework uses SHA256 hashing method and allows case configurations for input and output (i.e. masked)
values.

8.1.9.16.1 Creating a secure lookup algorithm via UI

https://delphixdocs.atlassian.net/wiki/pages/createpage.action?fromPageId=47514494&linkCreation=true&spaceKey=CC&title=Introduction+to+masking+algorithms
https://delphixdocs.atlassian.net/wiki/pages/createpage.action?fromPageId=47514494&linkCreation=true&spaceKey=CC&title=Introduction+to+masking+algorithms

Continuous Compliance – Continuous Compliance Home

Securing sensitive data – 557

2.

3.

4.

5.

6.

•

•

7.

In the upper right-hand corner of the Algorithm tab, click Add Algorithm.

Choose Secure Lookup Algorithm. The Create SL Algorithm pane appears.

Enter an Algorithm Name.

Info

This MUST be unique.

Enter a Description.

Choose the Output (Masked) Case configuration. It is explained with the examples in the information
popup window, which may be opened by clicking on the blue question sign on the above Create SL
Algorithm window:

Choose the Hash Method configuration.

SHA256: This hash method is the default hash method for extensible secure lookup
algorithms.

LEGACY: This hash method is used to mimic the legacy secure lookup behavior in the
extensibility framework.

Choose the Case Sensitive Lookup configuration. If Case Sensitive Lookup box is marked then the
same input of different cases will be masked to the different values. For example:

Peter -> John
peter -> Andrew

If that setting is not marked (which is a default option), then lookup would be case insensitive, for
example:

Continuous Compliance – Continuous Compliance Home

226 https://delphixdocs.atlassian.net/wiki/spaces/CC/pages/9963078

Securing sensitive data – 558

8.

9.

10.

•

•

Peter -> John
peter -> John

Specify a Lookup File. This file is a single list of values that does not require a header, every line of
the Lookup File might be used as a masked value. The Lookup File must be ASCII or UTF-8 encoding
compatible. The lookup file can be referenced locally or with a specified/uploaded URI. The following
is sample file content:

Smallville
Clarkville
Farmville
Townville
Cityname
Citytown
Towneaster

When you are finished, click Save.

Before you can use the algorithm in a profiling job, you must add it to a domain.

For information on creating Secure Lookup algorithms through the API, see API Calls for Creating Algorithms
- Secure Lookup. (see page 709)

8.1.9.17 Segment Mapping (Algorithm frameworks)

Extensible Algorithm Framework226

Segment Mapping algorithms produce no overlaps or repetitions in the masked data. They let you create
unique masked values by dividing a target value into separate segments and masking each segment
individually.

You might use this method if you need columns with unique values, such as Social Security Numbers,
primary key columns, or foreign key columns. When using segment mapping algorithms for primary and
foreign keys, in order to make sure they match, you must use the same Segment Mapping algorithm for
each. You can set the algorithm to produce alphanumeric results (letters and numbers) or only numbers.

With Segment Mapping, you can set the algorithm to ignore specific characters. For example, you can
choose to ignore dashes [-] so that the same Social Security Number will be identified no matter how it is
formatted. You can also preserve certain values. For example, to increase the randomness of masked values,
you can preserve a single number such as 5 wherever it occurs. Or if you want to leave some information
unmasked, such as the last four digits of Social Security numbers, you can preserve that information.

This algorithm can be used for tokenization and re-identification jobs if the following conditions are met:

All alpha-numeric and numeric segments have Value Ranges with "Mask values with: The same
ranges"
There are no segments with "Segment Treatment: Mask with a constant value"

https://delphixdocs.atlassian.net/wiki/spaces/CC/pages/9963078
https://delphixdocs.atlassian.net/wiki/spaces/CC/pages/9963078

Continuous Compliance – Continuous Compliance Home

Securing sensitive data – 559

•

1.

2.

3.

4.

5.

If a numeric segment is defined, "Short Numeric Segment Handling: Report nonconforming data" is
selected

To decide whether Character Mapping or Segment Mapping is the correct option for your use case, see
Choosing Between Character and Segment Mapping Frameworks. (see page 470)

8.1.9.17.1 Creating a segment mapping algorithm via UI

In the upper right-hand region of the Algorithms tab, click Add Algorithm.

Select Segment Mapping. The "Create Segment Mapping Algorithm" pane appears.

Enter an Algorithm Name.

Info

This MUST be unique.

Enter a Description (optional).

Click the Segment 1 tab to open the pane for the first segment. Use the plus (+) button to add as
many segments as you need (maximum of 10). Use the tabs to navigate between segments.

Continuous Compliance – Continuous Compliance Home

Securing sensitive data – 560

6.

•

•

•

7.

For each segment, select its:

Length (number of characters). The maximum is 6.

Segment Treatment: Mask alpha-numeric, Mask numeric, Preserve, or Mask with a constant
value.

Value Ranges. Optional for alpha-numeric and numeric, required for constant. See Specifying
Value Ranges. (see page 0)

Info

Numeric segments are masked as whole segments. Alpha-numeric segments are masked by
individual characters.

If you would like to allow the masking of short numeric segments, change the Short Numeric
Segment Handling drop-down to select Mask partial segments. This option allows masking to
proceed if an input string is truncated midsegment. For example, you define a numeric segment of
length 4, but the input string ends midsegment so you have a 2 digit number instead of 4.

Info

Continuous Compliance – Continuous Compliance Home

Securing sensitive data – 561

8.

This only applies to Mask numeric segments. Other segment treatments always apply to partial
segments.

Info

If Mask partial segments is selected AND a Mask numeric segment is defined, the algorithm is not
reversible and cannot be used for tokenization/re-identification.

By default, the segment mapping algorithm will Report nonconforming data for short numeric
segments and the Monitorpage will display a warning that can be used to report the non-conformant
data events. This will result in the non-conformant data not being masked.

Example

Your content goes here

Segment 1: length 2, mask alpha-numeric. Segment 2: length 4, mask numeric.

Input Output Short Numeric Segment Handling

AB1234 DL9148 Either

AB12 AB12 Report nonconforming data (reported)

AB0012 DL3619 Report nonconforming data (not reported)

AB12 DL3619 Mask partial segments

Select the appropriate Ignore Characters handling. Ignored characters are removed from the input
value before masking and restored to their original positions after masking. When Automatically
ignore special characters is selected, all non-maskable characters are ignored. When Ignore specific
characters is selected, only specified characters are ignored. Enter the characters you wish to ignore
in the Specific Characters box, separated by a comma. To ignore the comma character (,), check the
Ignore Commas checkbox. To ignore control characters, check the Add Control Characters checkbox
and select the desired characters to ignore.

Continuous Compliance – Continuous Compliance Home

Securing sensitive data – 562

9.

10.

11.

Lastly, the checkbox for Process Preserve Segments Before Ignore Charactersselects whether to
process segments with "Segment Treatment: Preserve" first, before removing ignore characters, so
ignore characters count as length when finding preserve segments in the input, and then process the
remaining segments.
The default is for this to be unchecked, so ignore characters are removed first, and then the
segments are processed in order.

Warning:

This option exists to support backwards compatibility with the legacy Segment Mapping algorithm
configuration and is not recommended for newly created algorithms, as it may cause some
segments to be processed out of order.

When you are finished, click Save.

Before you can use the algorithm in a profiling job, you must add it to a domain. If you are not using
the Masking Engine Profiler to create your inventory, you do not need to associate the algorithm with
a domain.

8.1.9.17.1.1 Specifying value ranges

You can specify values ranges for each segment based on the Segment Treatment.

Continuous Compliance – Continuous Compliance Home

Securing sensitive data – 563

For Mask alpha-numeric, you can specify an original value range and a mask value range. If either of these
fields is left blank, it will use the default value range, which is 0-9,A-Z. Use the value range fields to specify
individual values and ranges, for example 'A-F,P,R,1-5,7,9'.

For Mask numeric, you can specify an original value range and a mask value range. If either of these fields is
left blank it will use the default value range, which is 0 to the max integer that can fit into the segment length
(ex: 000-999 for a segment of length 3). Use the value range fields to specify integer values and ranges, for
example '10,30,50-875'.

For Preserve, you cannot specify any value ranges as whatever is encountered in this segment will be
preserved.

For Mask with a constant value, you cannot specify an original value range, and your replace value must be a
single value the same length as the segment (ex: if the segment length is 3, 'ABC' would be valid
replacement).

For information on creating Segment Mapping algorithms through the API, see API Calls for Creating
Algorithms - Segment Mapping. (see page 712)

8.1.9.17.2 Examples

Perhaps you have an account number for which you need to create a segment mapping algorithm. You can
separate the account number into segments, preserving the first two-character segment, replacing a
segment with a specific value, and preserving a hyphen. The following is a sample value for this account
number:

The masking will only look to mask these values and will preserve any other values. Letters are
masked to letters and digits to digits.



If the original and replacement values and ranges are not the same, the algorithm is not
reversible and cannot be used for tokenization/re-identification.



The masking will only look to mask these values and will preserve any other values.

The Segment Mapping pattern and sub-patterns need to match the data in order for it to be
masked. If the data is longer than the defined pattern it will be passed through unmasked. To
avoid this unwanted behavior - patterns (segments) and Ignore Characters should be set to
match the data.



Continuous Compliance – Continuous Compliance Home

Securing sensitive data – 564

•
•

•

•

•

•
•

1.

2.

NM831026-04

Where:

NM is a plan code number that you want to preserve, always a two-character alphanumeric code.
831026 is the uniquely identifiable account number. To ensure that you do not inadvertently create
actual account numbers, you can replace the first two digits with a sequence that never appears in
your account numbers in that location. (For example, you can replace the first two digits with 98
because 98 is never used as the first two digits of an account number.) To do that, you want to split
these six digits into two segments. The first of these segments would be a 2 character constant
segment mapping to 98. The second of these 2 could be a 4 character numeric segment.
-04 is a location code. You want to preserve the hyphen and you can replace the two digits with a
number within a range (in this case, a range of 1 to 77).

8.1.9.18 Tokenization (Algorithm frameworks)

Extensible Algorithm Framework (see page 788)

The Tokenization framework allows you to mask data and reverse its masking. For example, you can use a
Tokenization algorithm to mask data before you send it to an external vendor for analysis. The vendor can
then identify accounts that need attention without having any access to the original, sensitive data. Once you
have the vendor’s feedback, you can reverse the masking and take action on the appropriate accounts.

The Tokenization algorithm is designed to be used in Tokenization/Re-Identification jobs, though it can also
be used in Masking.

The algorithm tokenizes values using AES-128 encryption in CBC-CTS mode, with an optional initialization
vector (IV), and Base64 encoding. The results are alpha-numeric strings that are longer than the original
values. If the result is too long to fit in the field, the algorithm can be configured to either (a) fallback to a
reversible masking algorithm, which produces a result that is the same length as the original value, or (b) fail
the job.

The algorithm has the following properties:

The masked value for each input is consistent when using the same algorithm and the initialization
vector length is 0. Changing the key for the algorithm or using an initialization vector length greater
than 0 will result in different masked values.
As long as at least one maskable character is present in the input, the masked value will never match
the input.
The algorithm used to mask a value can change depending on the length of the input.
The algorithm only works on string data types. Numbers can be masked if the column data type is a
String type, such as VARCHAR or TEXT.

This new algorithm framework was introduced in version 6.0.13.0 to replace the existing Tokenization
algorithm and adds the ability to select a fallback algorithm.

8.1.9.18.1 Creating a tokenization algorithm via UI

In the upper right-hand region of the Algorithms tab under Settings, click Add Algorithm.

Select the Tokenization Framework. The "Create Tokenization Algorithm" pane appears.

Continuous Compliance – Continuous Compliance Home

Securing sensitive data – 565

1.

2.

3.

4.

Enter an Algorithm Name.

Info: This MUST be unique.

Enter a Description.

Select an Initialization vector length. The default length is 16, which offers the most security. The
tradeoff is that this increases the length of the masked result. Selecting a lower IV length decreases
the length of the masked result. It is recommended that you only select an IV length of 0 if you require
the masked value for each input to be consistent between jobs and for the same input to only mask
to one output.

Select a Fallback algorithm. An AES encrypted result is always longer than the original value. If an
AES encrypted result is too long to fit into the field, the job will fail if Fallback is "None". When
Fallback is "Character Mapping", the Character Mapping algorithm is used to tokenize the value,
which produces a result that is the same length as the input.

If Character Mapping is selected as the Fallback, a Character Mapping algorithm is created, which will be
used to tokenize values that cannot be tokenized with AES encryption because the encrypted result is too
long for the field. When selected, two additional configuration options will appear: Minimum Masked
Positions and Character Groups. Unlike standalone Character Mapping algorithms, the Character Mapping
algorithm used for Tokenization fallback does not support Preserve Ranges and Preserve Leading Zeroes,
and Case Sensitive is permanently set to true.

Continuous Compliance – Continuous Compliance Home

Securing sensitive data – 566

1.

2.

1.

Enter a value for Minimum Masked Positions, which sets the minimum number of characters that the
algorithm must mask; fewer positions triggers non-conformant data handling. Null, empty, and all-
whitespace values never trigger non-conformant data handling.

Define Character Groups for each group of characters among which you would like to map. Each
group may be defined either by specifying each literal character in the group, such as "0123456789",
or using Java Regular Expression style character ranges, such as "[0-9]". The algorithm will freely map
characters to other characters within the same group, so by defining groups "[0-9]" and "[A-Z]",
numbers would be replaced by other numbers, and letters by other letters, but a number would never
be replaced by a letter. Groups should not contain duplicate characters, and each character may
belong to only one group. Any character that is not assigned to a group will be preserved (not
masked) by the algorithm. It is recommended that all characters are in one group so there is more
randomization and the values are more obfuscated. The default is the Base64 character set ["[A-Za-
z0-9+/]"], which contains the same characters that appear in an AES encrypted result.

Once you have created an algorithm, you may associate it with a domain.

In the upper right-hand region of the Domains tab under Settings, click Add Domain.

Continuous Compliance – Continuous Compliance Home

Securing sensitive data – 567

2.

3.

1.

Enter a Domain Name.

Select algorithms from both the Algorithm Name and Tokenization Algorithm Name drop-down
menus.

Next, create a Tokenization Environment:

In Environments, use the Select Action dropdown menu to select Add Environment.

Continuous Compliance – Continuous Compliance Home

Securing sensitive data – 568

2.

3.

For Purpose, select Tokenize/Re-Identify. Info This environment will also be used to re-identify your
data.

Set up a Tokenization job using the Tokenization Method. Execute the job.

Continuous Compliance – Continuous Compliance Home

Securing sensitive data – 569

8.1.9.18.2 Examples

Here is example data before and after Tokenization:

Before Tokenization

1,Erasmus,245 Park Ave,123-45-6789
2,Salathiel,245 park ave,123-45-6789
3,Salathiel,1003 Stant Drive,111-11-1111

Continuous Compliance – Continuous Compliance Home

Securing sensitive data – 570

•
•
•
•

•

•
•

•

•

•

•

After Tokenization

ID,fname,address,ssn
1,FQL71CmqK/pkd8B2vVP903O4+/
krT91dscS0rKQRACQ=,XFLst0IcSbOa2UlEOmlACPkcaOEVczZsEdxl225kF1M=,x6tJ4eyL4it4ji84h8Pzo
CW4QBZphEqDOy3hEj4h1jE=
2,4bGZoCLpbV2zAMsTkcc5lMTBKksvOP+tfAWucq+BnKM=,OA9dJ5HN5oRx18ZYo1f5Y8DofvhFoRo98cuQHZ
7YeEo=,Evj+LnETt7ABbXlTDPyNvvJe8WJnrhEWeS0lqtqrr4U=
3,Ll4T49FrCBYRibOAKOY4vbnswbOn1RpqBU97EGg4RvA=,f6AR0T+HBoTW7+l0e8ok9rImj872PUnYYNYMDY
Sy4dw=,wYMvEhktV371kqH607afJHZloT+4DYNJxehWIcPZJzI=

8.1.10 General UI for extended algorithms

8.1.10.1 Overview

An algorithm plugin can be configured through the graphical user interface by entering the plugin's required
configuration in JSON format. The following section describes how to use this feature.

8.1.10.2 GUI steps

Use the Select Framework drop-down to create an instance corresponding with the selection.
Provide an Algorithm Name (Required).
Provide a Description for the new algorithm instance (Optional).
Provide a valid extension of the corresponding framework in JSON format in Configuration JSON
(Required).
Based on the Select Framework option, the Configuration JSON will be populated with default values
in the corresponding text area.
A Help icon will appear to show the selected framework details and configuration schema.
A Utility icon on top of the configuration JSON text area is available to upload and copy the local file
reference, and to pick an algorithm reference from existing algorithm instances.
The Format JSON button is used to format the text from the Configuration JSON text area into JSON
format.
The Validate Configuration button will validate the Configuration JSON format, and also validate
against the selected framework configuration schema.
For a plugin with a specific GUI like Character Mapping or Secure Lookup, their respective GUI will be
shown when editing.
For other plugin instances, the user can only modify the description and extension of the algorithm
instance from the plugin GUI. The select framework and algorithm name fields will be read-only.

The default selected framework populates corresponding Configuration JSON in the text area.

Continuous Compliance – Continuous Compliance Home

Securing sensitive data – 571

When the framework changes, the Configuration JSON will be populated automatically.

Continuous Compliance – Continuous Compliance Home

Securing sensitive data – 572

Framework details will appear.

Continuous Compliance – Continuous Compliance Home

Securing sensitive data – 573

If there are issues with the Configuration JSON, an Invalid input banner will appear.

Continuous Compliance – Continuous Compliance Home

Securing sensitive data – 574

If the Configuration JSON is valid, a Success banner will appear.

Continuous Compliance – Continuous Compliance Home

Securing sensitive data – 575

The Plugin Helper Utility offers a way to upload a file and receive a reference id for algorithm extension, or to
select an instance of algorithm instances for algorithm chaining.

Continuous Compliance – Continuous Compliance Home

Securing sensitive data – 576

In the Plugin Helper Utility, choose Upload File from the Select Utility drop-down. Select a file to upload, then
click the Upload File button.

When the file is uploaded, it will render a copyable Value.

Continuous Compliance – Continuous Compliance Home

Securing sensitive data – 577

The Plugin Helper Utility also has a Select Algorithm option in the Select Utility drop-down, which renders a
new list of available algorithms to select.

Continuous Compliance – Continuous Compliance Home

Securing sensitive data – 578

8.2 Builtin Driver Supports

8.2.1 Introduction

In 6.0.11.0, Delphix introduced the first built-in driver support plugin for the Oracle database platform.

The native connector types with a built-in driver support plugin are:

Native Connector Type Release

Oracle 6.0.11.0

MSSQL 6.0.12.0

PostgresSQL 11.0.0.0

Db2 LUW 14.0.0.0

Db2 z/OS 16.0.0.0

Continuous Compliance – Continuous Compliance Home

Securing sensitive data – 579

Native Connector Type Release

Db2 iSeries 16.0.0.0

The built-in driver support plugins replace and improves upon the native connector database masking
options of Disable Constraints, Drop Indexes, and Disable Triggers that have long had issues with
functionality and negatively affecting job performance. Delphix has implemented the built-in driver support
plugin for native connectors with Disable Constraints, Drop Indexes, and Disable Triggers tasks using the
Driver support plugin framework (see page 778) released in 6.0.9.0. These optimizations apply to masking,
reidentification, and tokenization jobs where these tasks are enabled.

For details on how to enable/disable these tasks on supported native connector jobs using the new Driver
Support Plugin Framework, see API Calls for managing masking job driver support tasks. (see page 738)

To retrieve information about job failures due to driver support task failures, an execution event will be raised
and is accessible via the GET /execution-events endpoint: 1. eventType -

DRIVER_SUPPORT_TASK_FAILURE 2. exceptionDetail - Error message about the task failure that
will typically include the error code that is specific to the database platform

8.2.2 Oracle

For details on usage and known limitations of the Oracle Disable Constraints, Drop Indexes, and Disable
Triggers driver support tasks, see Oracle Built-in driver support plugin. (see page 580)

8.2.3 MSSQL

For details on usage and known limitations of the MSSQL Disable Constraints, Drop Indexes, and Disable
Triggers driver support tasks, see MSSQL Built-in driver support plugin. (see page 581)

8.2.4 PostgreSQL

For details on usage and known limitations of the PostgreSQL Drop Constraints, Drop Indexes, and Disable
Triggers driver support tasks, see PostgreSQL Built-in Driver Support Plugin. (see page 583)

8.2.5 Db2 LUW

For details on usage and known limitations of the Db2 LUW Drop Constraints, Drop Indexes, and Drop
Triggers driver support tasks, see Db2 LUW Built-in Driver Support Plugin (see page 584).

8.2.6 Db2 z/OS

For details on usage and known limitations of the Db2 z/OS Drop Constraints and Drop Triggers driver
support tasks, see Db2 z/OS Built-in Driver Support Plugin (see page 586).

Continuous Compliance – Continuous Compliance Home

Securing sensitive data – 580

1.

2.

3.

1.

2.

3.

1.

8.2.7 Db2 iSeries

For details on usage and known limitations of the Db2 iSeries Drop Constraints, Drop Indexes, and Disable
Triggers driver support tasks, see Db2 iSeries Built-in Driver Support Plugin (see page 587).

8.2.8 Built-in Oracle driver support plugin

For instructions on how to enable/disable Disable Constraints, Drop Indexes and Disable Triggers on Oracle
jobs, see API Calls for managing masking job driver support tasks. (see page 738)

8.2.8.1 Optimizations

For in-place jobs:

Disable Constraints disables and re-enables constraints on only masked columns.

Drop Indexes drops and re-creates indexes on only masked columns.

Disable Triggers disables and re-enables triggers on only tables with masked columns.

For on-the-fly jobs, the tasks will execute on all columns/tables in the ruleset.

8.2.8.2 Task execution order

The order of the tasks is as follows:

Pre-job:

Disable Constraints

Drop Indexes

Disable Triggers

Post-job (mirrored order):

Disable Triggers

Disable Constraints disables and re-enables constraints while keeping the index associated with
the constraint. In order to drop and re-create the index associated with the constraint, enable
Drop Indexes along with Disable Constraints.



The order of task execution for built-in driver support plugins is fixed/unmodifiable.

Continuous Compliance – Continuous Compliance Home

Securing sensitive data – 581

2.

3.

1.
a.

b.

2.

1.

2.

•

•

•

Drop Indexes

Disable Constraints

8.2.8.3 Enabling tasks on a job

For instructions on how to enable driver support tasks on jobs, see API calls for managing masking job driver
support tasks. (see page 738)

8.2.8.3.1 Important considerations

If masking primary key fields:
Use the same deterministic algorithms on primary key fields that reference each other, so that
referential integrity is maintained when the masking transformation completes and all
constraints are re-enabled.
Enable both Disable Constraints and Drop Indexes.

If dropping indexes on masked fields with constraints is desired, enable both Disable Constraints and
Drop Indexes. The implementation of the optimizations has been modified, such that Disable
Constraints only disables constraints and keeps indexes automatically created and Drop Indexes
handles dropping/recreating indexes. The change in task order and separation of concerns with the
functionality of the tasks resolves issues around missing indexes present with the legacy database
masking option of Disable Constraints.

8.2.8.4 Known limitations

If masking a primary key field, if only Disable Constraints is enabled, the job will fail during the
transformation. It is recommended to enable both Disable Constraints and Drop Indexes on any
applicable job per the usage instructions above. In order to not have Drop Indexes enabled, adding a
prescript that disables the desired constraints will also work, but note that this workaround may
result in missing indexes.

Delphix supports the below indexes:

Normal indexes

Functional indexes (6.0.12.0 and later)

Local, global, and partial partition indexes (6.0.15.0 and later)

8.2.9 Built-in MSSQL driver support plugin

8.2.9.1 Summary

The current implementation is simply the earlier implementation of the database masking options in the new
driver support plugin framework. No optimizations have been implemented yet; stay tuned for optimizations
in a future release.

Continuous Compliance – Continuous Compliance Home

Securing sensitive data – 582

1.

2.

3.

1.

2.

3.

1.

2.

3.

1.

2.

3.

8.2.9.2 Tasks

For in-place jobs:

Disable Constraints disables and re-enables constraints on all columns of the table(s) included in the
job ruleset.

Drop Indexes drops and re-creates indexes on only masked columns.

Disable Triggers disables and re-enables triggers on all tables included in the job ruleset.

For on-the-fly jobs, the tasks will execute on all columns in all tables included in the ruleset.

8.2.9.3 Task execution order

The order of the MSSQL Driver Support tasks is as follows:

preJob:

Disable Constraints

Drop Indexes

Disable Triggers

postJob:

Disable Triggers

Drop Indexes

Disable Constraints

8.2.9.4 Enabling tasks on a job

For instructions on how to enable driver support tasks on jobs, see API calls for managing masking job driver
support tasks. (see page 738)

8.2.9.5 Known limitations

Primary Key constraints are not disabled.

Unique Constraints/Indexes are not disabled.

Clustered Column store Indexes are not dropped.

The order of task execution for built-in driver support plugins is fixed/unmodifiable.

Continuous Compliance – Continuous Compliance Home

227 https://portal.document360.io/continuous-compliance-10-0-0-0/docs/api-calls-for-managing-masking-job-driver-
support-tasks

Securing sensitive data – 583

4.

5.

6.

7.

1.

2.

3.

Functional Indexes are not dropped.

As before, constraints are dropped on all columns of the table(s) included in the job ruleset.

Referential integrity is not enforced, i.e., in the current implementation, there is no validation that a
primary key or unique constraint column being referenced by a foreign key column are masked with
the same deterministic algorithm.

Disable Triggers is dropping the triggers on all tables in the ruleset irrespective of whether table is
masked or not.

8.2.10 Built-in PostgreSQL driver support plugin

For instructions on how to enable/disable Drop Constraints, Drop Indexes, and Disable Triggers on
PostgreSQL jobs, see API Calls for Managing Masking Job Driver Support Tasks.227

8.2.10.1 Tasks

For in-place jobs:

Drop Constraints drops and re-creates constraints on masked columns only.

Drop Indexes drops and re-creates indexes on masked columns only (except for indexes
automatically generated by PostgreSQL to support a primary key or unique constraint - those are
dropped by Drop Constraints).

Disable Triggers disables and re-enables triggers on tables with masked columns only.

For on-the-fly jobs, the tasks will execute on all columns and tables in the ruleset.

8.2.10.2 Task Execution Order

The order of the tasks is as follows:

Unlike other database platforms such as Oracle and MSSQL, PostgreSQL doesn't support the
disabling of constraints. Therefore, this plugin has a Drop Constraints task instead of a Disable
Constraints task.

The order of task execution for built-in driver support plugins is fixed/unmodifiable.

https://portal.document360.io/continuous-compliance-10-0-0-0/docs/api-calls-for-managing-masking-job-driver-support-tasks
https://portal.document360.io/continuous-compliance-10-0-0-0/docs/api-calls-for-managing-masking-job-driver-support-tasks

Continuous Compliance – Continuous Compliance Home

228 https://portal.document360.io/continuous-compliance-10-0-0-0/docs/api-calls-for-managing-masking-job-driver-
support-tasks

Securing sensitive data – 584

1.

2.

3.

1.

2.

3.

1.

2.

1.

2.

Pre-job:

Drop Constraints

Drop Indexes

Disable Triggers

Post-job (mirrored order):

Disable Triggers

Drop Indexes

Drop Constraints

8.2.10.3 Important Considerations

If masking primary key fields, use the same deterministic algorithms on primary key fields that
reference each other so that referential integrity is maintained when the masking transformation
completes and all constraints are re-created.

If dropping indexes on masked fields with constraints is desired, enable both Drop Constraints and
Drop Indexes. PostgreSQL automatically creates unique indexes to support primary key and unique
constraints. Those indexes cannot be dropped by the Drop Indexes task, but enabling Drop
Constraints will allow it to drop those indexes when the constraints they support are dropped.

8.2.10.4 Known Limitations

If both a foreign key column and the primary key or unique column it references are not masked with
the same deterministic algorithm (guaranteeing referential integrity), the job will fail due to an
integrity constraint violation.

If masking a field that is a primary key or has a unique constraint, and Drop Indexes is the only task
enabled, the job will fail. Drop Constraints must also be enabled so that it can drop the indexes
PostgreSQL automatically creates to support constraints.

8.2.11 Built-in DB2 LUW driver support plugin

For instructions on how to enable/disable Drop Constraints, Drop Indexes, and Drop Triggers on DB2 LUW
jobs, see API Calls for Managing Masking Job Driver Support Tasks.228

https://portal.document360.io/continuous-compliance-10-0-0-0/docs/api-calls-for-managing-masking-job-driver-support-tasks
https://portal.document360.io/continuous-compliance-10-0-0-0/docs/api-calls-for-managing-masking-job-driver-support-tasks

Continuous Compliance – Continuous Compliance Home

Securing sensitive data – 585

1.

2.

3.

1.

2.

3.

1.

2.

3.

1.

8.2.11.1 Tasks

For in-place jobs:

Drop Constraints drop and re-create constraints on masked columns only.

Drop Indexes drop and re-create indexes on masked columns only (except for indexes automatically
generated by DB2 LUW to support a primary key or unique constraint, those are dropped by Drop
Constraints).

Drop Triggers drop and re-create triggers on tables with masked columns only.

For on-the-fly jobs, the tasks will execute on all columns and tables in the ruleset.

8.2.11.2 Task Execution Order

The order of the tasks is as follows:

Pre-job:

Drop Constraints

Drop Indexes

Drop Triggers

Post-job (mirrored order):

Drop Triggers

Drop Indexes

Drop Constraints

8.2.11.3 Important Considerations

If masking primary key fields, use the same deterministic algorithms on primary key fields that
reference each other so that referential integrity is maintained when the masking transformation
completes and all constraints are re-created.

Unlike other database platforms, DB2 does not support disabling constraints, indexes, or
triggers. Therefore, this plugin has Drop Constraints, Drop Indexes, and Drop Triggers tasks.

The order of task execution for built-in driver support plugins is fixed/unmodifiable.

Continuous Compliance – Continuous Compliance Home

229 https://portal.document360.io/continuous-compliance-10-0-0-0/docs/api-calls-for-managing-masking-job-driver-
support-tasks

Securing sensitive data – 586

2.

1.

2.

1.

2.

If dropping indexes on masked fields with constraints is desired, enable both Drop Constraints and
Drop Indexes. DB2 LUW automatically creates indexes to support primary key and unique constraints.
Those indexes cannot be dropped by the Drop Indexes task, but enabling Drop Constraints will allow
it to drop those indexes when the constraints they support are dropped.

8.2.11.4 Known Limitations

If both a foreign key column and the primary key or unique column it references are not masked with
the same deterministic algorithm (guaranteeing referential integrity), the job will fail due to an
integrity constraint violation.

If masking a field that is a primary key or has a unique constraint, and Drop Indexes is the only task
enabled, the job will fail. Drop Constraints must also be enabled so that it can drop the indexes DB2
LUW automatically creates to support constraints.

8.2.12 Built-in DB2 z/OS driver support plugin

For instructions on how to enable/disable Drop Constraints and Drop Triggers on DB2 z/OS jobs, see API
Calls for Managing Masking Job Driver Support Tasks.229

8.2.12.1 Tasks

For in-place jobs:

Drop Constraints drops and re-creates constraints on masked columns only.

Drop Triggers drops and re-creates triggers on tables with masked columns only.

For on-the-fly jobs, the tasks will execute on all columns and tables in the ruleset.

8.2.12.2 Task Execution Order

Unlike other database platforms, DB2 does not support disabling constraints or triggers.
Therefore, this plugin has Drop Constraints and Drop Triggers tasks.

The order of task execution for built-in driver support plugins is fixed/unmodifiable.

https://portal.document360.io/continuous-compliance-10-0-0-0/docs/api-calls-for-managing-masking-job-driver-support-tasks
https://portal.document360.io/continuous-compliance-10-0-0-0/docs/api-calls-for-managing-masking-job-driver-support-tasks

Continuous Compliance – Continuous Compliance Home

230 https://portal.document360.io/continuous-compliance-10-0-0-0/docs/api-calls-for-managing-masking-job-driver-
support-tasks

Securing sensitive data – 587

1.

2.

1.

2.

1.

2.

1.

2.

3.

The order of the tasks is as follows:

Pre-job:

Drop Constraints

Drop Triggers

Post-job (mirrored order):

Drop Triggers

Drop Constraints

8.2.12.3 Important Considerations

There is no Drop Indexes task available.

If masking primary key fields, use the same deterministic algorithms on primary key fields that
reference each other so that referential integrity is maintained when the masking transformation
completes and all constraints are re-created.

8.2.12.4 Known Limitations

Drop Constraints is unable to detect or drop foreign key constraints with PERIOD BUSINESS_TIME
in their keys.

Foreign key constraints dropped and recreated by Drop Constraints will not have the ENABLE QUERY

OPTIMIZATION clause if originally specified.

If both a foreign key column and the primary key or unique column it references are not masked with
the same deterministic algorithm (guaranteeing referential integrity), the job will fail due to an
integrity constraint violation.

8.2.13 Built-in DB2 iSeries driver support plugin

For information about how to enable/disable Drop Constraints, Drop Indexes, and Disable Triggers on DB2
iSeries jobs, refer to API Calls for Managing Masking Job Driver Support Tasks.230

Unlike other database platforms, DB2 does not support disabling constraints or indexes.
Therefore, this plugin has Drop Constraints, Drop Indexes, and Disable Triggers tasks.

https://portal.document360.io/continuous-compliance-10-0-0-0/docs/api-calls-for-managing-masking-job-driver-support-tasks
https://portal.document360.io/continuous-compliance-10-0-0-0/docs/api-calls-for-managing-masking-job-driver-support-tasks

Continuous Compliance – Continuous Compliance Home

Securing sensitive data – 588

1.

2.

3.

1.

2.

3.

1.

2.

3.

1.

8.2.13.1 Tasks

For in-place jobs:

Drop Constraints drops and re-creates constraints on masked columns only.

Drop Indexes drops and re-creates indexes on masked columns only (except for indexes
automatically generated by DB2 iSeries to support a primary key or unique constraint, those are
dropped by Drop Constraints).

Disable Triggers disable and re-enable triggers on tables with masked columns only.

For on-the-fly jobs, the tasks will execute on all columns and tables in the ruleset.

8.2.13.2 Task Execution Order

The order of the tasks is as follows:

Pre-job:

Drop Constraints

Drop Indexes

Disable Triggers

Post-job (mirrored order):

Disable Triggers

Drop Indexes

Drop Constraints

8.2.13.3 Important Considerations

If masking primary key fields, use the same deterministic algorithms on primary key fields that
reference each other so that referential integrity is maintained when the masking transformation
completes and all constraints are re-created.

The order of task execution for built-in driver support plugins is fixed/unmodifiable.

Continuous Compliance – Continuous Compliance Home

Securing sensitive data – 589

1.

2.

3.

4.
a.

b.

c.

5.

•
•

8.2.13.4 Known Limitations

If both a foreign key column and the primary key or unique column it references are not masked with
the same deterministic algorithm (guaranteeing referential integrity), the job will fail due to an
integrity constraint violation.

Disable Triggers are only effective for Db2 iSeries version 7.2 or later, as disabling triggers weren't
supported in versions 7.1 and earlier. If run against those prior versions, Disable Triggers will operate
silently without dropping any triggers.

Drop Indexes cannot detect indexes on masked columns if those column names are used in key
expressions.

Indexes dropped and recreated by Drop Indexes will not have the following if originally specified:
FOR SYSTEM NAME system-object-identifier clause

RCDFMT format-name clause

RENAME table-system-column-name TO clause

Requires journaling to be enabled on the tables, the job will fail with ErrorCode(-7008).

8.3 Creating masking jobs
This section describes how users can create a masking job.

8.3.1 Creating new jobs

In the Environment Overview screen, select one of the jobs icons to create the corresponding job:

Profile
Mask

Continuous Compliance – Continuous Compliance Home

Securing sensitive data – 590

1.

8.3.2 Creating a new masking job

To create a new masking job:

Click Mask. The Create Masking Job window appears.

Continuous Compliance – Continuous Compliance Home

Securing sensitive data – 591

2.
a.

b.

You will be prompted for the following information:
Job Name — A free-form name for the job you are creating. Must be unique across the entire
application.
Masking Method — Select either In-Place or On-The-Fly. In-Place jobs update the source
environment with the masked values. On-The-Flyjobs read unmasked data from the source
environment and writes the masked data to the target environment.
Info:
On-The-Fly Masking Jobs. Only certain combinations of connector types are supported. On-
The-Fly jobs where the source and target connectors are of the same type (e.g. Oracle to
Oracle, delimited file to delimited file), and jobs with a database source (e.g. Oracle, MS SQL)
and the target is delimited files are supported. The target tables or files must be created in

Continuous Compliance – Continuous Compliance Home

Securing sensitive data – 592

c.

d.
e.

f.

g.

h.

i.
j.

advance and the names must match the names of the source tables or files. In the case of a
database to delimited file job, the file names should match the table names.
Multi Tenant— Checkbox if the job is for a multi-tenant database.
Info: Provisioning Masked VDBs.
A job must be Multi-Tenant to use it when creating a masked virtual database (VDB). This
option allows existing rulesets to be reused to mask identical schemas via different
connectors. The connector can be selected at job execution time.
Rule Set — Select a rule set that this job will execute against.
Source Environment (only for On-The-Fly Masking Method) - Select the Source Environment
that this job will get the data from.
Source Connector (only for On-The-Fly Masking Method) - Select the Source Connector that
provides the connection to the the chosen Source Environment.
Streams: Number—The number of parallel streams to use when running the job. For example,
you can select two streams to mask two tables in the Rule Set concurrently in the job instead
of one table at a time.
Info:
Choosing the number of streams
Jobs - even with a single stream - will have separate execution threads for input, masking, and
output logic. While it is not necessary to increase the number of streams to engage multiple
CPU cores in a job, doing so may increase overall job performance dramatically, depending on
a number of factors. These factors include the performance characteristics of the data
source and target, the number of processor cores available to the Delphix Masking Engine,
and the number and types of masking algorithms applied in the Rule Set. The memory
requirements for a job increase proportionately with the number of streams.
Streams: Row Limit—The number of data rows that may be in process simultaneously for
each masking stream. For file jobs, this controls the number of delimited or fixed-width lines,
mainframe records, or XML elements in process at one time. Setting this value to 0 allows
unlimited rows into each stream, while leaving it blank will select a default limit based on job
type.
Info:
Choosing the Row Limit
The default Row Limit values have been selected to allow typical jobs to run successfully with
the default job memory and streams number settings. This assumes a maximum row or
record size of approximately 2000 bytes with 100 masked columns. If masked row or record
size, or column count, exceed these values, it may be necessary to either allocate more
memory to the job by increasing Max Memory, or reduce the Row Limit to a smaller value.
Conversely, if the masked rows are quite small and have few masking assignments,
increasing the Row Limit may improve job performance. Remember to consider the worst
case (the largest rows, the most masking assignments) table or file format in the Rule Set
when making this determination.
Min Memory (MB) — Minimum amount of memory to allocate for the job, in megabytes.
Max Memory (MB)— Maximum amount of memory to allocate for the job, in megabytes.
Info
It is recommended that the Min/Max Memory should be set to at least to 1024.

Continuous Compliance – Continuous Compliance Home

Securing sensitive data – 593

k.

l.
i.

m.

n.

o.

p.

q.

r.

Update Threads— The number of update threads to run in parallel to update the target
database.
Warning
Multiple threads should not be used if the masking job contains any table without an index.
Multi-threaded masking jobs can lead to deadlocks on the database engine. Multiple threads
can cause database engine deadlocks for databases using T-SQL If masking jobs fail and a
deadlock error exists on the database engine, then reduce the number of threads.
Nonconforming Data behavior

Stop job on first occurrence- (optional) To abort a job on the first occurrence of non-
conformant data. The default is for this checkbox to be clear.
Info
The job behavior depends on the settings specified in the Algorithm Settings page and
on the individual algorithm pages that define how you view the presence of
Nonconforming data. The setting on the Algorithm Settings page is global that can be
overridden by the setting on the algorithm page for that algorithm. These settings
declare if the presence of Nonconforming data is a failure, or a success for the job. If
Mark job as Failed is selected as a result of the above settings then the job would be
aborted on the first occurrence of nonconforming data. If Mark job as Succeeded is
selected as a result of the above settings then the job will not be aborted.

Commit Size — (optional) The number of rows to process before issuing a commit to the
database.
Feedback Size— (optional) The number of rows to process before writing a message to the
logs. Set this parameter to the appropriate level of detail required for monitoring your job. For
example, if you set this number significantly higher than the actual number of rows in a job,
the progress for that job will only show 0 or 100%.
Info
Some built-in connectors support the Disable Constraints, Disable Triggers, and Drop Indexes
features (see the Data Source Support (see page 137) page). For built-in connectors
implemented using driver support plugins, these options are available via the Enable Tasks
button. For a full list of built-in connectors using driver support plugins, see Built-in Driver
Supports (see page 578)). For all other built-in connectors, these features will appear as
checkboxes.
Disable Constraints — (optional) Whether to automatically disable database constraints. The
default is for this checkbox to not be selected and therefore not perform automatic disabling
of constraints. For more information about database constraints see Enabling and Disabling
Database Constraints. (see page 0)

Disable Trigger — (optional) Whether to automatically disable database triggerss. The default
is for this checkbox to not be selected and therefore not perform automatic disabling of
triggers.
Drop Indexes — (optional) Whether to automatically drop indexes on columns which are being
masked and automatically re-create the index when the masking job is completed. The default
is for this checkbox to not be selected and therefore not perform automatic dropping of
indexes.
Enable Tasks - (optional) When this button is pressed, it displays a form with checkboxes next
to each task implemented by the driver support plugin being used. The default is for each

Continuous Compliance – Continuous Compliance Home

Securing sensitive data – 594

s.

t.

u.

v.
w.

3.

checkbox to not be selected and therefore not perform any of the tasks. If the masking job
being created is for a built-in connector with a builtin driver support plugin, the options
displayed will be Disable Constraints, Disable Triggers and Drop Indexes. For a full list of
supported built-in connectors and information on specific built-in driver support plugins, see
Built-in Driver Supports. (see page 578)

Batch Update — (optional) Enable or disable whether the database load phase to output the
masked data will be performed in batches or not. The size of the batches is determined by the
Commit Size field value. This option is recommended because it typically improves the
performance of the masking job.
Prescript — (optional) Specify the full pathname of a file that contains SQL statements to be
run before the job starts, or click Browse to specify a file. If you are editing the job and a
prescript file is already specified, you can click the Delete button to remove the file. (The
Delete button only appears if a prescript file was already specified.) For information about
creating your own prescript files.
Postscript — (optional) Specify the full pathname of a file that contains SQL statements to be
run after the job finishes, or click Browse to specify a file. If you are editing the job and a
postscript file is already specified, you can click the Delete button to remove the file. (The
Delete button only appears if a postscript file was already specified.) For information about
creating your own postscript files see Creating SQL Statements to Run Before and After
Jobs (see page 0)

Comments — (optional) Add comments related to this masking job.
Email — (optional) Add e-mail address(es) to which to send status messages.

When you are finished, click Save.

8.3.3 Enabling and disabling database constraints

Depending on the type of target database you are using, the Delphix Engine can automatically enable and
disable database constraints.

The ability to enable and disable constraints ensures that the Delphix Engine can update columns that have
primary key or foreign key relationships. You can set Delphix to handle constraints automatically by enabling
the Disable Constraints checkbox on a Masking job. If the built-in or extended connector is using a driver
support plugin, Disable Constraints can be enabled via Enable Tasks. For a full list of supported built-in
connectors and information on specific builtin driver support plugins, see Built-in Driver Supports. (see page
578)

Continuous Compliance – Continuous Compliance Home

Securing sensitive data – 595

1.

•

8.3.4 Creating SQL statements to run before and after Jobs

When you create a masking job or a certification job, you can specify standard, static SQL statements to run
before (prescript) you run a job and/or after (postscript) the job has completed. For example, if you want to
mask a column that has a foreign key constraint to another table, you could use a prescript to disable the
constraint and a postscript to re-enable the constraint.

You create prescripts and postscripts by creating a text document with the SQL statement(s) to execute. If
the text file contains more than one SQL statement, each statement must be separated by a semicolon [;].
For example to remove records with date_column before December 12th, 2017 before masking a table
(owner.table), one would create a prescript file containing the following and associate the prescript file to the
masking job that includes the table in its ruleset:

DELETE FROM owner.table WHERE date_column < ‘20171207’;

Database-specific, SQL programming extensions (such as PL/SQL and Transact-SQL) and dynamic SQL
statements are not supported in prescripts and postscripts. However, you can create procedures and
functions using your database tooling of choice and call them using standard SQL statements from a
prescript or postscript.

8.4 Managing jobs

8.4.1 Managing jobs from the environment overview screen

8.4.1.1 Submitting a job

To submit or resubmit a job from the Environment Overview screen, click the Play icon in the Action column
for the desired job.

Upon submitting the job, the masking engine will check if there are enough resources allocated to
simultaneously running jobs to determine whether to run or queue the submitted job. There are two
resources that the submitted job will be verified against.

Maximum memory for all running jobs.

This limit defaults to a dynamic calculation of 75% of the entire system's available memory
minus 6GB, which is reserved for the masking web application. This calculation can be
manually overridden by setting the general application setting MaximumMemoryForJobs .

Delphix does not support the enable/disable constraints feature for all databases. To see which
databases are supported, see the Data Source Support (see page 137) page.

Continuous Compliance – Continuous Compliance Home

Securing sensitive data – 596

2.

•

1.

2.

3.

4.

To revert a manually overridden limit back to the dynamically calculated limit, set the
MaximumMemoryForJobs to 0.

Maximum number of simultaneously running jobs.

This limit defaults to 7 simultaneously running jobs. However, this default value can be
overridden by setting the general application setting NumSimulJobsAllowed to a different
value. The engine also provides a dynamic limit for this resource, which takes the number of
available cores on the system minus 1, reserved for the masking engine. This dynamic limit
can be used by setting NumSimulJobsAllowed to 0.

8.4.1.2 Stopping a Job

The Play icon changes to a Stop icon while the job is RUNNING OR QUEUED.

To stop a RUNNING or QUEUED job from the Environment Overview screen:

Locate the job you want to stop.

In the job's Action column, click the Stop icon.

A popup appears asking, "Are you sure you want to stop job?" Click OK.

When the job has been stopped, its status changes to CANCELLED.

Stopping a RUNNING job can result in corrupted or semi-masked data. Stopping a QUEUED job will have no
impact on the data source, since the execution of the job has not yet begun. If email notifications are
enabled, stopping a QUEUED job will send an email to the user who created the job indicating that it has been
cancelled by the user who stopped the job.

8.4.1.3 Verifying a Job

When the job is complete, the status will change to either SUCCEEDED or FAILED.

After the job completes successfully, return to the Inventory and check that the Domain and Method
populated automatically for sensitive data. Sample screenshot below.

If the submitted job causes all of the currently running jobs to exceed either of those limits, the
job will be queued and run at a later time when enough of the other jobs stop running to free up
resources. To view the the position of the job in the queue, navigate to the Monitor Screen. (see

page 597)

Continuous Compliance – Continuous Compliance Home

Securing sensitive data – 597

8.5 Monitoring masking job
This section describes how users can monitor the progress of a masking job.

Monitoring masking job refers to the job status or completion state. To determine if the masking operation is
completed, you must compare the number of rows in the table to the number of rows masked. If the two are
equal, then the masking operation is completed. But this does not indicate that the data masking operation
was successful. If the masking script is incorrect, the masking operation may still complete but not produce
the desired masked data outcome. To determine whether the data is properly masked, you must perform an
audit of a statistical data sample.

8.5.1 Monitoring your masking jobs

Once a masking job has been created and started, you can monitor its progress by navigating to the Monitor
tab or by clicking on the name of the masking job on any screen. The monitoring tab shows you a list of
executed masking jobs, their progress as well as their current status. To get even more detail on the
progress of an individual masking job, click on the Job Name.

Continuous Compliance – Continuous Compliance Home

Securing sensitive data – 598

•
•

•

•

8.5.1.1 Search

On the Monitor screen, you can perform a search to view the status of all the masking jobs executed. Use
start date, end date, any status, all types, and search bar field to filter the search query as per your
requirement.

The filter parameters are:

Execution Start Date: You can select a range for start date using the start date and End date field.
Execution Status: You can filter the result based on execution results like SUCCESS, FAIL, CANCELED
and so on.
Job Type: You can filter the execution based on Job Type like Mask, Profile, Tokenization, and
Restore.
Job Name: You can apply a wild card search by adding * after the job name using the text field.

8.5.1.2 Event Status

The following table lists the states of a masking job/event.

Job Status Icon Status Description

Cancelled It appears when a user cancel a running task/execution.

Failed It appears when there is an error in the execution of an event in the task/
execution.

Continuous Compliance – Continuous Compliance Home

Securing sensitive data – 599

1.

2.

3.

4.

5.

6.

7.

8.

9.

Job Status Icon Status Description

Queued It means the events of the task/execution are yet to start.

Running It appears when the event is in progress.

Succeeded It means the event is completed successfully.It appears when the event
is successful

Skipped It appears when the event is skipped and process moved to the next
event of the task/execution.

Non-
Conforma
nt

It appears when an event of the task/execution is successful but with
warning.

8.5.1.3 Events

The monitoring tab shows you a list of executed masking jobs along with their current status. To get even
more detail on the progress of an individual masking job, click on the Job Name to view more detailed
information about the job/event. This screen also displays the sequence in which the events are executed.
Click Execution Logs if you want to view the log status of an event.

The events are executed in the following sequence:

Init Execution: The execution has begun.

Collecting Job Configurations: Collect the Job details stored in the MDS/DB.

Preparing Execution: Create transformation XML for a kettle that includes, pre-script, post-script,
create and drop identity XML.

Execute Pre Execution Custom Driver Task: Execute custom drive pre-execution tasks.

Start Execution: Starts the masking Job

Pre Sql Script: execution prescript if available

Post-Sql Script: execution postscript if available

Execute Post Execution Custom Driver Task: Execute post-SQL operations from the custom driver

Collect Job Information: Collect and store execution information in the database.

If a job gets canceled or failed in between then the rest of the running or queued events will be
marked as failed or canceled. Except for last event, i.e Execution Finished or Profiling Finished.



Continuous Compliance – Continuous Compliance Home

Securing sensitive data – 600

10. Execution Finished: The execution is finished and removed from monitoring

8.5.1.4 Queue Position

Queue position refers to the job's numerical order of when it will be dequeued and run, relative to other
queued jobs. If a job is not in the queue, it will not have a queue position.

8.5.2 Monitoring a single job

In addition to viewing high-level stats about the status/progress of all your jobs, you can also deep dive into
each job to get more details. By clicking the name of the masking job, you will be redirected to a screen with
more granular information including; environment name, connector name, job start time, previous run time,
number of tables defined in the job, number of jobs tables masked, number of tables to be masked, the type
of job, the total time the job has taken, rows remaining to mask, rows masked, number of streams, etc.

Continuous Compliance – Continuous Compliance Home

Securing sensitive data – 601

•

•

•
•

In addition to seeing this additional information about each masking job, you can look into the status/
progress of each table/file defined in the masking job. Each table/file will be separated into 1 of 4 tabs:

Completed: The Completed tab shows which tables or files the job has completed and includes
information such as the rows masked per minute, rows masked, and rows remaining.
Processing: The Processing tab will include information on the tables or files the job is currently
processing.
Waiting: The Waiting tab shows us which table or files are waiting to be processed.
Results: The Results tab shows a list of tables that are masked.

8.5.3 Displaying non-conformant data

When non-conformant data is encountered by a masking job, the job will either Fail or Succeed with a
warning, depending on how the algorithms associated with the ruleset for the job are configured. As depicted
in the screenshot, the non-conformant data can be accessed via the Completed tab on the Monitor page for
the job, which can be accessed by clicking on the Job name from the Environment Overview page. In the
main body of the Monitor page, a summary of the Tables with Nonconforming Data and Columns with
Nonconforming Data is reported. Further details on the non-conformant data encountered can be accessed
by clicking the Success or Fail icon next to each table or file listed in the Completed tab.

Continuous Compliance – Continuous Compliance Home

231 https://en.wikipedia.org/wiki/Unicode_character_property

Securing sensitive data – 602

•
•
•

•

•
•

The non-conformant data events are displayed followed by the masking log for the table or file. If there were
no non-conformant data events, "None" is displayed under NONCONFORMING DATA, otherwise, for each
type of non-conformant data, a row will be displayed with the following information:

Event type: either JOB_ABORTED or UNMASKED_DATA if the job was not aborted.
Cause: always PATTERN_MATCH_FAILURE.
Approximate Row Count: approximate number of rows with non-conformant data (at least within an
order of magnitude).
Description: details the name of the column or field with non-

8.5.4 Interpreting samples of non-conformant data patterns

Each character in the non-conformant data is sampled per its Unicode Character Property231.

N for digits
L for letters

https://en.wikipedia.org/wiki/Unicode_character_property
https://en.wikipedia.org/wiki/Unicode_character_property

Continuous Compliance – Continuous Compliance Home

232 https://docs.oracle.com/cd/B12037_01/server.101/b10759/ap_posix001.htm

Securing sensitive data – 603

•
•
•
•
•
•

M for marks
P for punctuation
S for symbols
Z for separator
O for other
U for unknown

8.5.5 Tracking Non-conformant Data

Using the DataBase specific SQL query, it is possible to locate data corresponding to the non-conformant
data sample. The table and column names can be found on the table report. In the example above, the table
name is "testdata_XML" and the column name is "RCHARS64_T1_0".

8.5.5.1 Oracle DB specific example

Below are the Oracle character classes232, used in the regular expression:

Character Class Syntax Meaning

[:alnum:] All alphanumeric characters

[:alpha:] All alphabetic characters

[:blank:] All blank space characters.

[:cntrl:] All control characters (nonprinting)

[:digit:] All numeric digits

Please note that actual personal data is never displayed, only the samples (a.k.a. patterns) of
non-conformant data are displayed on this page



Note
The pattern might be not an exact representation of the data in the field, but a part of the data.
For instance, white spaces at the beginning or at the end of the data might be truncated.



https://docs.oracle.com/cd/B12037_01/server.101/b10759/ap_posix001.htm
https://docs.oracle.com/cd/B12037_01/server.101/b10759/ap_posix001.htm

Continuous Compliance – Continuous Compliance Home

Securing sensitive data – 604

Character Class Syntax Meaning

[:graph:] All [:punct:], [:upper:], [:lower:], and [:digit:] characters.

[:lower:] All lowercase alphabetic characters

[:print:] All printable characters

[:punct:] All punctuation characters

[:space:] All space characters (nonprinting)

[:upper:] All uppercase alphabetic characters

[:xdigit:] All valid hexadecimal characters

For the LLLLL sample in the example above, Oracle DB SQL query would look like:

SELECT RCHARS64_T1_0 FROM testdata_XML WHERE regexp_like(RCHARS64_T1_0, '[[:alpha:]]
{5}');

For the LLLLZLLLZLLLL sample, the Oracle DB SQL query would look like:

SELECT RCHARS64_T1_0 FROM testdata_XML WHERE regexp_like(RCHARS64_T1_0, '[[:alpha:]]
{4}[[:space:]][[:alpha:]]{3}[[:space:]][[:alpha:]]{4}');

8.5.5.2 Limitation for the multi-column extensible algorithm

If a Non-conformant data pattern is encountered - it is displayed for all the masked columns of the MC
Algorithm, not only for the column where that event has occurred. In that case, the manual analysis of the
error message will be required to find the actual column(s) with the Non-conformant data.

8.6 Masking job wizard
The Continuous Compliance job wizard enables users to create and modify masking jobs. While the wizard
facilitates a number of workflows and operations, more advanced functionality and finer control of features
are available directly in the masking application. The Job Wizard currently functions only with certain data
platforms, but these constraints do not apply when working directly in the masking application.

Continuous Compliance – Continuous Compliance Home

Securing sensitive data – 605

•
•
•
•
•
•
•
•
•
•
•

•
•
•
•

8.6.1 Supported data platforms

The following data platforms are currently supported from within the Job Wizard: - Oracle Database - RDS
Oracle Database - MSSQL Server Database - Sybase Database

This restricted list only affects your use of the wizard; an expanded number of platforms are supported
directly in the masking application. Some operations within the Job Wizard are also limited. See below for
details.

8.6.2 Supported operations

While creating a masking job in the Job Wizard, you are able to do the following:

Create a new application or use an existing application
Create a new environment or use an existing environment
Create a new connector
Create a new rule set
Update inventory
Create a masking job
Update a masking job
Change the connector for an existing job
Change the rule set for an existing connector
Run a newly created job immediately
Run an updated job immediately after the update

8.6.3 What is not supported in the wizard

The following data platforms and operations are not supported in the Job Wizard. To access additional
functionality, use the main masking application.

8.6.3.1 Unsupported data types

The following data types are supported when using the main masking application but are not currently
supported in the Job Wizard:

DB2 Database
PostgreSQL Database
Generic Database
Delimited File

Operations marked with an asterisk are limited in the Job Wizard but fully supported in the main
application.

Continuous Compliance – Continuous Compliance Home

Securing sensitive data – 606

•
•
•
•

•
•
•
•
•
•
•
•
•
•
•

Excel Sheet File
Fixed File
Mainframe Data Set
XML File

8.6.3.2 Unsupported operations

The following operations are not yet supported from within the Job Wizard:

Creating any connector or rule set for an unsupported data type
Deleting any application, environment, connector, rule set, or masking job
Importing or exporting any object
Updating an environment
Creating a connector using Advanced mode
Updating a connector
Updating a rule set
Creating a job for an unsupported data type
Modifying a job for an unsupported data type
Monitoring running jobs
Creating, editing, deleting, or running any Profile jobs

8.6.4 Opening the masking job wizard

When you first login to masking, the welcome screen offers a link to learn more or begin masking
immediately. To open the Job Wizard, click Run on the welcome page.

Continuous Compliance – Continuous Compliance Home

Securing sensitive data – 607

To use the Job Wizard from the masking application, click the Create Job button in the upper right-hand
corner, as highlighted in the screenshot below.

•

•

Only administrators or users with the following privileges can see the Create Job button.

Environment: View, Add, and Update

Connection: View and Add

Continuous Compliance – Continuous Compliance Home

Securing sensitive data – 608

•
•
•
•
•
•

1.

2.

3.

8.6.5 Creating a new masking job

The Job Wizard makes creating a new masking job much easier by guiding you through the process. You can
create new objects or choose to use existing ones that have already been defined. When creating a new
masking job, the Job Wizard follows this sequence:

Job Naming
Application/Environment Selection
Connection Selection
Rule Set Selection
Inventory Selection
Summary Page

You can navigate back and forth through the pages of the Job Wizard.

To create a new masking Job using the new Job Wizard, follow the procedure below:

Log into your Continuous Compliance Engine and from the Welcome screen select Run.

Select the New radio button and enter a name for your Masking job.

•

•

•

•

•

Rule Set: View and Add

Inventory: View and Update

Profile Job: View, Add, and Run

Masking Job: View, Add, Update, and Run

Inventory Report: View

If the product times out due to long inactivity, you will need to start over.

Continuous Compliance – Continuous Compliance Home

Securing sensitive data – 609

4.

5.

6.

•

•

•

•

7.

8.

Click Next.

From the drop-down menu select an Application and Environment. If none exist use the Add button to
add one.

Click Next.

Select a Connector from the drop-down menu. If none exists select the Add button, then use the Add
Connector dialog to add a new connector. The Job Wizard only supports the following Connector
types:

Database - MS SQL

Database - Oracle

Database - RDS Oracle

Database - Sybase

Click Next.

On the Rule Set screen select an existing Rule Set or create a new one by clicking the Add button.

Continuous Compliance – Continuous Compliance Home

Securing sensitive data – 610

9.

10.

Click Next.

From the Inventory screen select how your data will be masked. In the screenshot below we are
masking subscriber last names.

Continuous Compliance – Continuous Compliance Home

Securing sensitive data – 611

11.

12.

Click Next.

The final screen of the Job Wizard displays a Summary of your selections.

Continuous Compliance – Continuous Compliance Home

Securing sensitive data – 612

13.

1.

Clicking Run Masking Job Now and go to Monitor progress, saves your job, and runs it immediately.
Save Job allows you to save your job and run it at a later date. Note: Selecting this option means your
data will not be masked until you run the job.

8.6.5.1 When objects are saved

Application, environment, connector, and Rule Set objects are created and persist after you click the Add
button and see a success message. If you cancel the Job Wizard before completing the job setup, the
objects you created will be saved, and they will be available for use the next time you launch the Job Wizard.

The Inventory definition is saved when you change the selection of a table or column, or when another View
filter is applied.

The masking job is saved when you click either Save Job or Run Masking Job Now and go to Monitor
progress and a success message is returned on the Summary screen.

8.6.6 Updating an existing masking job

You can use the Job Wizard to modify any masking job that targets a supported data type.

On the Job screen of the Job Wizard, select Modify Existing

Continuous Compliance – Continuous Compliance Home

Securing sensitive data – 613

2.

3.

•

•

•

•

•

1.

2.

3.

4.

5.

From the list of available jobs select the one you want to modify. This list only shows jobs that are
supported by the wizard. You can filter the job list by selecting the filter icon.

Once you select a job, you can change the following as part of the Modify flow:

Change/create a new Connector

Change/create a new Rule Set

Update inventory

Save or run the modified job

You cannot alter application and environment settings as part of the Modify flow, but you can do so in the
main masking application.

8.7 Running stopping jobs

8.7.1 Running and stopping jobs from the environment overview screen

To run or rerun a job from the Environment Overview screen:

Click the Run icon (play icon) in the Action column for the desired job.

The Run icon changes to a Stop icon while the job is running. When the job is complete, the Status changes.

To stop a running job from the Environment Overview screen:

Locate the job you want to stop.

In the job's Action column, click the Stop icon.

A popup appears asking, "Are you sure you want to stop job?" Click OK.

When the job has been stopped, its status changes.

After the job completes successfully, return to the Inventory screen and check that the Domain and
Method populated automatically for sensitive data. Sample screenshot below.

Continuous Compliance – Continuous Compliance Home

Masked provisioning – 614

•
•

9 Masked provisioning
This section contains the following topics:

Configuring virtualization service for masked provisioning (see page 614)

Provision masked VDBs (see page 615)

9.1 Configuring virtualization service for masked provisioning

9.1.1 Introduction

During the VDB provisioning process, the Virtualization Engine can optionally run a masking job from a
Continuous Compliance engine on the VDB. Use these instructions to customize the host address, port
number, and/or login credentials that the Virtualization Engine will use to contact the Masking Engine.

9.1.2 Instructions

Use these instructions to customize the host address, port number, and/or login credentials that the
Virtualization Engine will use to contact the Masking Engine.

Important validation notices
When configuring masked provisioning, ensure that the versions of the Virtualization Engine and
Masking Engine are compatible. See the compatibility matrix. (see page 0)

Old versions of the serviceconfig or any information associated with them are not tracked. In
particular, if you have been using the local masking service or a remote service and then change
to a new remote service Delphix will start throwing out any old job information on the next
masking job/fetch or GUI reload. Users should not rely on that information being preserved
through serviceconfig updates.
Delphix does not validate network availability between the two engines or any other hosts that
both engines might want to communicate with. The state or availability of either host is not
checked, if either host becomes unduly slow, congested, or unresponsive Delphix will not be able
to issue compelling warnings regarding those issues.



This does not alter the Continuous Compliance Engine UI port. It is specific to coordinating
communication between the Virtualization Engine and a Masking Engine about available
masking jobs and job results.

Continuous Compliance – Continuous Compliance Home

Masked provisioning – 615

1.

•

•

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

•

•

•
•

To change the Virtualization Engine's connection details for its Masking Engine:

Using a shell, login to the CLI using:

On 5.2 and earlier releases: delphix_admin.

On 5.3 and later releases: admin.

At the CLI root prompt, type maskingjob.

At the maskingjob prompt, type serviceconfig.

To list service configurations, type ls.

At the serviceconfig, type select `MASKING_SERVICE_CONFIG-1.

To view the configurations, type ls.

With this service config selected, enter update.

In the update mode, use the set command to modify the configuration. For example, type set

port=[YOUR DESIRED PORT NUMBER] to change the port number.

Commit the change by typing commit.

Type ls to confirm the configurations.

Type exit to exit the CLI.

9.2 Provision masked VDBs
Masked virtual databases (VDBs) function just like normal VDBs. The only distinction is that the data they
contain has been masked by a masking job. Masked VDBs can be replicated to a separate Delphix Engine (in
non-prod) without sending the original data that was obfuscated during masking using a process called
Selective Data Distribution (SDD). This topic describes how to work with masked VDBs.

9.2.1 Prerequisites

Before attempting to create a Masked VDB, you should be familiar with both Delphix Virtualization and
Delphix Masking concepts and workflows.

9.2.2 Restrictions

A single masking job cannot be assigned to multiple VDBs simultaneously. If you are using the same
masking ruleset on multiple VDBs, be sure to create a unique job for each VDB to avoid any issues
with provisioning or refreshing.
Provisioning or refreshing masked VDBs is only supported for Oracle, MS SQL Server, and Sybase.
Provisioning or refreshing other types of masked VDBs such as DB2 are not supported.
You cannot apply additional masking jobs to a masked VDB or its children.
If a masking job has been applied to a VDB, you cannot create an unmasked snapshot of that VDB.

Continuous Compliance – Continuous Compliance Home

Masked provisioning – 616

•

•

•
•

•
•

1.

Masking must take place during the process of provisioning a VDB. If an existing VDB has not had a
masking job applied to it, then you cannot mask that particular VDB at any point in the future. All the
data within the VDB and its parents will be accessible if it is replicated using SDD.
When selecting a connector to use for Masked Provisioning, a "basic" connector must be used unless
you are masking an Oracle Pluggable Database (PDB), in which case an "advanced" connector must
be used.
Only in-place masking jobs can be selected.
Masked Provisioning is supported on Oracle RAC only when used with "script-based masking" and
not when a masking job is used for SDD.

9.2.3 Identifying and navigating to masked VDBs

Masked VDBs appear in the Virtualization Engine's Datasets pane, just like regular VDBs. They are most
obviously identified by the different icons used to represent them. In addition, a masked VDBs Configuration
tab will contain information about the masking job that you applied to it. Generally, anything you can do with
an unmasked VDB is also possible with a masked VDB.

9.2.4 Provisioning masked VDBs

In the Virtualization Engine, associate a masking job with a dSource.
Use the dSource provision wizard to provision a VDB with a masking job.

9.2.4.1 Associating a masking job with the dSource

To provision a masked VDB, you must first indicate that the masking job you are using is complete and
applicable to a particular database. You do this by associating the masking job with a dSource.

In the Datasets panel on the left-hand side of the screen, click the dSource to which the masking job
is applicable and with which it will be associated.

Continuous Compliance – Continuous Compliance Home

Masked provisioning – 617

2.

3.

4.

5.

6.

7.

Click the Configuration tab.

Click the Masking tab.

Click the pencil icon to edit. All masking jobs on this Delphix Engine that have not been associated
with another dSource will be listed on the right-hand side.

Select the job you want to associate with this dSource.

Click the tickmark symbol to confirm.

Repeat for any other jobs that you want to associate with this dSource at this time.

The Delphix Engine now considers this masking job to be applicable to this dSource and ready for use. When
provisioning from snapshots of this dSource, this masking job will now be available.

Continuous Compliance – Continuous Compliance Home

Masked provisioning – 618

1.

2.

3.

4.

5.

•

6.

7.

8.

•

9.

10.

•

•

9.2.4.2 Provisioning a masked VDB using the dSource provisioning wizard

The steps required to provision a masked VDB are almost identical to the steps required to provision an
unmasked VDB. Once you have created a masked VDB, you cannot unmask it, nor can you alter which
masking job it uses. All snapshots in the VDBs TimeFlow will always be masked using the masking method
that you selected when you provisioned the masked VDB.

In the Datasets panel on the left-hand side of the screen, select the dSource.

Click the TimeFlow tab.

Click the Provision VDB icon.

Review the information for Installation Home, Database Unique Name, SID, and Database Name. Edit
as necessary.

Review the Mount Base and Environment User. Edit as necessary.

If you want to use login credentials on the target environment that are different from the login
credentials associated with the Environment User, select Specify Privileged Credentials.

Click Next.

If necessary, edit the Target Group for the VDB.

Select the None option for the Snapshot Policy for the VDB.

Snapshot Policy Selection: For almost all use cases involving Masked VDBs, a Snapshot
Policy of None is appropriate. Using a Snapshot Policy in conjunction with SDD can result in
the leak of sensitive data.

Click Next.

Click Mask this VDB. You will be presented with two options to mask this VDB:

Select an existing masking job: Choose this option if you want to mask using a preconfigured
Masking Job. Only masking jobs that have been associated with the parent dSource will be
available.

Selecting Unique Masking Jobs: If you are using the same masking ruleset on multiple VDBs,
be sure to create a unique job for each VDB to avoid any issues when provisioning or
refreshing.

Masking jobs can also be associated with virtual sources in addition to dSources.

A masking job must be Multi-Tenant for creating a masked VDB. The Multi-Tenant option allows
existing rulesets to be reused to mask identical schemas via different connectors. The
connector can be selected at job execution time.

Continuous Compliance – Continuous Compliance Home

Masked provisioning – 619

•

•

11.

12.

Masking using scripts(s): Alternatively, you may define some Configure Clone scripts in the
Hooks step to perform masking.

Defining Configure Clone Hooks to Mask VDB: If you choose to mask using script(s), you
must define the Configure Clone Hooks to run masking jobs yourself. If you don't define any
Configure Clone hooks in the Hooks step, the data will be marked as masked, but it will not be
masked.

Click Next.

Specify any Pre or Post Scripts that should be used during the provisioning process. If the VDB was
configured before running the masking job using scripts that impact either user access or the
database schema, those same scripts should also be used here. Be sure to define the Configure
Clone hooks to run the masking job if you choose to mask using a script(s) in the Masking step.

Continuous Compliance – Continuous Compliance Home

Masked provisioning – 620

13.

14.

Click Next.

Click Submit.

If you click Actions in the upper right-hand corner, the Actions sidebar will appear and list an action indicating
that masking is running. You can verify this and monitor progress by going to the Masking Engine page and
clicking the Monitor tab.

Continuous Compliance – Continuous Compliance Home

Masked provisioning – 621

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

1.

2.

•

9.2.5 Refresh a masked VDB

You refresh a masked VDB in exactly the same way as you refresh a normal VDB. As with provisioning a
masked VDB, the masking job will be run during the refresh process.

Login to the Delphix Management application.

Click Manage.

Select Datasets.

Select the VDB you want to refresh.

Click the Refresh VDB button (2 circular arrows).

Select More Accurate and Next.

Select the desired refresh point snapshot or click the eye icon to choose the latest available range, A
point in time, or An SCN to refresh from.

Click Next.

Click Submit to confirm.

Click the Actions link to watch the progress of the refresh job.

To see when the VDB was last refreshed/provisioned, check the Time Point on the Status page.

9.2.6 Disassociating a masking operation on a dSource

If a masking job is found to be unsuitable or should be retired, you can disassociate it through the same
database card that you used to associate it.

Deselect the job.

Click the green arrow to confirm. Note that this will only prevent the creation of new masked VDBs
with this job. It will not alter existing masked VDBs in any way. When disassociating a job, review the
existing masked VDBs and consider whether you need to delete or disable any of them.

9.2.7 Masked VDB data operations

The following data operations are available to masked VDBs:

Rewind: Alter the database to contain masked data from a previous point in time.

Once you have created a masked VDB, you can provision its masked data to create additional
VDBs, in the same way, that you can provision normal VDBs. Since the parent masked VDB
contains masked data, child VDBs will only have masked data. This is a great way to distribute
multiple independent copies of masked data that is both time and space-efficient.

Continuous Compliance – Continuous Compliance Home

Masked provisioning – 622

•
•
•

Refresh: Get new data from the parent dSouce and mask it.
Disable: Turn off the database and remove it from the host system.
Enable: Turn on the database and make it available on the host system.

9.2.8 Continuous Data and Continuous Compliance Engine compatibility matrix

Virtualization Engine Version Masking Engine Version

5.0 releases 5.0 releases (minor versions do not need to match)

5.1 releases 5.1 releases (minor versions do not need to match)

5.2 releases 5.2 releases (minor versions do not need to match)

5.2.5.0 (or later 5.2 minor release) 5.2.5.0 (or later 5.2 minor release)

5.3.0.0 and later, including later
major releases (e.g. 6.0)

5.3.0.0 and later, including later major releases (e.g. 6.0) and
minor versions do not need to match

Continuous Compliance – Continuous Compliance Home

Managing multiple engines for masking – 623

•
•
•
•
•
•

10 Managing multiple engines for masking
This section contains the following topic:

Introduction (Managing multiple engines for masking) (see page 623)

Sync concepts (see page 625)

Sync endpoints (see page 635)

Algorithm syncability (see page 639)

User workflow examples (see page 641)

Change log (see page 655)

10.1 Introduction (Managing multiple engines for masking)
Your organization may have more than one masking engine, and in certain circumstances, it may want to
coordinate the operation of those engines. In particular, there are two specific scenarios in which an
organization could benefit from some level of interaction and orchestration between multiple masking
engines.

10.1.1 Software Development Life Cycle (SDLC)

Using an SDLC process often requires setting up multiple masking engines, each for a different part of the
cycle (Development, QA, Production).

10.1.2 Horizontal scale

For many organizations, the size of the profiling and masking workloads requires more than one production
masking engine. These masking engines can be identical in configuration or be partially equivalent
depending on the organization's needs.

Continuous Compliance – Continuous Compliance Home

Managing multiple engines for masking – 624

10.1.3 Best practice guide and example architectures for synchronizing

Both of these use cases require various objects to be moved between masking engines, such as Connectors,
Rule Sets, and more. Engine synchronization provides a general and flexible way to move the objects
necessary to run an identical job on another engine. The following sections describe how to use the Masking
APIs to accomplish this.

It is recommended that the syncable objects move in only one direction. That is, objects should be exported
from one engine and imported into others but should not go in the other direction. This recommendation is
primarily to simplify management of which objects exist on which engine.

For each of the scenarios above, an example architecture is described below. Note that the two architectures
could be combined by having multiple production engines instead of a single one.

10.1.3.1 SDLC

The first architecture addresses the desire to author algorithms on one engine, to test and certify them on
another, and finally to deploy them to a production engine. Here, algorithms are authored on the first engine,
labeled “Dev Engine” in the diagram below. When the developer is satisfied, the algorithms are exported from
the Dev Engine and imported to the QA Engine where they can be tested and certified. Finally, they are
exported from the QA engine and imported to the production engine.

Continuous Compliance – Continuous Compliance Home

Managing multiple engines for masking – 625

10.1.3.2 Horizontal Scale

The second architecture aims to address the problem of horizontal scale -- that is, achieving consistent
masking across a large data estate by deploying multiple masking engines. In this architecture, syncable
objects are authored on one engine, labeled “Control Masking Engine” in the diagram below. Those objects
are then distributed to “Compute Masking Engines” using the engine synchronization APIs. The synchronized
algorithms and masking jobs will produce the same masked output on all of the engines, thus enabling large
data estates to be masked consistently.

10.2 Sync concepts

10.2.1 Syncable object

Syncable objects are external representations of masking engine objects that can be exported from one
engine and imported into another.

•

•

Sync does not currently support the following objects:

Application

Certain algorithms (see Algorithm Syncability (see page 639) for details)

Continuous Compliance – Continuous Compliance Home

Managing multiple engines for masking – 626

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

10.2.2 Object identifiers and types

Sync uses object identifiers to name unique objects within the engine. The /syncable-objects endpoint
provides a list of all object identifiers for a particular object type.

The following object types are currently supported:

ALGORITHM_PLUGIN
APPLICATION_SETTINGS
CLASSIFIER
CREDENTIAL_PATH
DATABASE_CONNECTOR
DATABASE_RULESET
DATASET_CONNECTOR
DATASET_FORMAT
DATASET_RULESET
DOMAIN
DRIVER_SUPPORT_PLUGIN
ENVIRONMENT
FILE_CONNECTOR
FILE_FORMAT
FILE_RULESET
GLOBAL_OBJECT
JDBC_DRIVER
KEY
MASKING_JOB
MOUNT_INFORMATION
PASSWORD_VAULT
PROFILE_EXPRESSION
PROFILE_TYPE_EXPRESSION
PROFILE_JOB
PROFILE_SET
REIDENTIFICATION_JOB
TOKENIZATION_JOB
USER_ALGORITHM

Forward compatibility is not supported for engine sync, meaning that sync bundles from newer
version engines may not import successfully into older version engines. If attempted, this could
potentially result in an unexpected state or an error on the older version engine. However,
backwards compatibility is supported and sync bundles from older version engines will import as
expected into newer version engines, unless the sync bundle contains objects for a deprecated
feature that no longer exists on the newer version engine.



Continuous Compliance – Continuous Compliance Home

Managing multiple engines for masking – 627

•
•
•
•
•
•
•

The following lists the object types that are simply for the purpose of referencing a particular state of the
exported object. These are not meant to be exported by request. The functions of these are further explained
in the latter sections.

ALGORITHM_REFERENCE
DOMAIN_REFERENCE
PROFILE_EXPRESSION_REFERENCE
PROFILE_SET_REFERENCE
SOURCE_DATABASE_CONNECTOR
SOURCE_DATASET_CONNECTOR
SOURCE_FILE_CONNECTOR

10.2.3 Dependencies

Most objects within the Masking Engine are compositional. Properly capturing the behavior of a syncable
object requires both the object and its dependencies. Fortunately, all the necessary dependencies are
exported along with the object you request; thus, the dependencies are not something you need to keep track
of and worry about.

When exporting masking objects, a single export cannot contain multiple objects with the same
name (e.g., two connectors with the same name).

Continuous Compliance – Continuous Compliance Home

Managing multiple engines for masking – 628

10.2.3.1 Syncable Object dependencies relationship

Figure 1 - environment dependencies

While rulesets and connectors are dependencies for Jobs (see Figure 2), you may also have
rulesets and connectors that are not assigned to a job. In this case, they are considered to be
direct dependencies for an environment.

Continuous Compliance – Continuous Compliance Home

Managing multiple engines for masking – 629

Figure 2 - object dependencies

10.2.4 Object revision tracking

The revision hash is used to help you determine whether the behavior of a syncable object is the same
between engines. Because objects within the Masking Engine are compositional, the behavior of an object is
influenced by all of its dependencies. When a syncable object is listed or exported, the Masking Engine
computes a revision_hash, which uniquely identifies the object’s behavior.

The revision_hash is a SHA1 hash that represents that object’s state, as well as the state of all objects it
depends on. If two objects have the same revision hash, it is safe to assume that the behavior of the objects
is the same. However, it is possible for two objects to have the same behavior but have divergent revision
hashes. For example, you could have two lookup algorithms with the same name, lookup file, and key, and
they do not necessarily guarantee to have the same revision hash.

Green represents global objects (objects that are central to the entire engine), and blue
represents objects that need to be a part of an environment

Continuous Compliance – Continuous Compliance Home

233 https://delphixdocs.atlassian.net/wiki/pages/resumedraft.action?draftId=11834629

Managing multiple engines for masking – 630

10.2.5 Export document

You can export one or more syncable objects that are listed in the /syncable-objects endpoint. The
export document will include the set of objects that you requested for export and all of their dependencies
that are required to properly import those objects into another engine.

The export document is exported as an opaque blob. Do not edit it outside of the Masking Engine.

10.2.6 Security

In most cases, an export document contains all the state necessary to re-create each of its objects (see this
note233 about connector objects for one exception). In some instances, users might consider an object to be
sensitive. For example, an algorithm object contains all of the information needed to produce identical
algorithm results on a different engine (the algorithm's secret key, etc.). If the algorithm is being used in a
production environment, then users may consider the algorithm definition and any export document
containing the algorithm to be sensitive information. Therefore, export document access control,
transmission, and storage should all be considered with care.

The revision_hash does not change when the password or the ssh key for the
FILE_CONNECTOR, DATASET_CONNECTOR or DATABASE_CONNECTOR is updated. This is
intentionally done because we do not export the password or the ssh key for security purposes.
This allows users to update the password after import without changing the revision_hash. If a
user is overriding a connector that already has a password set, the import does not reset the
password and will leave the current, pre-import value.

•

•

•

The revision_hash may change from version to version, and the hash comparison should be
done only if both the source engine and the target engine are on the same version of the
product. It is also not guaranteed to be the same between two engines at the same version if
they are synced from an engine at some other version. E.g. There are three engines as follows:

Engine A - version 5.3.2.0

Engine B - version 5.3.3.0

Engine C - version 5.3.3.0

If B and C are synced from A, then the revision_hash is not guaranteed to be the same between
B and C.

Best Practice: A -> B -> C.

https://delphixdocs.atlassian.net/wiki/pages/resumedraft.action?draftId=11834629
https://delphixdocs.atlassian.net/wiki/pages/resumedraft.action?draftId=11834629

Continuous Compliance – Continuous Compliance Home

Managing multiple engines for masking – 631

10.2.6.1 Access control

The Masking Engine only allows administrative users to make Sync API calls. When creating an
administrative user account, keep in mind that the account owner will be able to access the Sync APIs to
export and import objects. For this and other reasons, administrative accounts should only be created for
trusted individuals.

Non-administrative accounts are not allowed to use the Sync APIs.

10.2.6.2 Transmission security

An export document containing a sensitive object should only be transmitted over a secure channel. This
applies to situations where the Masking Engine is one of the transmission endpoints and when it is not. For
example, when uploading (downloading) an export document to (from) the Masking Engine, the Sync API
calls, like all Masking API calls, should be performed over HTTPS. Similarly, if an export document is
transferred from a user's laptop to a server, the export document should be transmitted securely.

10.2.6.3 Storage security

An export document containing a sensitive object should be encrypted before it is stored persistently. Users
are free to apply an encryption mechanism of their choosing to an export document. As a convenience, you
can request that the export document be encrypted by the Masking Engine using a passphrase. The Masking
Engine will encrypt the export document with 3DES using SHA1 (PBEWithSHA1AndDESede). Once the
document is encrypted with the passphrase, the engine forgets the passphrase. You will need to provide the
same passphrase during import to decrypt the document.

10.2.7 Digital signature

In order to detect accidental or malicious modification of the export document, each document is digitally
signed. If the export document does not match its expected digital signature, a Masking Engine will not
import the document.

10.2.8 Overwrite

When an object to be imported has the same name as a currently existing object, importing it will cause the
other object to be changed. Since this might not be intended, we offer a flag called force_overwrite. If
force_overwrite is set to false and doing the import will change an existing object on the masking engine, we
fail the import. This workflow is shown below.

Continuous Compliance – Continuous Compliance Home

Managing multiple engines for masking – 632

10.2.8.1 Attempting to import identical objects

The Masking Engine checks for the existence of the same object contents during the import of an object. If it
is determined that the engine and the document being imported contain the same content, a result of
SUCCESS will be returned without repeating the work of a full import. For example, importing an entire
ruleset with hundreds of thousands of tables can be quite time consuming, and this should not be repeated if
the same object already exists. If the object content matches and we skip the full import we note this in the
application log.

Below is an example of a log statement when an identical database connector was imported:

2017-07-19 10:17:06,075 [http-nio-exec-4] INFO
c.d.s.marshallers.SyncableMarshaller - Skipping import process for
{
"objectType": "DATABASE_CONNECTOR",
"id": {
"@type": "type.googleapis.com/IntegerIdentifier",
"id": 1
}
}, due to no discrepancy between the existing and importing object

Depending on the object type, some define an object by a String (name) and some by an Integer (object id).
Objects that can have the same name in multiple environments, such as connectors, rulesets, and masking
jobs, are exported based on a unique id associated with them. Global objects, which do not have overlapping

Continuous Compliance – Continuous Compliance Home

Managing multiple engines for masking – 633

names, are exported and identified based on their names. Something to note here is that objects exported
based on their ids will overwrite the object with the same name rather than the same id. This means that for
all importing objects, we define the identity of an object to be based on the name in the same environment.

For example, if I export a database connector named testConnector with the following export object
metadata:

{
"objectIdentifier": {
"id": 5
},
"objectType": "DATABASE_CONNECTOR",
"revisionHash": "68eaffef400e426520a5fcbb683419db3be53317"
}

And then I import this object into some engine’s environment with the following list of connectors:

id connector name more information

1 testConnector ...

5 otherConnector ...

testConnector of id 1 will be overwritten, instead of otherConnector.

10.2.8.2 Overwrite of the encryption key

The global encryption key is somewhat special in that it always exists. Specifying force_overwrite=false will
always fail to import the encryption key unless the encryption key has been previously synchronized using
force_overwrite=true.

Specifying force_overwrite=true will always overwrite the engine’s encryption key with the contents of the
encryption key in the export document.

10.2.9 Error handling

Export documents often have multiple objects to be imported at once. For example, when exporting a
database ruleset, you will export both the database ruleset and the database connector since a ruleset
depends on a connector.

The engine will import one object at a time, where the dependencies are imported first. If there is an error
importing an object, the import process will abort and all objects that have successfully been imported
during this request will get rolled back. For example, say you are importing objects A, B, and C. Import
successfully imports A. During the import of B, the engine encounters an error. The import of A will roll back,
and the import of C will never execute. This will leave the engine in a state identical to the one it was in prior
to the failed import.

Continuous Compliance – Continuous Compliance Home

Managing multiple engines for masking – 634

10.2.10 Concurrent sync operations

To prevent race conditions with concurrent imports and jobs running, we currently do not allow concurrent
import operations. We also do not allow imports while masking jobs or exports are running. It is best to do
imports when a machine is not running jobs or other exports in order to guarantee that the final state of each
of those operations is as expected. If they are done at the same time, the operations will fail with relevant
error messages.

10.2.11 Global objects

GLOBAL_OBJECT is a syncable object type that is a collection of all syncable algorithms,
ALGORITHM_PLUGIN(s), DOMAIN(s), JDBC_DRIVER(s), PROFILE_SET(s), PROFILE_EXPRESSION(s) and the
(Global) KEY. This represents objects in the Masking Engine that are available across all environments, and
are not a part of any specific environment. When a user requests to export GLOBAL_OBJECT, every syncable
algorithm, profile set, profile expression and domain on the engine will be exported as the bundle. If a
DOMAIN, PROFILE_SET, or PROFILE_EXPRESSION has a dependency on a non-syncable algorithm, such as
Mapping, it will not be exported.

This separation was added because global objects 1) containing large lookup files are projected to be time-
consuming and 2) are expected to be synchronized much less frequently than any masking job-related
metadata. Examples on how to use the GLOBAL_OBJECT are be available in the Example User Workflow
section. (see page 641)

10.2.11.1 Global KEY

Before the 6.0.15.0 release, some algorithms used the Global KEY as part of their configuration. These
algorithms only produced the same results on different engines if the global KEY was synchronized. Since
the 6.0.15.0 release, no algorithms include the Global KEY as part of their configuration.

10.2.12 Reference objects

As mentioned in the Global Objects section, we expect the users to synchronize global objects and masking
jobs at different frequencies. To avoid any unnecessary export of large algorithms, any objects
(MASKING_JOB, PROFILE_JOB, DATABASE_RULESET, FILE_FORMAT and FILE_RULESET) that have
dependencies on algorithms will export just the references to the objects by default. This way we check
whether the necessary dependency exists on the importing engine by comparing the references; if not, we
fail the import execution with an appropriate message. Domains, profile sets, and profile expressions are the
exception to this. Exporting any of these objects will also export the full algorithm.

10.2.13 On-the-fly masking jobs

By definition, On-The-Fly (OTF) masking jobs work with a source environment/connector and a target
environment/connector, masking the data from the source connector into that of the target connector. With
masking jobs, a target environment_id is always required to specify which environment to import the job and
its target connector. In addition to the target environment_id, OTF masking jobs require the specification of a
source_environment_id into which to import the source connector. The source connector is copied into the

Continuous Compliance – Continuous Compliance Home

Managing multiple engines for masking – 635

specified source environment (source_environment_id), and is represented by the
SOURCE_DATABASE_CONNECTOR or

SOURCE_FILE_CONNECTOR for database and file masking jobs respectively in the export document. These
source connectors are virtually identical to their DATABASE_CONNECTOR and FILE_CONNECTOR
counterparts, but are represented differently in the OTF jobs to distinguish them from the target connector
(i.e., DATABASE_CONNECTOR or FILE_CONNECTOR).

10.2.14 Circular dependencies

It is possible to have a set of objects that end up depending on each other. This would be the case if a
PROFILE_SET depended on a PROFILE_EXPRESSION that depended on a DOMAIN that depended on a
REDACTION algorithm that depended on the original PROFILE_SET. The masking application will detect such
scenarios on export and refuse to export such configurations.

This can be worked around by creating a second PROFILE_SET that contains PROFILE_EXPRESSIONS that do
not depend on a DOMAIN that depends on a REDACTION algorithm. Simply ensure that the regular
expressions are the same in the newly created PROFILE_EXPRESSIONs and assign the REDACTION
algorithm to the new PROFILE_SET instead. The REDACTION algorithm will function the same but the
dependency loop will have been broken.

10.3 Sync endpoints

10.3.1 GET /syncable-objects

GET /syncable-objects[?object_type=<type>]

This endpoint lists all objects in an engine that are syncable and can be exported. Any object which can be
exported can be imported into another engine. The endpoint takes an optional parameter to filter by a
specific object type. Each object is listed with its revision_hash. Note that if a syncable object depends on a
non-syncable object (e.g. DOMAIN using a mapping algorithm), it will say so in the “revisionHash” attribute,
and will not be exportable.

Example CURL command using the object_type parameter to only retrieve the list of LOOKUP algorithm
objects:

curl -X GET
--header 'Accept: application/json'
--header 'Authorization: 21c45f0e-82f4-4b04-9072-b49072986231'

When exporting masking objects, a single export cannot contain multiple objects with the same
name (e.g., two connectors with the same name).

Continuous Compliance – Continuous Compliance Home

Managing multiple engines for masking – 636

'http://masking-engine.com/masking/api/syncable-objects?object_type=LOOKUP'

10.3.2 POST /export

This endpoint allows you to export one or more objects in batch fashion. The result of the export is an export
document and a set of metadata that describes what was exported. You are expected to specify which
objects to export by copying their object identifiers from the /syncable-objects endpoint.

The endpoint has a single optional header, passphrase. If you provide the passphrase, the export document
will be encrypted using it.

Example CURL command using the optional passphrase header:

curl -X POST
--header 'Content-Type: application/json'
--header 'Accept: application/json'
--header 'Authorization: 21c45f0e-82f4-4b04-9072-b49072986231'
--header 'passphrase: my example passphrase'
-d '[
{
"objectIdentifier": {“id”: 1},
"objectType": "MASKING_JOB",
"revisionHash": "asdfjkl12jijfdsaklfj21ojasdk"
}
]'
'http://masking-engine.com/masking/api/export'

10.3.3 POST /export-async

This endpoint does exactly the same thing as /export, but the execution is done asynchronously. The
response returns an async task in the form of this:

{
"asyncTaskId": 66,
"operation": "EXPORT",
"reference": "EXPORT-ZXhwb3J0X2RvY3VtZW50XzJjcm1EV09yLmpzb24=",
"status": "RUNNING",
"startTime": "2018-04-13T17:49:55.354+0000",
"cancellable": false

•

•

The Sync POST /export API will timeout after 3 minutes.

To upload objects that takes more than 3 minutes of time in uploading, use the export-
async API.

Continuous Compliance – Continuous Compliance Home

Managing multiple engines for masking – 637

}

Example CURL command:

curl -s -X POST
--header 'Content-Type: application/json'
--header 'Accept: application/json'
--header 'Authorization: 21c45f0e-82f4-4b04-9072-b49072986231'
-d "[
{
"objectIdentifier": {“id”: 1},
"objectType": "MASKING_JOB",
"revisionHash": "asdfjkl12jijfdsaklfj21ojasdk"
}
]"
"http://masking-engine.com/masking/api/export-async"

The reference is used to retrieve the export document of completed async export tasks from the /file-
downloads endpoint. The downloaded file from this reference should look exactly the same as the response
from /export.

Example CURL command:

curl -s -X GET
--header 'Accept: application/octet-stream'
--header 'Authorization: 21c45f0e-82f4-4b04-9072-b49072986231'
-o "<OUTPUT_FILE_PATH>" "http://masking-engine.com/masking/api/file-downloads/EXPORT-
ZXhwb3J0X2RvY3VtZW50XzJjcm1EV09yLmpzb24="

10.3.3.1 Error handling

If an error occurs while exporting one or more elements in the export document, the entire export will abort.

10.3.4 POST /import

POST /import?force_overwrite=<true|false>[&environment_id=<id>]
[&source_environment_id=<id>]

This endpoint allows you to import a document exported from another engine. The response returns a list of
objects that were imported and whether the import was successful.

The endpoint has one required parameter, force_overwrite, two optional parameters environment_id and
source_environment_id, and an optional HTTP header, passphrase, which if provided, will cause the engine to
attempt to decrypt the document using the specified passphrase. The required force_overwrite parameter
dictates how to deal with conflicting objects. environment_id is necessary for all non-global objects that need
to belong in an environment. source_environment_id is used for On-The-Fly masking jobs.

Continuous Compliance – Continuous Compliance Home

Managing multiple engines for masking – 638

The endpoint has a single optional header, passphrase. If you provide the passphrase, the import document
will be decrypted using it.

Example CURL command using the optional passphrase header:

curl -X POST
--header 'Content-Type: application/json'
--header 'Accept: application/json'
--header 'Authorization: 21c45f0e-82f4-4b04-9072-b49072986231'
--header 'passphrase: my example passphrase'
-d '{
"exportResponseMetadata": {
"exportHost": "masking-engine.com",
"exportDate": "Mon Aug 13 16:29:30 UTC 2018",
"exportedObjectList": [
{
"objectIdentifier": {
"algorithmName": "lookup_alg"
},
"objectType": "LOOKUP",
"revisionHash": "cf84d82c21f0e9d4105d37ae7979c0848486d861"
},
{
"objectIdentifier": {
"keyId": "global"
},
"objectType": "KEY",
"revisionHash": "1d8e9bc552d3ca1dcd218f9e197ea3955ccc29be"
}
]
},
"blob": "<OMITTED>",
"signature": "<OMITTED>", \
"publicKey": "<OMITTED>" \

•
•
•
•
•

Containerized Masking does not support some objects which might be exported from a Virtual
Machine Masking Engine. Containerized Masking will generate an error if an import bundle
contains one of these objects. To successfully import environments that contain these objects
on a containerized engine, the problem objects will have to be removed on the export source
engine and re-exported.
Unsupported objects include:

Connectors using the FTP connection method
Connectors using Kerberos credentials for DB authentication
Connectors using IBM's custom DB2 JDBC driver
Connectors using OAUTH2 authentication
Engine Setup based NFS/CIFS mounts



Continuous Compliance – Continuous Compliance Home

Managing multiple engines for masking – 639

}'
'http://masking-engine.com/masking/api/import?force_overwrite=true'

10.3.5 POST /import-async

POST /import-async?force_overwrite=<true|false>[&environment_id=<id>]
[&source_environment_id=<id>]

This endpoint does exactly the same thing as /import, but the execution is done asynchronously and the
body is taken in as a file. The response returns an async task in the form of this:

{
"asyncTaskId": 67,
"operation": "IMPORT",
"reference": "IMPORT-ZXhwb3J0X2RvY3VtZW50XzJjcm1EV09yLmpzb24=",
"status": "RUNNING",
"startTime": "2018-04-13T17:49:55.354+0000",
"cancellable": false
}

The reference is used to retrieve the import status of completed async import tasks from the /file-downloads
endpoint. The downloaded file from this reference should look exactly the same as the response from /
import.

Example CURL command:

curl -s -X POST
--header 'Content-Type: multipart/form-data'
--header 'Accept: application/json'
--header 'Authorization: 21c45f0e-82f4-4b04-9072-b49072986231'
-F "file=@<DOWNLOADED_FILE_PATH>"
"http://masking-engine.com/masking/api/import-async?force_overwrite=true"

10.4 Algorithm syncability

10.4.1 Overview

Algorithms are fully syncable between Masking Engines. To obtain a list of syncable algorithms, use the
GET /syncable-objects API with object_type set to USER_ALGORITHM :

GET https://host.example.com/masking/api/syncable-objects?object_type=USER_ALGORITHM

Continuous Compliance – Continuous Compliance Home

234 https://masking.delphix.com/docs/latest/mapping-algorithm-frameworks

Managing multiple engines for masking – 640

10.4.2 Non-deterministic Algorithms

Some algorithms are non-deterministic. While exporting these algorithms is supported, they will not produce
identical masking results on different engines. The following table lists the built-in non-deterministic
algorithms:

Algorithm API Name Algorithm UI Name

DateShiftVariable DATE SHIFT(VARIABLE)

SecureShuffle SECURE SHUFFLE

10.4.3 Fixed Algorithms

Some algorithms produce constant (fixed) results. Although these algorithms can be exported, they do not
need to be synchronized since they always produce the same results on different engines. The following
table lists the built-in fixed algorithms:

Algorithm API Name Algorithm UI Name

DateShiftFixed DATE SHIFT(FIXED)

RepeatFirstDigit ZIP+4

The semantics of synching an instance of the Mapping Algorithm Framework depend on its
configuration. See Mapping Algorithm Sync234 for more information.



Syncing out of the box algorithm instances updates their individual keys but does not replace
their existing associated files.

https://masking.delphix.com/docs/latest/mapping-algorithm-frameworks
https://masking.delphix.com/docs/latest/mapping-algorithm-frameworks

Continuous Compliance – Continuous Compliance Home

Managing multiple engines for masking – 641

10.5 User workflow examples
This page provides some examples of some typical user workflows. More information on exactly how each
endpoint works is available on the Sync endpoints (see page 635) section.

10.5.1 Syncing all global objects

The following steps can be used to sync all global objects from Masking Engine A to Masking Engine B. This
will sync all algorithms and domains and should be done prior to syncing jobs or rulesets which might
depend on them. For more information on the global object, see the Sync concepts (see page 625) section.

10.5.1.1 Source masking engine steps

10.5.1.1.1 1. Login

Login on the source Masking Engine to obtain an Authorization token value.

POST https://a.example.com/masking/api/login

HEADER
Content-Type: application/json
Accept: application/json

BODY
{
 "username": "user123",
 "password": "pw123"
}

CURL example:

curl -X POST --cacert /path/to/cert --header 'Content-Type: application/json' --
header 'Accept: application/json' -d '{ "username": "user123", "password": "pw123" }'
 'https://a.example.com/masking/api/login'

Expected Result:

{
 "Authorization": "dc2cff8b-e20d-4e28-8b7e-5d7c4aad0e2a"
}

Continuous Compliance – Continuous Compliance Home

Managing multiple engines for masking – 642

10.5.1.1.2 2. Get the identifier

Call GET /syncable-objects to obtain the GLOBAL_OBJECT's information.

GET https://a.example.com/masking/api/syncable-objects?object_type=GLOBAL_OBJECT

HEADER
Authorization: dc2cff8b-e20d-4e28-8b7e-5d7c4aad0e2a (value from the /login response)
Accept: application/json

CURL example:

curl -X GET --cacert /path/to/cert --header 'Accept: application/json' --header
'Authorization: dc2cff8b-e20d-4e28-8b7e-5d7c4aad0e2a' 'https://a.example.com/masking/
api/syncable-objects?object_type=GLOBAL_OBJECT'

Expected Result:

{
 "_pageInfo": {
 "numberOnPage": 1,
 "total": 1
 },
 "responseList": [
 {
 "objectIdentifier": {
 "id": "global"
 },
 "objectType": "GLOBAL_OBJECT",
 "revisionHash": "8d5236bb029c2176aa568b930786b63253e4f9e4"
 }
]
}

10.5.1.1.3 3. Export the object

Call POST /export-async to asynchronously export the GLOBAL_OBJECT and use the passphrase
header to encrypt the export.

Continuous Compliance – Continuous Compliance Home

235 https://delphixdocs.atlassian.net/continuous-compliance-10-0-0-0/docs/masking-api-client#api-client

Managing multiple engines for masking – 643

POST https://a.example.com/masking/api/export-async

HEADER
Authorization: dc2cff8b-e20d-4e28-8b7e-5d7c4aad0e2a
Content-Type: application/json
Accept: application/json
passphrase: my example passphrase

BODY
[
 {
 "objectIdentifier": {
 "id": "global"
 },
 "objectType": "GLOBAL_OBJECT"
 }
]

curl -X POST --cacert /path/to/cert --header 'Content-Type: application/json' --
header 'Accept: application/json' --header 'Authorization: dc2cff8b-
e20d-4e28-8b7e-5d7c4aad0e2a' --header 'passphrase: my example passphrase' -d
'[{"objectIdentifier":{"id":"global"},"objectType":"GLOBAL_OBJECT"}]' 'https://
a.example.com/masking/api/export-async'

Expected Result:

{
 "asyncTaskId": 2,
 "operation": "EXPORT",
 "reference": "EXPORT-ZXhwb3J0X2RvY3VtZW50Xzk0Wjlva3JDLmpzb24=",
 "status": "RUNNING",
 "startTime": "2018-06-15T20:36:35.483+0000",
 "cancellable": false
}

10.5.1.1.4 4. Download the export document

Use the reference above to download the export document via the /file-download endpoint.

The optional passphrase header cannot be specified using the interactive API Client tool235. An
example of how to specify this header using a cURL command is shown below.

https://delphixdocs.atlassian.net/continuous-compliance-10-0-0-0/docs/masking-api-client#api-client
https://delphixdocs.atlassian.net/continuous-compliance-10-0-0-0/docs/masking-api-client#api-client

Continuous Compliance – Continuous Compliance Home

Managing multiple engines for masking – 644

GET https://a.example.com/masking/api/file-downloads/EXPORT-
ZXhwb3J0X2RvY3VtZW50Xzk0Wjlva3JDLmpzb24=

HEADER
Authorization: dc2cff8b-e20d-4e28-8b7e-5d7c4aad0e2a
Accept: application/octet-stream

CURL example:

curl -X GET --cacert /path/to/cert --header 'Accept: application/json' --header
'Authorization: dc2cff8b-e20d-4e28-8b7e-5d7c4aad0e2a' 'https://a.example.com/masking/
api/file-downloads/EXPORT-ZXhwb3J0X2RvY3VtZW50Xzk0Wjlva3JDLmpzb24='

Expected Result: An export document that will look like this.

{
 "exportResponseMetadata": {
 "exportHost": "a.example.com",
 "exportDate": "Fri Jun 15 20:16:20 UTC 2018",
 "requestedObjectList": [
 {
 "objectIdentifier": {
 "id": "global"
 },
 "objectType": "GLOBAL_OBJECT",
 "revisionHash": "579850b1c88baf74cee6bad61d81e2aa3dcc206c"
 }
],
 "exportedObjectList": [
 {
 "objectIdentifier": {
 "id": "DRIVING_LC"
 },
 "objectType": "DOMAIN",
 "revisionHash": "9ee90782488d14d369f9595dad7f593c961e785f"
 },
 {
 "objectIdentifier": {
 "algorithmName": "DrivingLicenseNoLookup"
 },
 "objectType": "LOOKUP",
 "revisionHash": "e08ac9bfd4ed9f64d486cb47cdc07deb30ccc20f"
 },
 ...
]
 },
 "blob":
"RAAAAAokZmZhNWIxNjktODMwMC00N2FlLWJjZmMtNjVhNDUzYWI3OTBjEhgyMDE4LTA2LTE1VDIwOjE2OjIw
LjY2MFogBSgBFwIAAAokZmZhNWIxNjktODMwMC00N2FlLWJjZmMtNjVhNDUzYWI3OTBjEu4DCi8IFBIrCiV0e

Continuous Compliance – Continuous Compliance Home

Managing multiple engines for masking – 645

XBlLmdvb2dsZWFwaXMuY29tL0ludGVnZXJJZGVudGlmaWVyEgIIARIvCA4SKwoldHlwZS5nb29nbGVhcGlzLm
...",
 "signature": "MCwCFAWGf/97wb+oYuSQizj8U12n7jpQAhQKGCaOJ4U8XyDAOEhMUWkzZXHrpw==",
 "publicKey": "MIHxMIGoBgcqhkjOOAQBMIGcAkEA/
KaCzo4Syrom78z3EQ5SbbB4sF7ey80etKII864WF64B81uRpH5t9jQTxeEu0ImbzRMqzVDZkVG9xD7nN1kuFw
IVAJYu3cw2nLqOuyYO5rahJtk0bjjFAkBnhHGyepz0TukaScUUfbGpq.."
}

10.5.1.1.5 5. Cleanup

When the export document is no longer needed, use the /export-async endpoint to cleanup the exported
documents.

DELETE https://a.example.com/masking/api/export-async

HEADER
Authorization: dc2cff8b-e20d-4e28-8b7e-5d7c4aad0e2a
Accept: application/json

CURL example:

curl -X DELETE --header 'Accept: application/json' --header 'Authorization: dc2cff8b-
e20d-4e28-8b7e-5d7c4aad0e2a' 'https://a.example.com/masking/api/export-async'

Expected Result: no content

10.5.1.2 Destination Masking Engine steps

10.5.1.2.1 1. Login

Login on the destination Masking Engine to obtain an Authorization token value (see example above).

10.5.1.2.2 2. Import the object

On Masking Engine B, use the import-async endpoint to import the document downloaded from engine A.

POST https://b.example.com/masking/api/import-async?force_overwrite=true

HEADER
Authorization: dc2cff8b-e20d-4e28-8b7e-5d7c4aad0e2a
Content-Type: multipart/form-data
Accept: application/json
passphrase: my example passphrase

CURL example:

Continuous Compliance – Continuous Compliance Home

Managing multiple engines for masking – 646

curl -X POST --cacert /path/to/cert --header 'Content-Type: multipart/form-data' --
header 'Accept: application/json' --header 'Authorization: dc2cff8b-
e20d-4e28-8b7e-5d7c4aad0e2a' --header 'passphrase: my example passphrase' -F file=@ex
port.json 'https://b.example.com/masking/api/import-async?force_overwrite=true'

Expected Result:

{
 "asyncTaskId": 1,
 "operation": "IMPORT",
 "reference": "IMPORT-aW1wb3J0X2RvY3VtZW50X2lZQVFKWEFsLmpzb24=",
 "status": "WAITING",
 "cancellable": false
}

10.5.1.2.3 3. Verify status

On Masking Engine B, call the /file-downloads endpoint using the reference from the returned Async Task
response to retrieve the completed import status.

GET https://b.example.com/masking/api/file-downloads/IMPORT-
aW1wb3J0X2RvY3VtZW50X2lZQVFKWEFsLmpzb24=

HEADER
Authorization: dc2cff8b-e20d-4e28-8b7e-5d7c4aad0e2a
Accept: application/octet-stream

CURL example:

curl -X GET --cacert /path/to/cert --header 'Accept: application/octet-stream' --
header 'Authorization: dc2cff8b-e20d-4e28-8b7e-5d7c4aad0e2a' 'https://b.example.com/
masking/api/file-downloads/IMPORT-aW1wb3J0X2RvY3VtZW50X2lZQVFKWEFsLmpzb24='

Expected Result:

An import status document that reports the success or failure of each object imported.

[
 {
 "objectIdentifier": {
 "id": 7
 },
 "importedObjectIdentifier": {
 "id": 7
 },
 "objectType": "PROFILE_EXPRESSION",

Continuous Compliance – Continuous Compliance Home

Managing multiple engines for masking – 647

 "importStatus": "SUCCESS"
 },
 {
 "objectIdentifier": {
 "id": "CERTIFICATE_NO"
 },
 "importedObjectIdentifier": {
 "id": "CERTIFICATE_NO"
 },
 "objectType": "DOMAIN",
 "importStatus": "SUCCESS"
 },
 ...
]

10.5.1.2.4 4. Cleanup

Once the status is no longer needed, use the /import-async endpoint to cleanup the exported documents.

DELETE https://b.example.com/masking/api/import-async

HEADER
Authorization: dc2cff8b-e20d-4e28-8b7e-5d7c4aad0e2a
Accept: application/json

CURL example:

curl -X DELETE --cacert /path/to/cert --header 'Accept: application/json' --header
'Authorization: dc2cff8b-e20d-4e28-8b7e-5d7c4aad0e2a' 'https://b.example.com/masking/
api/import-async'

Expected Result: no content

10.5.2 Syncing a masking job

The following steps provide an example of how to export a Masking Job from Masking Engine A to Masking
Engine B using the synchronous endpoints of /export and /import. This presumes that all of the global
objects such as algorithms and domains that the masking job relies on have already been synced. This can
also be done via the asynchronous endpoint with the same workflow as above.

10.5.2.1 1. Export the job

Before this step, the /login and /syncable-objects endpoints should have been called to obtain the
authorization token and job identifier respectively. Then use the /export endpoint to obtain an export
document with the desired MASKING_JOB. In this example, the optional passphrase is used to encrypt the
export document.

Continuous Compliance – Continuous Compliance Home

Managing multiple engines for masking – 648

POST http://a.example.com/masking/api/export

HEADER
Authorization: dc2cff8b-e20d-4e28-8b7e-5d7c4aad0e2a
Content-Type: application/json
Accept: application/json
passphrase: password to encrypt the export document

BODY
[
 {
 "objectIdentifier": {
 "id": 4
 },
 "objectType": "MASKING_JOB"
 }
]

CURL example:

curl -X POST --cacert /path/to/cert --header 'Content-Type: application/json' --
header 'Accept: application/json' --header 'Authorization: dc2cff8b-
e20d-4e28-8b7e-5d7c4aad0e2a' --header 'passphrase: my example passphrase' -d
'[{ "objectIdentifier": { "id": 4 }, "objectType": "MASKING_JOB" }]' 'https://
a.example.com/masking/api/export'

Expected Result:

{
 "exportResponseMetadata": {
 "exportHost": "a.example.com",
 "exportDate": "Fri Jun 15 20:16:20 UTC 2018",
 "requestedObjectList": [
 {
 "objectIdentifier": {
 "id": 1
 },
 "objectType": "MASKING_JOB",
 "revisionHash": "579850b1c88baf74cee6bad61d81e2aa3dcc206c"
 }
],
 "exportedObjectList": [
 {

To sync a profile job, swap out the objectType for "PROFILE_JOB" and provide the id of the
profile job to sync. Profile jobs are syncable starting in version 5.3.2.0.

Continuous Compliance – Continuous Compliance Home

Managing multiple engines for masking – 649

 "objectIdentifier": {
 "id": 1
 },
 "objectType": "DATABASE_RULESET",
 "revisionHash": "bf63b401129cbc84f90eeb708281e98121f5a829"
 },
 {
 "objectIdentifier": {
 "id": "FIRST_NAME"
 },
 "objectType": "DOMAIN_REFERENCE",
 "revisionHash": "e6a52079843afd2625f20237fd50f56254c7e630"
 },
 {
 "objectIdentifier": {
 "id": 1
 },
 "objectType": "MASKING_JOB",
 "revisionHash": "579850b1c88baf74cee6bad61d81e2aa3dcc206c"
 },
 {
 "objectIdentifier": {
 "id": 1
 },
 "objectType": "DATABASE_CONNECTOR",
 "revisionHash": "6455f39dfa354a54bdf4ef69d6511a6c2bb19db3"
 },
 {
 "objectIdentifier": {
 "algorithmName": "FirstNameLookup"
 },
 "objectType": "ALGORITHM_REFERENCE",
 "revisionHash": "13b0a51a7e3904f52526c442419c54b39033dca3"
 }
]
 },
 "blob":
"RAAAAAokZmZhNWIxNjktODMwMC00N2FlLWJjZmMtNjVhNDUzYWI3OTBjEhgyMDE4LTA2LTE1VDIwOjE2OjIw
LjY2MFogBSgBFwIAAAokZmZhNWIxNjktODMwMC00N2FlLWJjZmMtNjVhNDUzYWI3OTBjEu4DCi8IFBIrCiV0e
XBlLmdvb2dsZWFwaXMuY29tL0ludGVnZXJJZGVudGlmaWVyEgIIARIvCA4SKwoldHlwZS5nb29nbGVhcGlzLm
...",
 "signature": "MCwCFAWGf/97wb+oYuSQizj8U12n7jpQAhQKGCaOJ4U8XyDAOEhMUWkzZXHrpw==",
 "publicKey": "MIHxMIGoBgcqhkjOOAQBMIGcAkEA/
KaCzo4Syrom78z3EQ5SbbB4sF7ey80etKII864WF64B81uRpH5t9jQTxeEu0ImbzRMqzVDZkVG9xD7nN1kuFw
IVAJYu3cw2nLqOuyYO5rahJtk0bjjFAkBnhHGyepz0TukaScUUfbGpq.."
}

Continuous Compliance – Continuous Compliance Home

Managing multiple engines for masking – 650

10.5.2.2 2. Import the job

On Masking Engine B, import the masking job. You will need to provide an environment for it to import into.

POST http://b.example.com/masking/api/import?force_overwrite=false&environment_id=1

HEADER
Authorization: dc2cff8b-e20d-4e28-8b7e-5d7c4aad0e2a
Content-Type: application/json
Accept: application/json
passphrase: password to encrypt the export document

PARAMETER
force_overwrite and environment_id. See the details in the Masking API Call Concepts
section for more details .

BODY
(Whatever gets returned from export)

CURL example:

curl -X POST --cacert /path/to/cert --header 'Content-Type: application/json' --
header 'Accept: application/json' --header 'Authorization: dc2cff8b-
e20d-4e28-8b7e-5d7c4aad0e2a' --header 'passphrase: my example passphrase' -d @/path/
to/export.json 'https://b.example.com/masking/api/import?
force_overwrite=false&environment_id=1'

Expected Result:

[
 {
 "objectIdentifier": {
 "id": 3033
 },
 "importedObjectIdentifier": {
 "id": 1
 },
 "objectType": "DATABASE_CONNECTOR",
 "importStatus": "SUCCESS"

The requestedObjectList returns the list of objects you’ve requested in the export, and the
exportedObjectList returns a list of all objects that were exported. This will include both the
requested ones and their dependencies.

Continuous Compliance – Continuous Compliance Home

Managing multiple engines for masking – 651

 },
 {
 "objectIdentifier": {
 "id": 5421
 },
 "importedObjectIdentifier": {
 "id": 1
 },
 "objectType": "DATABASE_RULESET",
 "importStatus": "SUCCESS"
 }
 ...
]

10.5.3 Syncing an environment

Syncing an environment differs from syncing other objects in that we don't sync any of the environment's
metadata, only it's dependencies (jobs, connectors and rulesets). You can think of syncing an environment
as an easy way to sync a large group of objects in the environment, without having to sync them one at a
time. As such, the environment's revisionHash is not important.

10.5.3.1 1. Export the environment

Before this step, the /logi n and /syncable-objects endpoints should have been called to obtain the
authorization token and environment identifier respectively. Then use the /export endpoint to obtain an
export document with the desired ENVIRONMENT. In this example, the optional passphrase is used to
encrypt the export document.

POST http://a.example.com/masking/api/export

HEADER
Authorization: dc2cff8b-e20d-4e28-8b7e-5d7c4aad0e2a
Content-Type: application/json
Accept: application/json
passphrase: password to encrypt the export document

BODY
[
 {
 "objectIdentifier": {
 "id": 3
 },
 "objectType": "ENVIRONMENT"
 }
]

CURL example:

Continuous Compliance – Continuous Compliance Home

Managing multiple engines for masking – 652

curl -X POST --cacert /path/to/cert --header 'Content-Type: application/json' --
header 'Accept: application/json' --header 'Authorization: dc2cff8b-
e20d-4e28-8b7e-5d7c4aad0e2a' --header 'passphrase: my example passphrase' -d
'[{ "objectIdentifier": { "id": 3 }, "objectType": "ENVIRONMENT" }]' 'https://
a.example.com/masking/api/export'

Expected Result:

{
 "exportResponseMetadata": {
 "exportHost": "a.example.com",
 "exportDate": "Tue Apr 21 21:57:32 UTC 2020",
 "requestedObjectList": [
 {
 "objectIdentifier": {
 "id": 3
 },
 "objectType": "ENVIRONMENT",
 "revisionHash": "c2f2f4bd8a043c32d0977cff8f915d64f1aaf518"
 }
],
 "exportedObjectList": [
 {
 "objectIdentifier": {
 "id": 4
 },
 "objectType": "DATASET_CONNECTOR",
 "revisionHash": "db7bc78d098f3df47199fc00c2ba83dee5a52a34"
 },
 {
 "objectIdentifier": {
 "id": 3
 },
 "objectType": "ENVIRONMENT",
 "revisionHash": "c2f2f4bd8a043c32d0977cff8f915d64f1aaf518"
 },
 {
 "objectIdentifier": {
 "id": 4
 },
 "objectType": "MASKING_JOB",
 "revisionHash": "2497260ee897303fc317b9268486c5e36663dad0"
 },
 {
 "objectIdentifier": {
 "id": 4
 },
 "objectType": "DATASET_RULESET",
 "revisionHash": "cb864b0f3f208c4ea5273389055d335d8d57028c"
 },

Continuous Compliance – Continuous Compliance Home

Managing multiple engines for masking – 653

 {
 "objectIdentifier": {
 "id": 1
 },
 "objectType": "DATASET_FORMAT",
 "revisionHash": "0513a494c736d7f8993dee4720f200c0aa3bd749"
 }
]
 },
 "blob": "RAAAAAokZDg5Zjg5NWQtYzJjMi00ZjkyLWIxNjEtMTA0NDRjZDk5YWIxEhgyMDI...",
 "signature": "MCwCFF9wqsdqMG/x7q+knwd4LLhwc4h+AhR9YF5rQZyp5YLQf8e7rI39kjkyUQ==",
 "publicKey": "MIHwMIGoBgcqhkjOOAQBMIGcAkEA/KaCzo4Syrom78z3EQ5SbbB4sF7ey8..."
}

10.5.3.2 2. Create a new environment on the target engine

Since we do not import the environment metadata (such as name or type) we must first create an
environment on the target which we wish to import our data into. At this step we would also need to create a
source environment if we are importing any On-The-Fly jobs.

10.5.3.3 3. Import the environment into the newly created environment

On Masking Engine B, import the environment. You will need to provide an environment for it to import into.

The requestedObjectList returns the list of objects you’ve requested in the export, and the
exportedObjectList returns a list of all objects that were exported. This will include both the
requested ones and their dependencies.

All source connectors will end up being imported into the since source environment that we
specify. If you wish for these to be in separate environments, they must then be manually
managed after import.

The source engine’s global object must be synced to the target engine before syncing the
environment. If the global object is out of sync between the engines, an error will occur. For
example, suppose the exported environment contains an inventory that uses a domain that is
not in sync with the target engine, an error will be generated.

Continuous Compliance – Continuous Compliance Home

Managing multiple engines for masking – 654

POST http://b.example.com/masking/api/import?force_overwrite=false&environment_id=1

HEADER
Authorization: dc2cff8b-e20d-4e28-8b7e-5d7c4aad0e2a
Content-Type: application/json
Accept: application/json
passphrase: password to encrypt the export document

PARAMETER
force_overwrite and environment_id. See the details in the Masking API Call Concepts
section for more details .

BODY
(Whatever gets returned from export)

CURL example:

curl -X POST --cacert /path/to/cert --header 'Content-Type: application/json' --
header 'Accept: application/json' --header 'Authorization: dc2cff8b-
e20d-4e28-8b7e-5d7c4aad0e2a' --header 'passphrase: my example passphrase' -d @/path/
to/export.json 'https://b.example.com/masking/api/import?
force_overwrite=false&environment_id=1'

Expected Result:

[
 {
 "objectIdentifier": {
 "id": 4
 },
 "importedObjectIdentifier": {
 "id": 5
 },
 "objectType": "DATASET_CONNECTOR",
 "importStatus": "SUCCESS"
 },
 {
 "objectIdentifier": {
 "id": 3
 },
 "importedObjectIdentifier": {
 "id": 1
 },
 "objectType": "ENVIRONMENT",
 "importStatus": "SUCCESS"
 },
 {
 "objectIdentifier": {
 "id": 1

Continuous Compliance – Continuous Compliance Home

Managing multiple engines for masking – 655

•

•
•

•

•

•
•

 },
 "importedObjectIdentifier": {
 "id": 1
 },
 "objectType": "DATASET_FORMAT",
 "importStatus": "SUCCESS"
 },
 {
 "objectIdentifier": {
 "id": 4
 },
 "importedObjectIdentifier": {
 "id": 5
 },
 "objectType": "DATASET_RULESET",
 "importStatus": "SUCCESS"
 },
 {
 "objectIdentifier": {
 "id": 4
 },
 "importedObjectIdentifier": {
 "id": 5
 },
 "objectType": "MASKING_JOB",
 "importStatus": "SUCCESS"
 }
]

10.6 Change log

10.6.1 Changes in 6.0

10.6.1.1 New syncable objects

We added the following new syncable objects in 6.0. Refer to the main documentation for more information
on what they are, and how to use them.

6.0.0.0 Release

MOUNT_INFORMATION
6.0.1.0 Release

JDBC_DRIVER

REIDENTIFICATION_JOB

TOKENIZATION_JOB
6.0.2.0 Release

Continuous Compliance – Continuous Compliance Home

Managing multiple engines for masking – 656

•

•

•

•
•

•

•

•

•

•

•

•

•

•

•

•
•

•

•

•

•

•

•
•

•

DATASET_CONNECTOR

DATASET_FORMAT

DATASET_RULESET

ENVIRONMENT
6.0.3.0 Release

ALGORITHM_PLUGIN

USER_ALGORITHM

10.6.2 Changes in 5.3

10.6.2.1 New syncable objects

We added the following new syncable objects in 5.3. Refer to the main documentation for more information
on what they are, and how to use them.

5.3.0.0 Release

DATABASE_RULESET

DATE_SHIFT

DOMAIN

FILE_CONNECTOR

FILE_FORMAT

FILE_RULESET

GLOBAL_OBJECT

MASKING_JOB
5.3.3.0 Release

PROFILE_EXPRESSION

PROFILE_JOB

PROFILE_SET

We also added the following new syncable algorithms in 5.3.

5.3.2.0 Release

CLEANSING

MIN_MAX
5.3.3.0 Release

REDACTION

Continuous Compliance – Continuous Compliance Home

236 https://delphixdocs.atlassian.net/wiki/spaces/CC/pages/9930099/Key+management

Managing multiple engines for masking – 657

10.6.2.2 Key per algorithm

In pre-5.3, a global key for the engine was used by all algorithms that required a seed to determine the
outcome of masked values. This included algorithms such as Lookup and Binary Lookup. Thus, in 5.2,
exporting a Lookup Algorithm would automatically export the global encryption key as a dependency. In this
release, we allow each algorithm to have its own independent key, exported as a part of the algorithm. Refer
to the Key Management236 section for more detail.

10.6.2.3 Changed model of import status reporting

In 5.2, the import status looked like this: some browsers enable drag-n-drop only when dataTransfer has data

{
"objectIdentifier": {
"keyId": "global"
},
"objectType": "KEY",
"importStatus": "SUCCESS"
}

Starting in 5.3.0, the import status of an object has extended to include the id or name it has imported into to
reduce any confusion introduced with IntegerIdentifiers. For more information on the reason for this change,
refer to Logic Behind Overwrite of IntegerIdentifier and StringIdentifier. For examples on what it now looks
like, refer to the Example User Workflow (see page 641) section.

10.6.2.4 Changed granularity of transactions for import

Starting in 5.3, an import of however many objects is performed as an atomic execution rather than using
per-object atomicity. This means that the execution will either succeed at importing all objects or fail and
import none at all. Refer to the Error Handling of Import logic flow diagram for more information.

10.6.2.5 Filter for /syncable-objects

Now that we have a large list of syncable objects, we have added a new feature for filtering based on the
object type. Refer to the Endpoints (see page 635) page and the Example User Workflow (see page 641) section for
more information.

10.6.2.6 Async endpoints

Exporting a large MASKING_JOB with many dependencies can potentially take a long time. So we have
decided to provide a new endpoint that exports and imports the objects asynchronously. Refer to the
Endpoints (see page 635) section in the main documentation and the Example User Workflow (see page 641) page
for more information.

https://delphixdocs.atlassian.net/wiki/spaces/CC/pages/9930099/Key+management
https://delphixdocs.atlassian.net/wiki/spaces/CC/pages/9930099/Key+management

Continuous Compliance – Continuous Compliance Home

Delphix masking APIs – 658

•
•

•
•
•
•
•
•
•
•
•
•
•
•
•
•

11 Delphix masking APIs
This section covers the following topics:

Masking client (see page 658)

API examples (see page 759)

11.1 Masking client
This section covers the following topics:

Masking API client (see page 658)

API calls for managing algorithms (see page 673)

API calls for managing extended connectors (see page 716)

API calls for ASDD profile set import and export (see page 721)

API calls for managing classifiers (see page 725)

API calls for managing profile set usage (see page 729)

API calls for searching and filtering (see page 732)

API calls for managing masking job driver support tasks (see page 738)

API calls for creating an inventory (see page 742)

API calls for creating and running masking jobs (see page 746)

API calls involving file upload and download (see page 752)

Backwards compatibility API usage (see page 754)

API response escaping (see page 755)

API call for generating support bundle (see page 756)

11.1.1 Masking API client

This section describes the API client available on the Masking Engine.

11.1.1.1 Introduction

With the release of API v5 on the Masking Engine, Delphix has opened up the possibility of scripting and
automation against the Masking Engine. While this is exciting for us internally at Delphix, we are sure that
this will be even more exciting for the consumers of the Masking Engine. This document is intended to be a
high-level overview of what to expect with API v5 as well as some helpful links to get you started.

11.1.1.1.1 REST

API v5 is a RESTful API. REST stands for REpresentational State Transfer. A REST API will allow you to
access and manipulate a textual representation of objects and resources using a predefined set of
operations to accomplish various tasks.

Continuous Compliance – Continuous Compliance Home

Delphix masking APIs – 659

11.1.1.1.2 JSON

API v5 uses JSON (JavaScript Object Notation) to ingest and return representations of the various objects
used throughout various operations. JSON is a standard format and, as such, has many tools available to
help with creating and parsing the request and response payloads, respectively.

Here are some UNIX tools that can be used to parse JSON - https://stackoverflow.com/questions/1955505/
parsing-json-with-unix-tools. That being said, this is only the tip of the iceberg when it comes to JSON
parsing and the reader is encouraged to use their method of choice.

11.1.1.1.3 API client

The various operations and objects used to interact with API v5 are defined in a specification document. This
allows us to utilize various tooling to ingest that specification to generate documentation and an API Client,
which can be used to generate cURL commands for all operations. To see how to log into the API client and
for some starter recipes, please check out API Cookbook document.

To access the API client on your Masking Engine, go to http://myMaskingEngine.myDomain.com/masking/
api-client.

To access the API client documentation without an engine, please refer to the static HTML representations
here:

Masking API 5.1.10 Docum…

 (see page 658)

https://stackoverflow.com/questions/1955505/parsing-json-with-unix-tools

Continuous Compliance – Continuous Compliance Home

Delphix masking APIs – 660

Masking API 5.1.11 Docum…

 (see page 658)

Masking API 5.1.12 Docum…

 (see page 658)

Masking API 5.1.13 Docum…

 (see page 658)

Continuous Compliance – Continuous Compliance Home

Delphix masking APIs – 661

Masking API 5.1.14 Docum…

 (see page 658)

Masking API 5.1.15 Docum…

 (see page 658)

Masking API 5.1.16 Docum…

 (see page 658)

Continuous Compliance – Continuous Compliance Home

Delphix masking APIs – 662

Masking API 5.1.17 Docum…

 (see page 658)

Masking API 5.1.18 Docum…

 (see page 658)

Masking API 5.1.19 Docum…

 (see page 658)

Continuous Compliance – Continuous Compliance Home

Delphix masking APIs – 663

Masking API 5.1.20 Docum…

 (see page 658)

Masking API 5.1.21 Docum…

 (see page 658)

Masking API 5.1.22 Docum…

 (see page 658)

Continuous Compliance – Continuous Compliance Home

Delphix masking APIs – 664

•

•

•

•

Masking API 5.1.23 Docum…

 (see page 658)

Masking API 5.1.24 Docum…

 (see page 658)

11.1.1.1.4 Supported features

API v5 is in active development but does not currently support all features that are accessible in the GUI. The
list of supported features will expand over the course of subsequent releases.

For a full list of supported APIs, the best place to look is the API client on your Masking Engine.

11.1.1.2 API calls for masking administration

The Delphix Masking Engine supports the following two types of administrative APIs:

Analytics APIs

These APIs are for including Masking performance information in the support bundle and do
not need to be used unless that information is requested.

Application Setting APIs

Application Setting APIs allow an administrator to change the Delphix Masking Engine
settings. Presently there are five categories of settings: analytics settings, LDAP settings,

Continuous Compliance – Continuous Compliance Home

Delphix masking APIs – 665

general settings, mask settings and profile settings. Over time, more settings will be added to
give users direct control over the product's various settings. Below are the details of currently
supported settings.

11.1.1.2.1 Application settings APIs

11.1.1.2.1.1 General group settings

Setting
Group

Setting Name Type Description Default
Value

general EnableMonitorR
owCount

Boolean Controls whether a job displays the total
number of rows that are being masked.
Setting this to false reduces the startup time
of all jobs.

true

PasswordTimeS
pan

Integer
[0, ∞)

The number of hours a user is locked out for
before they can attempt to log in again.

23

PasswordCount Integer
[0, ∞)

The number of incorrect password attempts
before a user is locked out.

3

AllowPassword
ResetRequest

Boolean When true, users can request a password
reset link be sent to the email associated with
their account.

true

PasswordReset
LinkDuration

Integer
[1, ∞)

Controls how many minutes the password
reset link is valid for.

5

NumSimulJobs
Allowed

Integer
[0, ∞)

Max number of jobs allowed to run
simultaneously. Setting this number to zero
will lead to a dynamically calculated limit (see
page 595) based on the number of available
CPU cores.

7

Continuous Compliance – Continuous Compliance Home

Delphix masking APIs – 666

Setting
Group

Setting Name Type Description Default
Value

DefaultApiVersi
on

String Used to set default API Version.
If the version is omitted from the base path of
the request's URL, but wishes to be treated
using a specific masking API version that is
not the latest version, set the
DefaultApiVersion application setting.
If the DefaultApiVersion is not set and the
version is omitted from the URL, the latest
version of the API on that engine will be used.
Sample API Version format is like v5.1.5 etc.

Blank

DataRetentionInt
erval

Integer
[-1, ∞)

The length of time that specific historical data
is retained.
This setting value is in integer days.
Certain log files and internal processing data
are retained in case problem diagnosis is
needed. Since we cannot keep this data
indefinitely, this setting is the length of time
that old data is retained. Data older than this
will be purged on a periodic basis.
Special Values
-1 : disable this pruning method
 0 : each cleanup removes all files

60

DataRetentionM
axDirectorySize

Integer
[-1, 100]

The percentage of disk space allowed for all
logfiles located in specific directories.
This setting value is in integer percent.
For log files written to disk, the
DataRetentionInterval setting (above) ensures
that we keep these job log files for only a
specific period of time. This setting avoids
problems where significant activity in a short
time might overwhelm avaiable disk space,.
This setting is a backstop to the
DataRetentionInterval setting which is
intended to be the primary driver for managing
retention.
Special Values
-1 : disable this pruning method
 0 : each cleanup removes all files

10

Continuous Compliance – Continuous Compliance Home

237 https://www.ibm.com/support/knowledgecenter/en/SSEPEK_11.0.0/sqlref/src/tpc/
db2z_datetimestringrepresentation.html

Delphix masking APIs – 667

11.1.1.2.1.2 Algorithm group settings

Setting
Group

Setting Name Type Description
Default Value

algorithm DefaultNonCo
nformantData
Handling

String
{DONT_MA
SK, FAIL}

Default algorithm behavior for
Handling of Non-conformant Data
patterns.

DONT_MASK

11.1.1.2.1.3 Database group settings

Setting
Group

Setting Name Type Description Default
Value

database DB2zDateFormat String Default Date String format to use for DB2
zOS if the database is not using one of the
pre-defined IBM DB2 zOS Date String
formats237. Default is ISO Date String
format.

yyyy-MM-
dd

11.1.1.2.1.4 LDAP group settings

Setting
Group

Setting Name Type Description Default Value

ldap Enable Boolean Used to enable and
disable LDAP
authentication

false

LdapHost String Host of LDAP server 10.10.10.31

NumSimulJobsAllowed setting should be set based on engine configuration. It is risky to run
many jobs at once in an environment where you have scheduled more jobs than the system has
memory for. When the system runs out of memory all jobs will fail.



https://www.ibm.com/support/knowledgecenter/en/SSEPEK_11.0.0/sqlref/src/tpc/db2z_datetimestringrepresentation.html
https://www.ibm.com/support/knowledgecenter/en/SSEPEK_11.0.0/sqlref/src/tpc/db2z_datetimestringrepresentation.html

Continuous Compliance – Continuous Compliance Home

Delphix masking APIs – 668

Setting
Group

Setting Name Type Description Default Value

LdapPort Integer [0,
∞)

Port of LDAP server 389

LdapBasedn String Base DN of LDAP server DC=tbspune,DC=com

LdapFilter String Filter for LDAP
authentication

(&(objectClass=person)
(sAMAccountName=?))

MsadDomain String MSAD Domain for LDAP
authentication

AD

LdapTlsEnabl
e

Boolean Enable and disable the
use of TLS for LDAP
connections.

false

11.1.1.2.1.5 Mask group settings

Setting
Group

Setting
Name

Type Description Default
Value

mask DatabaseC
ommitSize

Integer
[1, ∞)

Controls how many rows are updated (Batch
Update) to the database before the transaction
is committed.

10000

DefaultStre
ams

Integer
[1, ∞)

Default number of streams for a masking job. 1

DefaultUpd
ateThreads

Integer
[1, ∞)

Default number of database update threads for
a masking job.

1

In the LDAP group, once the "Enable" setting is set to "true", all users logging in will be
authenticated via the LDAP server. Local authentication will no longer work. Before setting this to
true set all other LDAP settings correctly and create the necessary LDAP users on the masking
engine.



Continuous Compliance – Continuous Compliance Home

Delphix masking APIs – 669

•
•

Setting
Group

Setting
Name

Type Description Default
Value

DefaultMax
Memory

Integer
[1024,
∞)

Default maximum memory for masking jobs (in
megabytes).

1024

DefaultMin
Memory

Integer
[1024,
∞)

Default minimum memory for masking jobs (in
megabytes).

1024

CharStrea
mingBuffer
LimitRate

Integer
[1, 50]

Used for calculating maximum allowed buffer
size for Character streaming parsers to buffer
data. Only used in JSON file and Document
store type masking.

25

11.1.1.2.1.6 Profile group settings

These settings apply only to the legacy profiler, not the ASDD profiler, unless specifically noted in the setting
description.

Setting Group Setting
Name

Type Description Default
Value

profile EnableDataL
evelCount

Boolean When enabled (true), the masking engine
counts the number of rows in the profiled
table. If the number of rows are less than or
equal to DataLevelRows, then it uses the
number of rows as the sample size.
Otherwise, it uses DataLevelRows.

When disabled (false), the masking engine
uses DataLevelRows.

false

DataLevelRo
ws

Integer
[1, ∞)

The number of rows a data level profiling job
samples when profiling a column.
The DataLevelRows will only take into
account if

EnableDataLevelCount is false.
EnableDataLevelCount is true and
number of rows is greater than
DataLevelRows.

100

Continuous Compliance – Continuous Compliance Home

Delphix masking APIs – 670

Setting Group Setting
Name

Type Description Default
Value

DataLevelPer
centage

Double
(0, ∞)

Percentage of rows that must match the data
level regex to consider this column a match,
and thus sensitive.

80.0

IgnoreDataty
pe

String Datatypes that a profiling job should ignore.
Columns of these types will not be assigned a
domain/algorithm pair.

BIT,BOOL
EAN,CHA
R#1,VAR
CHAR#1,
VARCHA
R2#1,NC
HAR#1,
NVARCH
AR#1,NV
ARCHAR
2#1,BINA
RY,VARBI
NARY,IM
AGE,
LOB,LON
G,BLOB,C
LOB,NCL
OB,BFILE,
RAW,ENU
M,BFILE

DefaultStrea
ms

Integer
[1, ∞)

Default number of streams for a profiling job. 1

DefaultMax
Memory

Integer
[1024, ∞)

Default maximum memory for profiling jobs
(in megabytes).

1024

DefaultMinM
emory

Integer
[1024, ∞)

Default minimum memory for profiling jobs
(in megabytes).

1024

Optimization
Level

Integer
[0, 9)

Optimization level for the profiling job which
is defined as below,
0: No optimizations are performed.
1: JavaScript runs in interpreted mode.
9: Performs the most optimization with faster
script execution, but compiles slower. 1-9: All
optimizations are performed.

-1

Continuous Compliance – Continuous Compliance Home

Delphix masking APIs – 671

Setting Group Setting
Name

Type Description Default
Value

DefaultMulti
phiAlgorithm

String Default Multiple PHI masking algorithm which
will be used when the Multiple Profiler
Expression will be true for profile job. This
value is used by both the legacy and ASDD
profilers.

NullValue
Lookup

11.1.1.2.1.7 ASDD group settings

Setting Group Setting Name Type Description Default Value

ASDD DefaultMaximumC
olumnSize

Integer [1, 65536] The maximum
length of the
column value to
profile. Any value
beyond that is
truncated to this
length for ASDD
profiling and the
remaining part is
ignored.

1024

DefaultTableSamp
leRows

Integer [1, ∞) The number of
database rows for
the ASDD profiler
to sample for each
table.

1000

DefaultAssignmen
tThreshold

Integer [1, 100] The confidence
threshold that
must be met or
exceeded for the
ASDD profiler to
make a domain
and algorithm
assignment.

1

DefaultJobExecuti
onStreams

Integer [1, ∞) The number of
streams to use by
default for new
ASDD profiler jobs

1

Continuous Compliance – Continuous Compliance Home

Delphix masking APIs – 672

Setting Group Setting Name Type Description Default Value

DefaultNullFilterTh
reshold

Integer [0, 100] The percentage of
column values
that must be null
or empty to trigger
an additional
query to retrieve
more column
values.

75

11.1.1.2.1.8 Job group settings

Setting
Group

Setting
Name

Type Description Default Value

job JobLoggi
ngLevel

String
{Basic,
Detailed}

Controls the amount of information being
logged from a job's output. Warning: the
Detailed setting may log sensitive
information when errors occur. Although this
information can be very valuable when
debugging a problem, it should be used with
care.

Basic

11.1.1.2.1.9 CSP group CSP settings

Setting
Group

Setting
Name

Type Description Default
Value

csp CspFrameA
ncestorsDo
main

String Defines valid sources for embedding the
resource using "frame", "iframe", "object",
"embed", or "applet". To whitelist domains for
frame-ancestors, add space-separated URLs in
the CspFrameAncestorsDomain.

csp CspFormAc
tionDomain

String Defines valid sources that can be used as an
HTML "form" action. To whitelist domains for
form-action, add space-separated URLs in the
CspFormActionDomain.

Continuous Compliance – Continuous Compliance Home

Delphix masking APIs – 673

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

Setting
Group

Setting
Name

Type Description Default
Value

csp CspScriptSr
cDomain

String Defines valid sources of JavaScript. To
whitelist domains for script-src, add space-
separated URLs in the CspScriptSrcDomain.

csp StrictCspEn
abled

Boolean CSP setting should be enable via application
setting based flag. This will provide more
control to customer over CSP policy.

False

11.1.2 API calls for managing algorithms

This section covers the following topics:

Configuring algorithms (see page 673)

Managing algorithm usage (see page 675)

Migrating algorithms (see page 679)

Binary lookup (see page 681)

Character mapping (see page 682)

Data cleansing (see page 684)

Date replacement (see page 686)

Date shift (see page 687)

Dependent date shift (see page 689)

Email (see page 691)

Free text redaction (see page 693)

Full name (see page 695)

Mapping (see page 696)

Min Max (see page 699)

Name (see page 701)

Numeric expression (see page 703)

Payment card (see page 705)

Regex decompose (see page 706)

Secure lookup (see page 709)

Segment mapping (see page 712)

Tokenization (see page 714)

11.1.2.1 Configuring algorithms

This section provides information on configuring algorithms using the API.

Continuous Compliance – Continuous Compliance Home

Delphix masking APIs – 674

•

•

•

•

•

•

•

•

11.1.2.1.1 Masking client algorithm model

algorithmName (maxLength=201)

String Equivalent to the algorithm name saved by the user through the GUI. For out of the box algorithms,
this will be a similar name as that in the GUI, but presented in a more user-friendly format.

algorithmType

String The type of algorithm Enum values: - BINARY_LOOKUP - CLEANSING - COMPONENT - LOOKUP -
MAPPING - MINMAX - REDACTION - SEGMENT - TOKENIZATION

createdBy (optional; readOnly; maxLength=255)

String The name of the user that created the algorithm

description (optional; maxLength=255)

String The description of the algorithm

frameworkId

Integer The frameworkId, corresponding to the framework that extensible algorithm is built upon. This field
is to be used only for the Extensible Algorithms.

algorithmExtension (optional)

Object Contains algorithm instance specific configuration parameters. See specific framework for more
details.

11.1.2.1.2 Algorithm extension for extensible algorithms

It uses the generic Object, defined in the base AlgorithmExtension. Depending on the Extensible Algorithm
design it currently supports following implementations (or their mix):

fileReference(s) (optional, name is defined by Extensible Algorithm creator)

single fileReference or array[FileReference] A JSON formatted file reference or list of file references. Each
file reference may be one of the following four options: - UUID value returned from the endpoint for
uploading file to the Masking Engine - NFS mounted file URL - HTTP URL to external web located file -
HTTPS URL to external web located file

calledExtendedAlgorithm(s) (optional, name is defined by Extensible Algorithm creator)

single algorithmName or array[AlgorithmName] A JSON formatted name or a list of extensible algorithms
names

Continuous Compliance – Continuous Compliance Home

Delphix masking APIs – 675

•

•

•

•

11.1.2.2 Managing algorithm usage

11.1.2.2.1 Overview

The Masking Engine provides API endpoints to view and modify the usage of algorithms globally. These
operations span all usage of an algorithm, including: database column and file format assignments across
all environments, usage in domains, and references from other algorithms.

11.1.2.2.2 Viewing algorithm usage

The following API endpoint retrieves all usage of the algorithm specified in the request path:

algorithm GET algorithm/{algorithmName}/usage

This endpoint supports the following option in the query parameters:

includeAssignmentDetail (optional, default=false)

boolean Enabling this option causes the API response to include a list of human-readable assignment detail
objects, one for each individual usage of the algorithm in inventory. This can result in a very large response
if the algorithm is heavily used. Algorithm usage in file formats will be reported once for each application of
the file format to a file in inventory.

excludeChainedAlgorithms (optional, default=false)

boolean Enabling this option causes the API response to exclude a list of algorithm references. This
parameter will skip the computation of chained algorithms which will result in increased API performance.

environmentFilter (optional)

String Report only usage occurring within the specified environment(s). This query option may be included
multiple times, in which case usage for all matching environments will be reported. When the algorithm is
used in a file format, all usage of that file format is reported so long as it is referenced by any environment
matching the filter; this may include environments other than those selected by the filter. Filtering by
environment excludes all domain and algorithm reference usage, as such usage is global rather than part of
any particular environment.

rulesetFilter (optional)

String Report only usage occurring within the specified ruleset(s). This query option may be included
multiple times, in which case usage for all matching rulesets will be reported. When the algorithm is used in
a file format, all usage of that file format is reported so long as it is referenced by any ruleset matching the
filter; this may include rulesets other than those selected by the filter. Filtering by ruleset excludes all
domain and algorithm reference usage, as such usage is global rather than part of any particular ruleset.

Continuous Compliance – Continuous Compliance Home

Delphix masking APIs – 676

•

•

•

•

1.

11.1.2.2.3 Updating algorithm usage

The following API endpoint updates all usage of the algorithm specified in the request path to use the new
algorithm name supplied as a query parameter:

algorithm PUT algorithm/{algorithmName}/usage

This endpoint supports the following option in the query:

replacementAlgorithmName (required, no default)

String The name of the algorithm that should replace the existing algorithm in all usage across the entire
Masking Engine.

ignoreIncompatibleTypes (optional, default=false)

boolean Setting this option to true will allow some algorithm replacements that would normally fail due to
incompatible types to succeed. This may result in job failures if type conversions don't exist to convert the
underlying data type to the type expected by the new algorithm.

environmentFilter (optional)

String This options functions just like the environmentFilter option for the GET operation described above.
Only usage matching the filter is updated. The update will fail if any file format referencing the algorithm is
used from an environment that does not match the filter. Domain and algorithm reference usage is never
updated when an environment filter is applied.

rulesetFilter (optional)

String This options functions just like the rulesetFilter option for the GET operation described above. Only
usage matching the filter is updated. The update will fail if any file format referencing the algorithm is used
from a ruleset that does not match the filter. Domain and algorithm reference usage is never updated when
a ruleset filter is applied.

The response body from the PUT request details all usage that was updated by the operation.

Delphix recommends performing the following steps before any update to algorithm usage via this API
endpoint:

Perform the GET usage operation (described above) for both the existing and replacement
algorithms. Carefully review the results and save them for future reference.

Globally updating algorithm usage can produce many inventory changes across multiple
environments, and is not easily reversible when the replacement algorithm is already in use on
the engine.



Continuous Compliance – Continuous Compliance Home

Delphix masking APIs – 677

2. Export the engine's global settings and all affected environments prior to changing algorithm usage.

11.1.2.2.4 Examples

Getting usage for an algorithm with one column assignment:

REQUEST

curl -X GET --header 'Accept: application/json' --header 'Authorization:
d46db68d-59f1-41e0-a128-c01bc920da30'
'http://masking-engine.example.com/masking/api/v5.1.10/algorithms/alg_6EBH8EGK/usage?
includeAssignmentDetail=false'

RESPONSE

{
 "algorithmName": "alg_6EBH8EGK",
 "columnMetadataIds": [
 11
],
 "fileFieldMetadataIds": [],
 "mainframeDatasetFieldMetadataIds": [],
 "domainNames": [
 "domain_6GXKQP60"
],
 "algorithmReferences": []
}

The same request with additional detail requested:

REQUEST

curl -X GET --header 'Accept: application/json' --header 'Authorization:
d46db68d-59f1-41e0-a128-c01bc920da30'
'http://masking-engine.example.com/masking/api/v5.1.10/algorithms/alg_6EBH8EGK/usage?
includeAssignmentDetail=true'

RESPONSE

Algorithm compatibility checking of usage changes may still allow some replacements that
could result in job failures using the new algorithm. Careful consideration should be given to
whether the new algorithm can handle the data types and inputs for all usage of the algorithm
being replaced.



Continuous Compliance – Continuous Compliance Home

Delphix masking APIs – 678

{
 "algorithmName": "alg_6EBH8EGK",
 "columnMetadataIds": [
 11
],
 "fileFieldMetadataIds": [],
 "mainframeDatasetFieldMetadataIds": [],
 "domainNames": [
 "domain_6GXKQP60"
],
 "algorithmReferences": [],
 "assignmentDetails": [
 {
 "assignmentType": "DATABASE_COLUMN",
 "environmentName": "env_ZBQ0XKO9",
 "databaseRulesetName": "rule_POQRBZ44",
 "databaseTableName": "profile",
 "databaseColumnName": "last_name"
 }
]
}

Updating all usage of algorithm named alg_6EBH8EGK to alg_82U5GUZB :

REQUEST

curl -X PUT --header 'Content-Type: application/json' --header 'Accept: application/
json'
--header 'Authorization: d46db68d-59f1-41e0-a128-c01bc920da30'
'http://masking-engine.example.com/masking/api/v5.1.10/algorithms/alg_6EBH8EGK/usage?
replacementAlgorithmName=alg_82U5GUZB&ignoreIncompatibleTypes=false'

RESPONSE

{
 "columnMetadataIds": [
 11
],
 "fileFieldMetadataIds": [],
 "mainframeDatasetFieldMetadataIds": [],
 "domainNames": [
 "domain_6GXKQP60"
],
 "algorithmReferences": [],
 "assignmentDetails": []
}

Continuous Compliance – Continuous Compliance Home

Delphix masking APIs – 679

•

•

11.1.2.3 Migrating algorithms

11.1.2.3.1 Overview

As Delphix continues to make continuous improvement to the algorithms included with the Masking Engine,
some algorithm frameworks will have multiple versions available simultaneously. New API paths have been
added to allow migration of existing algorithm instances from old frameworks to new ones. The migration
mechanism creates a new algorithm with the same configuration as the existing algorithm, allowing the
behavior and performance of the migrated algorithm to be evaluated before adoption of the new algorithm
for production use.

In this release, the following algorithm migrations are available:

FROM: algorithmType=MAPPING TO: algorithmType=COMPONENT, pluginName=dlpx-core,
frameworkName=Mapping

The algorithm usage APIs (see page 675) can be used to conveniently transition usage from the old to the new
algorithm instance created by the migration mechanism.

11.1.2.3.2 Listing available migrations

The following API endpoint returns a list of result objects describing each possible migration. One object is
returned for every algorithm on the engine that can be migrated:

algorithm GET algorithm/migration

Each object in the response contains the name of the algorithm that can be migrated, as well as the
frameworkId of the framework that the migrated algorithm would use.

11.1.2.3.3 Migrating algorithms to new frameworks

The following API endpoint creates a new algorithm named newAlgorithmName (from the API query
parameters), by migrating from the algorithm named in the query path:

algorithm POST /algorithms/{algorithmName}/migration

This endpoint requires the following option in the query:

newAlgorithmName (required, no default)

String The name of the new algorithm to be created by the migration.

This response from the API is an AsyncTask object that can be used to check the status and result of the
migration.

Continuous Compliance – Continuous Compliance Home

Delphix masking APIs – 680

11.1.2.3.4 Examples

Listing available migrations:

REQUEST

curl -X GET --header 'Accept: application/json' --header 'Authorization:
3d2d6f53-4b1a-42b5-b4c0-33ec3d66082f'
'http://masking-engine.example.com/masking/api/v5.1.10/algorithms/migration'

RESPONSE

{
 "availableMigrations": [
 {
 "algorithmName": "alg_J24QXMN3",
 "frameworkId": 13
 }
]
}

Migrating a mapping algorithm from the legacy framework to the new framework:

REQUEST

curl -X POST --header 'Content-Type: application/json' --header 'Accept: application/
json'
--header 'Authorization: 3d2d6f53-4b1a-42b5-b4c0-33ec3d66082f'
'http://masking-engine.example.com/masking/api/v5.1.10/algorithms/alg_J24QXMN3/
migration?newAlgorithmName=new_J24QXMN3'

RESPONSE

{
 "asyncTaskId": 29,
 "operation": "ALGORITHM_MIGRATE",
 "reference": "alg_J24QXMN3",

Migration of algorithms with a large amount of state (ex. a mapping algorithm with many
mappings) can take several minutes or longer to complete. The engine's info.log will contain log
messages indicating that the migration operation is making progress. Mapping algorithm
migration is estimated to take approximately 3 minutes per 1,000,000 mapping values
associated with the source algorithm.

Continuous Compliance – Continuous Compliance Home

238 https://delphixdocs.atlassian.net/continuous-compliance-10-0-0-0/docs/configuring-algorithms#masking-client-
algorithm-model

Delphix masking APIs – 681

1.

2.

 "status": "WAITING",
 "cancellable": false
}

11.1.2.4 Binary lookup

See Binary Lookup (see page 508) for more information about this algorithm framework.

11.1.2.4.1 Creating a binary lookup algorithm via API

Retrieve the frameworkIdfor the BinarySL Framework. This information can be retrieved using the
following endpoint:

algorithm GET /algorithm/frameworks

The framework information should look similar to the following:

{
 "frameworkId": 9,
 "frameworkName": "Binary Lookup",
 "frameworkType": "BYTE_BUFFER",
 "plugin": {
 "pluginId": 7,
 "pluginName": "dlpx-core",
 "pluginAuthor": "Delphix Engineering",
 "pluginType": "EXTENDED_ALGORITHM"
 }
}

Create a Binary SL algorithm instance via the following endpoint:

algorithm POST /algorithms

Configure a new algorithm using the JSON formatted input238 similar to the following:

{
 "algorithmName": "newbinarysl",
 "algorithmType": "COMPONENT",
 "description": "Binary Secure Lookup Example",
 "frameworkId": 9,
 "pluginId": 7,

https://delphixdocs.atlassian.net/continuous-compliance-10-0-0-0/docs/configuring-algorithms#masking-client-algorithm-model
https://delphixdocs.atlassian.net/continuous-compliance-10-0-0-0/docs/configuring-algorithms#masking-client-algorithm-model

Continuous Compliance – Continuous Compliance Home

Delphix masking APIs – 682

•

1.

 "algorithmExtension": {
 "lookupFiles": [
 {
 "uri": "delphix-file://upload/
f_39bbf352139f4234873109ad4e6271e1/file1.png"
 },
 {
 "uri": "delphix-file://upload/
f_093b5c07f90e4b9dbddb0339b71703d3/file2.png"
 },
 {
 "uri": "delphix-file://upload/
f_8da2b97e201b4152b2befafc05612d8c/file3.png"
 }
]
 }
}

11.1.2.4.2 Binary SL algorithm extension

lookupFiles(required, no default)

array[Object] A list of file reference UUID values returned from the endpoint for uploading files to the
Masking Engine. There is a maximum limit of 50 files which can be uploaded into each instance of the
algorithm

11.1.2.5 Character mapping

See Character Mapping (see page 509) for more information about this algorithm framework.

11.1.2.5.1 Creating a character mapping algorithm via API

Retrieve the frameworkId for the Character Mapping Framework. This information can be retrieved
using the following endpoint:

algorithm GET /algorithm/frameworks

The framework information should look similar to the following:

{
 "frameworkId": 8,
 "frameworkName": "Chracter Mapping",
 "frameworkType" : "STRING",

Continuous Compliance – Continuous Compliance Home

Delphix masking APIs – 683

2.

•

•

•

•

 "plugin" :
 {
 "pluginId" : 7,
 "pluginName" : "dlpx-core"
 }
}

Create a Character Mapping algorithm instance via the following endpoint:

algorithm POST /algorithms

Configure a new algorithm using the JSON formatted input (see page 0) similar to the following:

{
 "algorithmName": "Digits and A to F",
 "algorithmType": "COMPONENT",
 "frameworkId": 8,
 "algorithmExtension": {
 "caseSensitive": true,
 "preserveRanges": null,
 "characterGroups": [
 "0123456789", "[a-fA-F]"
],
 "minMaskedPositions": 1,
 "preserveLeadingZeros": false
}

11.1.2.5.2 Character mapping algorithm extension

characterGroups(required, no default)

Array of Strings A list of String values defining the characters to be masked. Each group must be either: - a
Java regex style character group beginning with '[' - a String of the literal characters that comprise the group.

Duplication of characters within or among groups is not permitted.

caseSensitive(default=true)

Boolean Whether the mapping should be case sensitive. When this is false, each group must be composed
either: entirely of characters having no case; or of pairwise matching sets of LC and UC characters -
example: [a-zA-Z], not [a-bC-D].

minMaskedPositions(default=1, minimum=0)

Integer The minimum number of positions that must be replaced for masking to be considered successful.
Non-conformant data handling is triggered whenever fewer positions are masked. Inputs containing only
whitespace never trigger non-conformant data handling.

preserveRanges(optional)

Continuous Compliance – Continuous Compliance Home

Delphix masking APIs – 684

•

•

•

•

1.

Array of PreserveRange objects A list of PreserveRange objects specifying regions of maskable characters
to be preserved. Only maskable characters are considered when determining whether a position is
preserved. Ranges are specified with position 0 representing the first maskable character.

preserveLeadingZeros(default=false)

Boolean Whether to preserve leading '0' characters. This option may only be used when '0' is a masked
character, and may not be used in conjunction with preserveRanges.

11.1.2.5.2.1 Character Mapping PreserveRange extension

start(minimum=0, required, no default)

Integer The starting position of the preserve range, indexed starting with 0.

length(minimum 1, required, no default)

Integer The length of the preserve range.

direction(default="FORWARD")

String Defines the processing direction for this preserve range, with FORWARD starting at the beginning of
input, and REVERSE starting at the end. Possible enum values: - FORWARD - process left to right - REVERSE -
process right to left

11.1.2.6 Data cleansing

See Data cleansing (see page 511) for more information about this algorithm framework.

11.1.2.6.1 Creating a data cleansing algorithm via API

Retrieve the frameworkIdfor the Data Cleansing Framework. This can be done via the following
endpoint:

algorithm GET /algorithm/frameworks

The framework information should look similar to the following:

{
 "frameworkId": 24,
 "frameworkName": "Data Cleansing",
 "frameworkType": "STRING",
 "plugin": {
 "pluginId": 7,
 "pluginName": "dlpx-core",
 "pluginAuthor": "Delphix Engineering",

Continuous Compliance – Continuous Compliance Home

Delphix masking APIs – 685

2.

3.

•

•

•

 "pluginType": "EXTENDED_ALGORITHM"
 }
}

Upload a lookup file via the following endpoint:

fileUpload POST /file-uploads

Copy the fileReferenceId value returned in the Response Body.

Create a Data Cleansing algorithm via the following endpoint:

algorithm POST /algorithms

Using the JSON formatted input (see page 0), similar to the following example:

{
 "algorithmName": "demoDataCleansing",
 "algorithmType": "COMPONENT",
 "frameworkId": 24,
 "algorithmExtension": {
 "lookupFile": {
 "uri": "delphix-file://upload/f_52b19f8a9125435a83a1237fa53aeaf5/
sample.txt"
 },
 "delimiter": "=",
 "caseSensitive": false,
 "trimWhitespace": true
 }
}

11.1.2.6.2 Data cleansing algorithm extension

lookupFile(required)

String The fileReferenceId value returned from the fileUpload endpoint for uploading files to the Masking
Engine. The file should contain a newline separated list of {value, replacement} pairs separated by the
delimiter. No extraneous whitespace should be present.

delimiter(required, minLength=1; maxLength=50; default="=")

String The delimiter string used to separate {value, replacement} pairs in the lookup file.

caseSensitive(optional, default=true)

Boolean Whether the case of the input string must match the values in the lookup file.

Continuous Compliance – Continuous Compliance Home

Delphix masking APIs – 686

•

1.

2.

trimWhitespace(optional, default=true)

Boolean Whether to trim leading and trailing whitespace from the input string. Note: This must be true to
cleanse fixed-width files and fixed-length database data types such as CHAR and NCHAR.

11.1.2.7 Date replacement

See Date Replacement (see page 513) for more information about this algorithm framework.

11.1.2.7.1 Creating a date replacement algorithm via API

Retrieve the frameworkIdfor the Date Replacement Framework. This information can be retrieved
using the following endpoint:

algorithm GET /algorithm/frameworks

The framework information should look similar to the following:

{
 "frameworkId": 1,
 "frameworkName": "Date Replacement",
 "frameworkType" : "LOCAL_DATE_TIME",
 "plugin" :
 {
 "pluginId" : 7,
 "pluginName" : "dlpx-core"
 }
}

Create a Date Replacement algorithm via the following endpoint:

algorithm POST /algorithms

Configure a new algorithm using the JSON formatted input (see page 0) similar to the following:

{
 "algorithmName": "exampleDateReplacementAlgorithm",
 "algorithmType": "COMPONENT",
 "frameworkId" : 1,
 "algorithmExtension" :
 {
 "minDate": "2020-01-01 00:00:00",
 "maxDate": "2021-01-01 00:00:00",
 "unit": "DAYS"

Continuous Compliance – Continuous Compliance Home

Delphix masking APIs – 687

•

•

•

1.

 }
}

11.1.2.7.2 Date replacement algorithm extension

minDate

String A date representing the minimum value that an input can be masked to. The range is inclusive of this
value.

maxDate

String A date representing the maximum value that an input can be masked to. The range is inclusive of this
value.

unit(default="SECONDS")

String A unit of time that determines what the output is truncated to. For example, when the unit is set to
days, the years, months, and days may change, but the hours, minutes, and seconds will always be 00:00:00.
Unit options supported by this framework: days, hours, minutes, and seconds.

11.1.2.8 Date shift

See Date Shift (see page 689) for more information about this algorithm framework.

11.1.2.8.1 Creating a date shift algorithm via API

Retrieve the frameworkIdfor the Date Shift Framework. This information can be retrieved using the
following endpoint:

algorithm GET /algorithm/frameworks

The framework information should look similar to the following:

{
 "frameworkId": 5,
 "frameworkName": "Date Shift",
 "frameworkType" : "LOCAL_DATE_TIME",
 "plugin" :
 {
 "pluginId" : 7,
 "pluginName" : "dlpx-core"
 }
}

Continuous Compliance – Continuous Compliance Home

Delphix masking APIs – 688

2.

•

•

•

•

Create a Date Shift algorithm via the following endpoint:

algorithm POST /algorithms

Configure a new algorithm using the JSON formatted input (see page 673) similar to the following:

{
 "algorithmName": "exampleDateShiftAlgorithm",
 "algorithmType": "COMPONENT",
 "frameworkId" : 5,
 "algorithmExtension" :
 {
 "minRange" : -3,
 "maxRange" : 3,
 "unit": "MINUTES",
 "roll": "false"
 }
}

11.1.2.8.2 Date shift algorithm extension

minRange

Integer A number representing the minimum range value from the input that the input can mask to. The
range is inclusive of this value and must be an integer value. Negative values represent units of time in the
past and positive values represent units of time in the future. Zero may be included in the range or as one of
the range values, but the input will not mask to the same value.

maxRange

Integer A number representing the maximum range value from the input that the input can mask to. The
range is inclusive of this value and must be an integer value. Negative values represent units of time in the
past and positive values represent units of time in the future. Zero may be included in the range or as one of
the range values, but the input will not mask to the same value.

unit(default="DAYS")

String A unit of time that determines what the range is expressed in. Only one unit of time can be specified
for each algorithm created. Masked values will be returned with the same granularity as the specified unit.
For example a range of 1-2 days will not return the same masked values as a range of 24-48 hours as a
range of 1-2 days will return a value with the hours, minutes, and seconds intact but a range of 24-48 hours
may return a value with a change in hours anywhere from 24 hours to 48 hours. Unit options supported by
this framework: years, months, days, hours, minutes, and seconds.

roll(default="false")

String A boolean that represents whether or not the specified time unit should roll which means that units of
time larger and smaller than the specified unit will remain the same. When set to false, there is no guarantee
that larger units of time remain the same. When set to true, all larger units of time will retain their same

Continuous Compliance – Continuous Compliance Home

Delphix masking APIs – 689

1.

2.

values and the specified unit may wrap around to the beginning. For example, a date at the end of March
may wrap around to the beginning of March while keeping all larger units of time and smaller units of time
intact. Unit options supported by this framework: months, days, hours, minutes, and seconds.

11.1.2.9 Dependent date shift

See Dependent Date Shift (see page 517) for more information about this algorithm framework.

11.1.2.9.1 Creating a Dependent Date Shift algorithm via API

Retrieve the frameworkIdfor the Dependent Date Shift Framework. This information can be retrieved
using the following endpoint:

algorithm GET /algorithm/frameworks

The framework information should look similar to the following:

{
 "frameworkId": 3,
 "frameworkName": "Dependent Date Shift",
 "frameworkType" : "GENERIC_DATA_ROW",
 "plugin" :
 {
 "pluginId" : 7,
 "pluginName" : "dlpx-core"
 }
}

Create a Dependent Date Shift algorithm via the following endpoint:

algorithm POST /algorithms

Configure a new algorithm using the JSON formatted input (see page 0) similar to the following:

{
 "algorithmName": "DependentDateShiftTest",
 "algorithmType": "COMPONENT",
 "createdBy": "admin",
 "description": "Test of the DependentDateShiftAlgo",
 "frameworkId": 3,
 "pluginId": 7,
 "fields": [
 {
 "fieldId": 1,

Continuous Compliance – Continuous Compliance Home

Delphix masking APIs – 690

•

•

•

•

•

 "name": "date1",
 "type": "LOCAL_DATE_TIME"
 },
 {
 "fieldId": 2,
 "name": "date2",
 "type": "LOCAL_DATE_TIME"
 }
],
 "algorithmExtension": {
 "roll": false,
 "unit": "DAYS",
 "maxRange": 5,
 "minRange": 3,
 "intervalRange": 2
 }
 }

11.1.2.9.2 Dependent Date Shift Algorithm extension

minRange

Integer This number represents the smallest number of time units that will be added to date1 when
masking. The range is inclusive of this value. Negative values represent units of time in the past and positive
values represent units of time in the future. If date1 is not provided, this is applied to date2.

maxRange

Integer This number represents the largest number of time units that will be added to date1 when masking.
The range is inclusive of this value. Negative values represent units of time in the past and positive values
represent units of time in the future. If date1 is not provided, this is applied to date2.

unit(default="DAYS")

String A unit of time that the range is expressed in. This unit is also used to determine the interval between
date1 and date2. Supported units include years, months, days, hours, minutes, and seconds.

roll(default="false")

String A boolean that represents whether or not the specified time unit should roll which means that units of
time larger and smaller than the specified unit will remain the same. When set to false, there is no guarantee
that larger units of time remain the same. Option only supported for months, days, hours, minutes, and
seconds. This applies when masking date1. If date1 is not provided, this is applied to date2

intervalRange

Integer A number representing the +/- range value to shift the interval inclusive of the range value. A value of
0 will not change the interval between dates. This number may not be less than 0. If the specified unit
difference between date1 and date2 is within the bound of the intervalRange, only values will be provided
such that the sign of the difference is preserved. For example, if the day difference between date1 and date2

Continuous Compliance – Continuous Compliance Home

Delphix masking APIs – 691

1.

a.

2.

is 2 and the specified intervalRange is 3, only values greater than -2 will be used (i.e.: -1 to 3). Otherwise, the
full range of values will be used (i.e.: -3 to 3).

11.1.2.10 Email

See Email (see page 520)for more information about this algorithm framework.

11.1.2.10.1 Creating an email algorithm via API

Retrieve the frameworkIdfor the Email Framework. This information can be retrieved using the
following endpoint:

algorithm GET /algorithm/frameworks

The framework information should look similar to the following:

{
 "frameworkId": 3,
 "frameworkName": "Email",
 "frameworkType": "STRING",
 "plugin": {
 "pluginId": 7,
 "pluginName": "dlpx-core",
 "pluginAuthor": "Delphix Engineering",
 "pluginType": "EXTENDED_ALGORITHM"
 }
}

Lookup files should be provided via File Reference. Files can be uploaded via the following
endpoint: fileUpload POST /file-uploads Alternatively, those files might also be provided via
HTTP / HTTPS / NFS mount URLs.

Create an Email algorithm via the following endpoint:

algorithm POST /algorithms

Configure a new algorithm using the JSON formatted input (see page 0) similar to the following:

{
 "algorithmName": "ExampleEmailAlgorithm",
 "algorithmType": "COMPONENT",
 "frameworkId": 3,
 "algorithmExtension": {
 "nameAction": "LOOKUP",
 "domainAction": "REPLACEMENT",

Continuous Compliance – Continuous Compliance Home

Delphix masking APIs – 692

•

•

•

•

•

•

 "nameAlgorithm": null,
 "nameLookupFile": {
 "uri": "delphix-file://upload/f_08bb469a2ddc407bb97a31e96ed0a76a/
lookup.txt"
 },
 "domainAlgorithm": null,
 "domainReplacementString": "delphix.com"
 }
}

11.1.2.10.2 Email algorithm extension

nameAction

NameAction The type of action to apply to the name portion of the email. Must be one of the following enum
values: - UNIQUE - applies a SHA-256 hash of the entire input then Base32 encodes the hash value - LOOKUP
- applies a secure lookup using the values provided in the lookup list - APPLY_ALGORITHM - the name
portion is replaced by the output of another chained masking algorithm

The UNIQUE option may produce masked name portions with lengths up to 52 characters.

domainAction

MaskAction The type of action to apply to the name portion of the email. Must be one of the following enum
values: - REPLACEMENT - the domain portion is replaced by a fixed value - APPLY_ALGORITHM - the domain
portion is replaced by the output of another chained masking algorithm

nameLookupFile

FileReference A file reference to a UTF-8 encoded file containing newline separated replacement values for
the name portion of the email.

nameAlgorithm

AlgorithmInstanceReference A reference for the algorithm to use when "APPLY_ALGORITHM" is the
NameAction type. The algorithm must have maskingType "STRING". The algorithm will never be passed a
null or empty value to mask. See AlgorithmInstanceReference Extension below for more information.

domainAlgorithm

AlgorithmInstanceReference A reference for the algorithm to use when "APPLY_ALGORITHM" is the
DomainAction type. The algorithm must have maskingType "STRING". The algorithm will never be passed a
null or empty value to mask. See AlgorithmInstanceReference Extension below for more information.

domainReplacementString

String
The string to replace the domain portion when "REPLACEMENT" is the DomainAction type.

Continuous Compliance – Continuous Compliance Home

Delphix masking APIs – 693

•

1.

2.

11.1.2.10.2.1 AlgorithmInstanceReference Extension

name

String The algorithm instance name.

11.1.2.11 Free text redaction

See Free Text Redaction (see page 523) for more information about this algorithm framework.

11.1.2.11.1 Creating a free text redaction algorithm via API

Retrieve the frameworkIdfor the Free Text Redaction Algorithm Framework. This information can be
retrieved using the following endpoint:

algorithm GET /algorithm/frameworks

The framework information should look similar to the following:

{
 "frameworkId": 8,
 "frameworkName": "Free Text Redaction",
 "frameworkType": "STRING",
 "plugin": {
 "pluginId": 7,
 "pluginName": "dlpx-core",
 "pluginAuthor": "Delphix Engineering",
 "pluginType": "EXTENDED_ALGORITHM"
 }
 }

Upload the Lookup File(if any) for the Free Text Redaction Algorithm Framework. It can be done using
the following endpoint:

fileUpload POST /file-uploads

The response with the reference UUID information should look similar to the following:

{
 "fileReferenceId": "delphix-file://upload/f_6426ea480db14c1ea9f83f7eb98f3c0e/
lookupFile.txt"
}

Continuous Compliance – Continuous Compliance Home

Delphix masking APIs – 694

3.

•

•

•

•

Create a Free Text Redaction Algorithm instance via the following endpoint:

algorithm POST /algorithms

Configure a new algorithm using the JSON formatted input (see page 0) similar to the following:

{
 "algorithmName": "Free Text Redaction for masking addresses and zip
codes",
 "algorithmType": "COMPONENT",
 "frameworkId": 8,
 "algorithmExtension": {
 "isDenyList": true,
 "lookupFile": {
 "uri": "delphix-file://upload/
f_6426ea480db14c1ea9f83f7eb98f3c0e/lookupFile.txt"
 },
 "lookupFileRedactValue": "redact_value1",
 "regularExpressions": [
 {
 "patternString": "a|A"
 },
 {
 "patternString": "[0-9]{5}"
 }
],
 "regExRedactValue": "redact_value2"
 }
 }

11.1.2.11.2 Free text redaction algorithm extension

isDenyList (required)

Boolean Deny list redaction if true, allow list redaction if false.

lookupFile (optional)

String The reference UUID value returned from the endpoint for uploading the lookup file to the Masking
Engine.

lookupFileRedactValue (optional)

String The value to use to redact items matching entries specified in the lookup file.

regExPatternList (optional)

array[patternString]

Continuous Compliance – Continuous Compliance Home

Delphix masking APIs – 695

•

•

1.

2.

3.

patternString(required)

String Java 8 style regular expression.

regExRedactValue (optional)

String The value to use to redact items matching regular expression patterns.

11.1.2.12 Full name

See Full Name (see page 526) for more information about this algorithm framework.

11.1.2.12.1 Creating a full name algorithm via API

Find the FrameworkId for the Extensible SL Framework. That might be done via the following
EndPoint:

algorithm GET /algorithm/frameworks

Plugin name is dlpx-core, the framework name is Full Name.

Involved algorithm references might be built using the name of the desired existing extensible String-
type algorithm. For example: "firstNameAlgorithmRef" : { "name" : "dlpx-core:FirstName" }

Create an Extensible Name Algorithm via the following EndPoint:

algorithm POST /algorithms

Using the JSON formatted input (see page 0), similar to the following example:

{
 "algorithmName": demo-FullName",
 "algorithmType": "COMPONENT",
 "description": "This is a new style FullName algorithm",
 "frameworkId" : 3,
 "algorithmExtension" :
 {
 "firstNameAlgorithmRef" : { "name" : "dlpx-core:FirstName" },
 "lastNameAlgorithmRef" : { "name" : "dlpx-core:LastName" },
 "maxLengthOfMaskedName" : 0,
 "ifSingleWordConsiderAsLastName" : true,
 “lastNameAtTheEnd” : true,
 "lastNameSeparators" : [","],
 "maxNumberFirstNames" : 2
 }
}

Continuous Compliance – Continuous Compliance Home

Delphix masking APIs – 696

•

•

•

•

•

•

•

Fields description:

"algorithmName" - customer created algorithm name

"algorithmType" - should be "COMPONENT" for Extensible Algorithms

"description" - free text

"frameworkId" - the numeric value found in #1 above

"algorithmExtension" - the composite field, containing algorithm instance specific configuration
parameters

11.1.2.12.2 Name algorithm extension

firstNameAlgorithmRef(required)

AlgorithmReferenceId Must be an Algorithm Reference, pointing to an existing extensible algorithm of String
type.

lastNameAlgorithmRef(required)

AlgorithmReferenceId Must be an Algorithm Reference, pointing to an existing extensible algorithm of String
type.

maxLengthOfMaskedName(optional, default=0)

Integer Should be a non-negative number. The output (masked) value is forcibly trimmed to that length (by
the number of characters).

ifSingleWordConsiderAsLastName(optional)

Boolean If true consider single input word as a last name, otherwise as a first name. Default: true

lastNameAtTheEnd(optional)

Boolean If true last name to be detected at the end of the input staring, otherwise last name is at the
beginning. Default: true

lastNameSeparators(optional)

List [Char] List of the last name separators. Default: contains single value: comma ','

maxNumberFirstNames(optional, default=2, minimum=1, maximum=4)

Integer Defines the max number of first and middle names to be masked. The rest would be ignored.

11.1.2.13 Mapping

See Mapping (see page 530) for more information about this algorithm framework.

Continuous Compliance – Continuous Compliance Home

Delphix masking APIs – 697

1.

2.

11.1.2.13.1 Creating a mapping algorithm via API

Retrieve the frameworkIdfor the Mapping Framework. This information can be retrieved using the
following endpoint:

algorithm GET /algorithm/frameworks

The framework information should look similar to the following:

{
 "frameworkId": 15,
 "frameworkName": "Mapping",
 "frameworkType" : "STRING",
 "plugin" :
 {
 "pluginId" : 7,
 "pluginName" : "dlpx-core"
 }
}

Create a Mapping algorithm instance via the following endpoint:

algorithm POST /algorithms

Configure a new algorithm using the JSON formatted input (see page 0) similar to the following:

{
 "algorithmName": "MyMappingAlgo",
 "algorithmType": "COMPONENT",
 "frameworkId": 15,
 "algorithmExtension": {
 "ignoreCharacters": [],
 "mappingSet": {
 "host": "mypostgreshost.mydomain.com",
 "port": 5432,
 "schema": "mySchema",
 "database": "myDb",
 "isRemote": true,
 "algorithmName": "mappingTestRemote",
 "propertiesRef": {
 "uri": "delphix-file://upload/f_6ce20b134d5c4891bf90ccf7bd22d9b1/
mapping.properties"
 }
 }
 }

Continuous Compliance – Continuous Compliance Home

Delphix masking APIs – 698

•

•

•

•

•

•

•

•

•

}

11.1.2.13.2 Mapping algorithm extension

ignoreCharacters (optional; minimum=32; maximum=126)

array[Integer] The integer ASCII values of characters to ignore in the column data to map

mappingSet (required)

mappingSet object An object that contains information about where the algorithm should find the mappings.
See below for object property details.

11.1.2.13.3 MappingSet object

algorithmName (required)

string The name of the algorithm this mappingSet corresponds to.

isRemote

boolean Indicates if the mappings to be used for this algorithm are on the Masking Engine or if they are
stored remotely. false if on the engine, true otherwise.

host

string The host where the mapping database is running. Must be provided if isRemote is set to true.

port

string The port to connect to the mapping database on the host. Must be provided if isRemote is set to true.

database

string The name of the mapping database. Must be provided if isRemote is set to true.

schema

string The schema where the mappings are. Must be provided if isRemote is set to true.

propertiesRef

The above is an example of a remote mapping algorithm. See the extension options below for
more information.



Continuous Compliance – Continuous Compliance Home

Delphix masking APIs – 699

1.

2.

string The reference UUID value returned from the endpoint for uploading files to the Masking Engine. The
file must be a properties file containing any further connection information for the database. Must be
provided if isRemote is set to true.

11.1.2.14 Min Max

See Min Max (see page 539) for more information about this algorithm framework.

11.1.2.14.1 Creating a MinMax algorithm via API

Retrieve the frame work Id for the Minmax Date or Minmax Number Algorithm Framework. This
information can be retrieved using the following endpoint:
algorithm GET /algorithm/frameworks

The framework information should look similar to the following:

{
 "frameworkId": 8,
 "frameworkName": "MinMax Date",
 "frameworkType": "LOCAL_DATE_TIME",
 "plugin": {
 "pluginId": 7,
 "pluginName": "dlpx-core",
 "pluginAuthor": "Delphix Engineering",
 "pluginType": "EXTENDED_ALGORITHM"
 }
 }

Or:

{
 "frameworkId": 15,
 "frameworkName": "MinMax Number",
 "frameworkType": "BIG_DECIMAL",
 "plugin": {
 "pluginId": 7,
 "pluginName": "dlpx-core",
 "pluginAuthor": "Delphix Engineering",
 "pluginType": "EXTENDED_ALGORITHM"
 }
 }

Create a Free Text Redaction Algorithm instance via the following endpoint:

algorithm POST /algorithms

Continuous Compliance – Continuous Compliance Home

Delphix masking APIs – 700

•

•

•

•

Configure a new algorithm using the JSON formatted input (see page 0) similar to the following (for
MinMax Date algorithm framework):

{
 "algorithmName": "MinMax Date algorithm for 2021 year",
 "algorithmType": "COMPONENT",
 "frameworkId": 8,
 "algorithmExtension": {
 "minDate": "2021-01-01 00:00:00",
 "maxDate": "2021-12-31 00:00:00",
 "nonConformingDataDefaultValue": "replacement_value1"
 }
 }

or the following (for MinMax Number algorithm framework):

{
 "algorithmName": "MinMax Number algorithm for normalizing age
range",
 "algorithmType": "COMPONENT",
 "frameworkId": 15,
 "algorithmExtension": {
 "minValue": 18,
 "maxValue": 65,
 "nonConformingDataDefaultValue": "replacement_value2"
 }
 }

11.1.2.14.2 Minmax algorithm extension

minValue (required)

Integer The minimum value for a Number range used in conjunction with maxValue. This field is used for
"MinMax Number" framework only.

maxValue (required)

Integer The maximum value for a Number range used in conjunction with and must be greater than
minValue. This field is used for "MinMax Number" framework only.

minDate (required)

date The minimum value for a Date range used in conjunction with maxDate. The Date must be specified in
the following format: "yyyy-MM-dd HH:mm:ss". The Date will be interpreted as UTC. This field is used for
"MinMax Date" framework only.

maxDate (required)

Continuous Compliance – Continuous Compliance Home

Delphix masking APIs – 701

•

•

•

•

date The maximum value for a Date range used in conjunction with and must be greater than minDate. The
Date must be specified in the following format: "yyyy-MM-dd HH:mm:ss". The Date will be interpreted as
UTC. This field is used for "MinMax Date" framework only.

nonConformingDataDefaultValue (optional)

String The default replacement value for any value that is triggering non conforming data event handling.
This field is only applicable when the underlying data to be masked is of type String and conversion to a
Date or a Number is required.

11.1.2.15 Name

See Name (see page 541)for more information about this algorithm framework.

11.1.2.15.1 Creating a name algorithm via API

Find the frameworkId for the Name Framework. This can be done via the following endpoint:

algorithm GET /algorithm/frameworks

The frameworkName is "Name" and the pluginName is "dlpx-core".

{
 "frameworkId": 10,
 "frameworkName": "Name",
 "frameworkType": "STRING",
 "description": "This Name algorithm masks input name (first or last)
using values from the supplied LookupFile",
 "plugin": {
 "pluginId": 7,
 "pluginName": "dlpx-core",
 "pluginAuthor": "Delphix Engineering",
 "pluginType": "EXTENDED_ALGORITHM"
 }

Involved files (lookupFile, particlesToRemoveFile, and particlesToPreserveFile) should be provided via
the File Reference. They can be uploaded via the following endpoint:

fileUpload POST /file-uploads

Alternatively, those files can also be provided via HTTP / HTTPS / NFS mount URLs.
Create an Extensible Name Algorithm via the following endpoint:

algorithm POST /algorithms

Using the JSON formatted input (see page 0), similar to the following example:

Continuous Compliance – Continuous Compliance Home

Delphix masking APIs – 702

•
•
•
•
•

•

•

•

{
 "algorithmName": "NameDemo",
 "algorithmType": "COMPONENT",
 "description": "This is a new style Name algorithm",
 "frameworkId": 10,
 "algorithmExtension": {
 "lookupFile": {
 "uri": "delphix-file://upload/f_85f082535d054ee8a11696a24ed86d65/
LN_LOOKUP_100K.txt"
 },
 "particlesToRemoveFile": {
 "uri": "delphix-file://upload/f_1cc829ceee324113ab16c4e750dfce12/
particlesToRemove.txt"
 },
 "particlesToPreserveFile": {
 "uri": "delphix-file://upload/f_1cc829ceee324113ab16c4e750dfce12/
particlesToPreserve.txt"
 },
 "inputCaseSensitive": false,
 "filterAccent": true,
 "maskedValueCase": "PRESERVE_LOOKUP_FILE",
 "maxLengthOfMaskedName": 0,
 "maxNumberNames": 2
 }
}

Fields description:

"algorithmName": User-defined algorithm name.
"algorithmType": Should be "COMPONENT" for Extensible Algorithms.
"description": User-defined, free text field.
"frameworkId": Numeric ID for the framework, provided in line #2 and #5 in the above excerpts.
"algorithmExtension": The composite field, containing algorithm instance specific configuration
parameters.

11.1.2.15.2 Name algorithm extension

lookupFile (required)

String Lookup file may be FileReferenceId in the one of the following four options: - UUID value returned
from the endpoint for uploading file to the Masking Engine - NFS mounted file URL - HTTP URL to external
web located file - HTTPS URL to external web located file

particlesToRemoveFile (optional)

String File listing particles to remove may be FileReferenceId in the one of the following four options: - UUID
value returned from the endpoint for uploading file to the Masking Engine - NFS mounted file URL - HTTP
URL to external web located file - HTTPS URL to external web located file

particlesToPreserveFile (optional)

Continuous Compliance – Continuous Compliance Home

Delphix masking APIs – 703

•

•

•

•

•

1.

String File listing particles to preserve may be FileReferenceId in the one of the following four options: - UUID
value returned from the endpoint for uploading file to the Masking Engine - NFS mounted file URL - HTTP
URL to external web located file - HTTPS URL to external web located file

inputCaseSensitive (optional, default=false)

Boolean Setting "true" means input value case matter (i.e. "Peter" and "peter" might be masked to different
values). Setting "false" (default) makes input value case insensitive ("Peter" and "peter" would be masked to
the same value).

filterAccent (optional, default=true)

Boolean
Setting "true" (default) means accented characters don’t matter - similar input with and without accented
characters are masked to the same values ("Adrián" and "Adrian" both mask to "John").
Setting "false" makes the input value accent sensitive ("Adrián" and "Adrian" would be masked to different
values).

maskedValueCase (optional, default="PRESERVE_INPUT")

String The output (masked) value case enforcing. Enum values: - PRESERVE_LOOKUP_FILE - use the
unmodified replacement value.
- PRESERVE_INPUT - preserve case of input value. If mixed, use unmodified replacement value.
- ALL_LOWER - force the output to lowercase. - ALL_UPPER - force the output to uppercase.

maxLengthOfMaskedName (optional, default=0)

Integer Should be a non-negative number. The output (masked) value is forcibly trimmed to that length (by
the number of characters).

maxNumberNames (optional, default=2, minimum=1, maximum=4)

Integer

Defines the max number of names to be masked and returned. The rest are removed.

11.1.2.16 Numeric expression

See Numeric Expression (see page 545) for more information about this algorithm framework.

11.1.2.16.1 Creating a numeric expression algorithm via API

Retrieve the frameworkIdfor the Numeric Expression Framework. This information can be retrieved
using the following endpoint:

algorithm GET /algorithm/frameworks

The framework information should look similar to the following:

Continuous Compliance – Continuous Compliance Home

Delphix masking APIs – 704

2.

•

{
 "frameworkId": 26,
 "frameworkName": "Numeric Expression",
 "frameworkType": "BIG_DECIMAL",
 "description": "Numeric Expression masks input by ... [truncated for
brevity].",
 "plugin": {
 "pluginId": 7,
 "pluginName": "dlpx-core",
 "pluginAuthor": "Delphix Engineering",
 "pluginType": "EXTENDED_ALGORITHM"
 }
}

Create a Numeric Expression algorithm instance via the following endpoint:

algorithm POST /algorithms

Configure a new algorithm using the JSON formatted input (see page 0) similar to the following:

{
 "algorithmName": "NumericExpressionTest",
 "algorithmType": "COMPONENT",
 "frameworkId": 26,
 "algorithmExtension": {
 "expression": "Math.floor(((input * randomPercentage) * 100.0) + 0.5) /
100.0",
 "inputType": "DOUBLE",
 "constants": [
 {
 "name": "randomPercentage",
 "value": "new java.util.Random(seed).doubles(0.1,
0.9).iterator().nextDouble()"
 }
],
 "nonConformingDataDefaultValue": "100.0"
 }
}

11.1.2.16.2 Numeric expression algorithm extension

expression

String One-line mathematical expression written in the Java programming language that references input

(the current unmasked value), e.g. input * 0.5 or input + Math.random() .

Continuous Compliance – Continuous Compliance Home

Delphix masking APIs – 705

•

•

•

•

•

1.

inputType

String ENUM(DOUBLE, LONG, BIG_DECIMAL) Data type that input conforms to within the expression.

DOUBLE (default) is double-precision floating point, LONG is long integer, and BIG_DECIMAL is

java.math.BigDecimal object.

constants(optional)

array[Constant] An array of Constant objects. Constants are variables that the expression can reference
by name and whose values remain fixed for the life of a masking job. Constants can reference by name
other constants defined before them.

nonConformingDataDefaultValue(optional)

String Default masked value to be used if the unmasked input is not a numeric data type and can't
automatically be converted to one.

11.1.2.16.2.1 Constant

name

String Must be valid Java variable name. No two constants can have the same name, nor can "input" or
"seed" be used as a constant name.

value

String One-line Java expression that must return a value, which is not required to be numeric.

11.1.2.17 Payment card

See Payment Card (see page 552) for more information about this algorithm framework.

11.1.2.17.1 Creating a payment card algorithm via API

Retrieve the frameworkIdfor the Payment Framework. This information can be retrieved using the
following endpoint:

algorithm GET /algorithm/frameworks

The framework information should look similar to the following:

{
 "frameworkId": 4,
 "frameworkName": "Payment Card",

Continuous Compliance – Continuous Compliance Home

Delphix masking APIs – 706

2.

•

•

 "frameworkType" : "STRING",
 "plugin" :
 {
 "pluginId" : 7,
 "pluginName" : "dlpx-core"
 }
}

Create a Payment Card algorithm via the following endpoint:

algorithm POST /algorithms

Configure a new algorithm using the JSON formatted input (see page 0) similar to the following:

{
 "algorithmName": "examplePaymentCardAlgorithm",
 "algorithmType": "COMPONENT",
 "frameworkId" : 4,
 "algorithmExtension" :
 {
 "minMaskedPositions" : 7,
 "preserve" : 4
 }
}

11.1.2.17.2 Payment card algorithm extension

minMaskedPositions(default=1, minValue=0, maxValue=32)

Integer A value that represents the minimum number of positions that must be replaced for masking to be
considered successful. A non-conformant data error is thrown when fewer positions are masked. The
minimum value for this field is 0 and the default value is 1. The maximum value is 32.

preserve(default=0, minValue=0, maxValue=32)

Integer A value that represents the number of maskable characters to preserve at the beginning of the input.
Only maskable characters are considered when determining whether a position is preserved. The minimum
value for this field is 0 and the default value is 0. The maximum value is 32.

11.1.2.18 Regex decompose

See Regex Decompose (see page 554) for more information about this algorithm framework.

Continuous Compliance – Continuous Compliance Home

Delphix masking APIs – 707

1.

2.

11.1.2.18.1 Creating a regex decompose algorithm via API

Retrieve the frameworkIdfor the Regex Decompose Framework. This information can be retrieved
using the following endpoint:

algorithm GET /algorithm/frameworks

The framework information should look similar to the following:

{
 "frameworkId": 5,
 "frameworkName": "Regex Decompose",
 "frameworkType": "STRING",
 "plugin": {
 "pluginId": 7,
 "pluginName": "dlpx-core",
 "pluginAuthor": "Delphix Engineering",
 "pluginType": "EXTENDED_ALGORITHM"
 }
}

Create a Regex Decompose algorithm via the following endpoint:

algorithm POST /algorithms

Configure a new algorithm using the JSON formatted input (see page 0) similar to the following:

{
 "algorithmName": "ExampleRegexDecomposeAlgorithm",
 "algorithmType": "COMPONENT",
 "frameworkId": 5,
 "algorithmExtension": {
 "trimInput": true,
 "requireMask": false,
 "maskPatterns": [
 {
 "regex": "([0-9]+)-([a-z]+)",
 "actions": [
 {
 "type": "REDACT",
 "algorithm": null,
 "redactString": "asdf",
 "redactCharacter": null
 },
 {

Continuous Compliance – Continuous Compliance Home

Delphix masking APIs – 708

•

•

•

•

•

•

 "type": "APPLY_ALGORITHM",
 "algorithm": { "name": "dlpx-core:CM Alpha-Numeric" }
 }
]
 }
],
 "fallbackAction": null,
 "maxInputLength": 65536
 }
}

11.1.2.18.2 Regex decompose algorithm extension

maskPatterns

Array of MaskPattern objects Defines the mask pattern(s) of the algorithm. See Regex Decompose
MaskPattern Extension below for more information.

fallbackAction

MaskAction The action that should be applied to the entire input if none of the defined regular expressions
match. If no pattern matches and no fallbackAction is set, non-conformant data handling will be triggered.
See Regex Decompose MaskAction Extension below for more information.

requireMask (default="true")

String A boolean that represents whether the input must be masked. When this is true, patterns are matched
until one changes the input. If no pattern can change the input and no fallbackAction is set, non-conformant
data handling will be triggered for this value. If false, the first matching pattern will apply regardless of
whether it changes the input. Any difference in value from the input is considered successful masking.

trimInput (default="true")

String A boolean that represents whether to trim whitespace from the beginning and end of the input prior to
processing. The same leading and trailing whitespace will be reintroduced into the masked value. This
option is provided to simplify the regular expressions that can be used in maskPatterns, as they no longer
must account for and preserve leading and trailing whitespace.

maxInputLength (default=65536, minValue=1)

Integer A value that represents the maximum character length of input the algorithm will attempt to process.
If the input length exceeds this value, non-conformant data handling will be triggered for this value.

11.1.2.18.2.1 Regex decompose maskpattern extension

regex

String A Java 8 style regular expression used to match the masking input.

Continuous Compliance – Continuous Compliance Home

Delphix masking APIs – 709

•

•

•

•

•

1.

actions

Array of MaskAction objects Defines the action(s) to be applied to the match or capturing group(s) when the
regular expression matches. See Regex Decompose MaskAction Extension below for more information.

11.1.2.18.2.2 Regex decompose mask action extension

type

String The type of action to the input that matches the regex. Must be one of the following enum values: -
PRESERVE - the value or capturing group is not masked and remains unchanged - TRUNCATE - the value or
capturing group is replaced with "" - REDACT - the value or capturing group is replaced by a value or
repeated character - APPLY_ALGORITHM - the value or capturing group is replaced by the output of another
chained masking algorithm

algorithm

AlgorithmInstanceReference A reference for the algorithm to use when "APPLY_ALGORITHM" is the
MaskAction type. The algorithm must have maskingType "STRING". The algorithm will never be passed a
null or empty value to mask. The algorithm’s name attribute should specify the algorithm’s name exactly as
it would be returned from a call to the API’s GET /algorithms endpoint, e.g.

"algorithm": { "name": "dlpx-core:CM Alpha-Numeric" }

redactCharacter

String The character to use to replace the input when "REDACT" is the MaskAction type. Each character in
the portion of input matched is replaced with this character. Length of the matched input is preserved. Only
one of redactCharacter or redactString may be specified for a given MaskAction.

redactString

String The string to use to replace the input when "REDACT" is the MaskAction type. The entire matched
portion is replaced with this string. Use of this option will cause the length of the value to change during
masking unless the matched portion of input happens to have the same length of the redactString. Only one
of redactCharacter or redactString may be specified for a given MaskAction.

11.1.2.19 Secure lookup

See Secure Lookup (see page 556) for more information about this algorithm framework.

11.1.2.19.1 Creating a secure lookup algorithm via API

Find the frameworkId for the Extensible SL Framework. This can be done via the following endpoint:

algorithm GET /algorithm/frameworks

Continuous Compliance – Continuous Compliance Home

Delphix masking APIs – 710

2.

3.

•

•

•

•

•

1.

Plugin name is dlpx-core, the framework name is Secure Lookup.

Upload Lookup File via the following endpoint:

fileUpload POST /file-uploads

Alternatively, the Lookup File might also be provided via HTTP / HTTPS / NFS mount URLs.

Create an Extensible SL Algorithm via the following endpoint:

algorithm POST /algorithms

Using the JSON formatted input (see page 0), similar to the following example:

{
 "algorithmName": "demoExtendedSL",
 "algorithmType": "COMPONENT",
 "frameworkId" : 1,
 "algorithmExtension" :
 {
 "lookupFile" : {
 "uri":"delphix-file://upload/f_7984ee9672b44e309f7ef5940f856e7c/
ColorsLF.txt"
 },
 "inputCaseSensitive" : true,
 "maskedValueCase" : "ALL_LOWER",
 "hashMethod" : "SHA256"
 }
}

Fields description:

"algorithmName": customer created algorithm name

"algorithmType": should be "COMPONENT" for Extensible Algorithms

"description": free text

"frameworkId": the numeric value found in #1 above

"algorithmExtension": the composite field, containing algorithm instance specific
configuration parameters

11.1.2.19.2 Exporting secure lookup values via API

Secure lookup values can now be exported from algorithms. These values can only be exported from
algorithms of type LOOKUP or type COMPONENT where the framework name is Secure Lookup.

Find the algorithmCd of the algorithm instance to retrieve the values from. This may be done via the
following endpoint:

Continuous Compliance – Continuous Compliance Home

Delphix masking APIs – 711

2.

3.

4.

•

•

•

algorithm GET /algorithms

Use the following endpoint to export the lookup values:

algorithm POST /algorithms/{algorithmName}/export-lookup-values

Info:
Lookup values cannot be exported from algorithms where the lookup values are provided via MOUNT
or via HTTP/HTTPS.

A response similar to the following will be returned:

{
 "asyncTaskId": 55,
 "operation": "EXPORT_SL_VALUES",
 "reference": "EXPORT_SL_VALUES-c2VjdXJlbG9va3VwX2NNSGdZc2FQLnR4dA==",
 "status": "WAITING",
 "cancellable": false
}

Retrieve the "reference" from the response body in the previous step and use this value as the
fileDownloadId for the following endpoint:

fileDownload GET /file-downloads/{fileDownloadId}

The response will contain the exported lookup values. Values will be returned in a plaintext file with
newline-separated values.

11.1.2.19.3 Secure Lookup algorithm extension

lookupFile (maxLength=255)

String Lookup file may be one of the following four options: - UUID value returned from the endpoint for
uploading file to the Masking Engine - NFS mounted file URL - HTTP URL to external web located file -
HTTPS URL to external web located file

inputCaseSensitive (optional, default=false)

Boolean Setting "true" means input value case matter (i.e. "Peter" and "peter" might be masked to different
values) Setting "false" (default) makes input value case-insensitive ("Peter" and "peter" would be masked to
the same value)

maskedValueCase (optional, default="PRESERVE_LOOKUP_FILE")

String The output (masked) value case enforcing. Enum values: - PRESERVE_LOOKUP_FILE - use the
unmodified replacement value (default). - PRESERVE_INPUT - preserve case of input value. If mixed - use

Continuous Compliance – Continuous Compliance Home

Delphix masking APIs – 712

•

1.

2.

unmodified replacement value. - ALL_LOWER - force the output to lowercase. - ALL_UPPER - force the output
to uppercase.

hashMethod (optional, default="SHA256")

String The hash method used to select replacement values. Must be one of the following enum values: -
SHA256 - the default hash method for extensible secure lookup - LEGACY - hash method used to mimic the
legacy secure lookup behavior in the extensibility framework

11.1.2.20 Segment mapping

See Segment Mapping (see page 558) for more information about this algorithm framework.

11.1.2.20.1 Creating a segment mapping algorithm via API

Retrieve the frameworkIdfor the Segment Mapping Framework. This information can be retrieved
using the following endpoint:

algorithm GET /algorithm/frameworks

The framework information should look similar to the following:

{
 "frameworkId": 6,
 "frameworkName": "Segment Mapping",
 "frameworkType": "STRING",
 "description": "The Segment Mapping Algorithm will ... [truncated for
brevity].",
 "plugin": {
 "pluginId": 7,
 "pluginName": "dlpx-core",
 "pluginAuthor": "Delphix Engineering",
 "pluginType": "EXTENDED_ALGORITHM"
 }
}

Create a Segment Mapping algorithm instance via the following endpoint:

algorithm POST /algorithms

Configure a new algorithm using the JSON formatted input (see page 0) similar to the following:

{
 "algorithmName": "SegmentMappingTest",

Continuous Compliance – Continuous Compliance Home

Delphix masking APIs – 713

•

•

•

•

 "algorithmType": "COMPONENT",
 "frameworkId": 6,
 "algorithmExtension": {
 "segments": [
 {
 "length": 4,
 "segmentType": "MASK_NUMERIC",
 "inputValues": null,
 "maskValues": null
 },
 {
 "length": 1,
 "segmentType": "PRESERVE"
 },
 {
 "length": 2,
 "segmentType": "MASK_ALPHANUMERIC",
 "inputValues": "A,B,C,F-G",
 "maskValues": "Q-S,X,Y,Z"
 }
],
 "ignoreCharacters": [],
 "autoIgnoreCharacters": true,
 "allowShortSegments": false,
 "processPreserveBeforeIgnore": false
 }
}

11.1.2.20.2 Segment mapping algorithm extension

segments (required, minimum=1, maximum=10)

Array of Segment objects A list of Segment Mapping Segments defining the masking behavior in order. See
Segment Mapping Segment Extension (see page 712) below for more information.

ignoreCharacters (optional)

Array of Integers A list of integer ASCII values of characters to ignore. For example, [44, 65] would
ignore commas and the letter 'A'. These are removed from input value before masking and restored to their
original positions after masking.

autoIgnoreCharacters (default=false)

Boolean Whether or not to ignore all non alpha-numeric characters. Use this as an alternative to specifying
individual characters in ignoreCharacters.

allowShortSegments (default=false)

Boolean Whether or not to allow masking of short MASK_NUMERIC segments. When set to false, a
MASK_NUMERIC segment cannot be masked if it is shorter than the defined segment length. If a short
MASK_NUMERIC segment is encountered, a NonConformantDataException will be triggered. When set to

Continuous Compliance – Continuous Compliance Home

Delphix masking APIs – 714

•

•

•

•

•

true, a short MASK_NUMERIC segment may be masked. Note: If set to true and a MASK_NUMERIC segment
is defined, the algorithm is not reversible and cannot be used for tokenization/re-identification.

processPreserveBeforeIgnore (default=false)

Boolean Whether or not to process PRESERVE segments before removing ignore characters. When set to
false, ignore characters are removed from the input string first, and then all segments are processed in the
order in which they are defined. When set to true, PRESERVE segment are processed first, before removing
ignore characters, so the preserved segment positions are based on the original input string, which may
include ignore characters. Afterwards, ignore characters are removed and the remaining string is masked
according to the other segment definitions. Setting this to true is not recommended, as it may cause some
segments to be processed out of order.

11.1.2.20.2.1 Segment mapping segment extension

length (required, minimum=1, maximum=6)

Integer The length of the segment in characters.

segmentType (required)

String The masking behavior for this segment. Enum values: - MASK_ALPHANUMERIC - mask letters to
letters and digits to digits. Mappings are configured for each character position independently (e.g. AA ->
GC, 'A' does not always mask to the same letter at each position) - MASK_NUMERIC - mask the entire
segment as a single integer value to another integer value - PRESERVE - do not mask this segment -
CONSTANT - mask any input value to a constant value

inputValues

String Defines the input values to mask in this segment, provided as either individual values, ranges, or a
combination thereof. This field is optional for MASK_ALPHANUMERIC and MASK_NUMERIC, and if left blank
or omitted (null), the default value ranges are used. This field is not used for PRESERVE or CONSTANT. For a
MASK_ALPHANUMERIC segment, the default value range is '0-9,A-Z'. You can specify something like 'A-
F,P,R,1-5,7,9'. For a MASK_NUMERIC segment, the default value range is 0 to the max integer that can fit into
the segment length (ex: 000-999 for a segment of length 3). You can specify integer values and ranges, like
'10,30,50-875'. The masking will only look to mask these values and will preserve any other values.

maskValues

String Defines the values to mask to for this segment. This is defined the same way as inputValues and has
the same default value ranges. This field is optional for MASK_ALPHANUMERIC and MASK_NUMERIC, and if
left blank or omitted (null), the default value ranges are used. This field is required for CONSTANT and not
used for PRESERVE. Note: if the inputValues and maskValues are not the same, then the algorithm is not
reversible and cannot be used for tokenization/re-identification.

11.1.2.21 Tokenization

See Tokenization (see page 564)for more information about this algorithm framework.

Continuous Compliance – Continuous Compliance Home

Delphix masking APIs – 715

1.

2.

•

11.1.2.21.1 Creating a tokenization algorithm via API

Retrieve the frameworkIdfor the Tokenization Framework. This information can be retrieved using the
following endpoint:

algorithm GET /algorithm/frameworks

The framework information should look similar to the following:

{
 "frameworkId": 13,
 "frameworkName": "Tokenization",
 "frameworkType": "STRING",
 "plugin": {
 "pluginId": 7,
 "pluginName": "dlpx-core",
 "pluginAuthor": "Delphix Engineering",
 "pluginType": "EXTENDED_ALGORITHM"
 }
}

Create a Tokenization algorithm instance via the following endpoint:
algorithm POST /algorithms

Configure a new algorithm using the JSON formatted input (see page 0) similar to the following:

{
 "algorithmName": "exampleTokenization",
 "algorithmType": "COMPONENT",
 "frameworkId": 13,
 "algorithmExtension": {
 "ivLength": 16,
 "fallback": "CHARACTER_MAPPING",
 "cmCharacterGroups": [
 "[A-Za-z0-9+/]"
],
 "cmMinMaskedPositions": 1
 }
}

11.1.2.21.2 Tokenization algorithm extension

ivLength(default=16, minimum=0, maximum=16)

Continuous Compliance – Continuous Compliance Home

Delphix masking APIs – 716

•

•

•

1.

2.

3.

4.

Integer The length of the initialization vector (IV) used for AES in CBC-CTS mode. The default length is 16,
which offers the most security. The tradeoff is that this increases the length of the masked result. Selecting
a lower IV length decreases the length of the masked result. It is recommended that you only select an IV
length of 0 if you require the masked value for each input to be consistent between jobs and for the same
input to only mask to one output.

fallback(required, no default)

String This specifies how to handle masking a value where the encrypted result does not fit in the column
size. If an AES encrypted result is too long to fit into the field, there are two fallback options: - NONE - the job
fails if the masked result is too long - CHARACTER_MAPPING - the Character Mapping algorithm is used to
tokenize the value, which produces a result that is the same length as the input

11.1.2.21.2.1 Extension for Character Mapping fallback

cmCharacterGroups(default=["[A-Za-z0-9+/]"])

Array of Strings A list of String values defining the characters to be masked. Each group must be either: - a
Java regex style character group beginning with '[' - a String of the literal characters that comprise the group.

Duplication of characters within or among groups is not permitted.

cmMinMaskedPositions(default=1, minimum=0)

Integer The minimum number of positions that must be replaced for masking to be considered successful.
Non-conformant data handling is triggered whenever fewer positions are masked. Inputs containing only
whitespace never trigger non-conformant data handling.

11.1.3 API calls for managing extended connectors

11.1.3.1 Introduction

This section details how to manage extended database connectors, including how to manage driver support
tasks on a masking job.

Installing a driver support plugin (see page 717)

Installing a JDBC driver (see page 719)

Creating an extended database connector (see page 720)

Managing masking job driver support tasks (see page 738)

Installing a JDBC driver with a driver support is only possible via the web API.

Continuous Compliance – Continuous Compliance Home

Delphix masking APIs – 717

1.

2.

1.

2.

3.

4.

11.1.3.2 Installing a driver support plugin

11.1.3.2.1 Install driver support jar on masking engine

Select POST /file-uploads

Click "Choose File" and select desired driver support jar

The response will look similar to the following with a return status of 200:

{
 "fileReferenceId": "delphix-file://upload/f_xxxx/sampleDriverSupport.jar"
}

11.1.3.2.2 Create driver support plugin

Select POST /plugins

fileReferenceId: delphix-file://upload/f_xxxx/sampleDriverSupport.jar

pluginName: whatever desired name

pluginType: DRIVER_SUPPORT

The response will look similar to the following with a return status of 200:

{
 "pluginId": 9,
 "pluginName": "Sample Plugin",
 "pluginAuthor": "Sample Plugin Author",
 "pluginType": "DRIVER_SUPPORT",
 "originalFileName": "driverSupport.jar",
 "originalFileChecksum":
"f8398c0768ecf7709c6992b3f048f9da8be640285b3ccc968973949ca3cceb02",
 "installDate": "2021-04-21T15:29:01.982+00:00",
 "installUser": 5,
 "builtIn": false,
 "pluginVersion": "1.5.0",
 "pluginObjects": [
 {
 "objectIdentifier": "1",
 "objectName": "Disable Constraints",
 "objectType": "DRIVER_SUPPORT_TASK"
 },
 {
 "objectIdentifier": "2",
 "objectName": "Disable Triggers",

Continuous Compliance – Continuous Compliance Home

Delphix masking APIs – 718

1.

2.

 "objectType": "DRIVER_SUPPORT_TASK"
 },
 {
 "objectIdentifier": "3",
 "objectName": "Drop Indexes",
 "objectType": "DRIVER_SUPPORT_TASK"
 }
]
}

11.1.3.2.3 Create JDBC driver that uses driver support plugin

Select POST /jdbc-drivers (or PUT /jdbc-drivers/{jdbcDriverId} to update existing
JDBC driver)

Form the request body as follows:

{
 "driverName": "HANA driver",
 "driverClassName": "com.sap.db.jdbc.Driver",
 "fileReferenceId": "delphix-file://upload/f_xxxx/sampleJdbcDriver.zip",
 "driverSupportId": 9
}

The response will look similar to the following with a return status of 200:

{
 "jdbcDriverId": 8,
 "driverName": "HANA driver",
 "driverClassName": "com.sap.db.jdbc.Driver",
 "version": "2.4",
 "uploadedBy": "admin",
 "uploadDate": "2021-04-27T20:34:47.748+00:00",
 "checksum": "a5b7cf1323b71398e68fd583cd4f40ef8a5f4212ae94b63e95c904ed226d4c7b",
 "builtIn": false,
 "loggerInstalled": true,
 "driverSupportId": 9
}

The objectIdentifier field refers to the ID of the task. Specifying the ID of the tasks is

required to enable/disable tasks (see page 738) on a masking job. objectIdentifier (task ID)
has no bearing on the task execution order. The task order is determined by the order the tasks
are added to getTasks in the Driver Support Plugin implementation. (see page 831)



Continuous Compliance – Continuous Compliance Home

Delphix masking APIs – 719

1.

2.

1.

2.

11.1.3.3 Installing a JDBC driver

11.1.3.3.1 Install JDBC driver zip on masking engine

Select POST /file-uploads

Click "Choose File" and select desired JDBC driver zip

The response will look similar to the following with a return status of 200:

{
 "fileReferenceId": "delphix-file://upload/f_xxxx/sampleJdbcDriver.zip"
}

11.1.3.3.2 Create JDBC driver without driver support

Select POST /jdbc-drivers

Format the request body as follows:

{
 "driverName": "HANA driver",
 "driverClassName": "com.sap.db.jdbc.Driver",
 "fileReferenceId": "delphix-file://upload/f_xxxx/sampleJdbcDriver.zip",
}

The response will look similar to the following with a return status of 200:

If the referenced driver support plugin is being used by existing masking jobs that have tasks
enabled, extra validation is performed. In the case of updating a driver support plugin or updating
a JDBC driver to use a different driver support, the driver support plugin must implement all
enabled tasks on any existing masking job. If the other driver support does not implement all
enabled tasks, the update will fail. In the case of deleting a driver support plugin, the delete will
fail if the driver support plugin is being used by any existing masking jobs that have tasks
enabled.



Note that you can also install a JDBC driver via the UI (see page 0).

Continuous Compliance – Continuous Compliance Home

Delphix masking APIs – 720

1.

2.

{
 "jdbcDriverId": 8,
 "driverName": "HANA driver",
 "driverClassName": "com.sap.db.jdbc.Driver",
 "version": "2.4",
 "uploadedBy": "admin",
 "uploadDate": "2021-04-27T20:34:47.748+00:00",
 "checksum": "a5b7cf1323b71398e68fd583cd4f40ef8a5f4212ae94b63e95c904ed226d4c7b",
 "builtIn": false,
 "loggerInstalled": true,
}

11.1.3.3.3 Create JDBC driver with driver support

To create a JDBC driver with driver support, follow the same process, but add driverSupportId to the
request body. This is used to specify the ID of the driver support plugin to associate with the JDBC driver.

11.1.3.4 Creating an extended database connector

11.1.3.4.1 Creating an extended database connector

Select POST /database-connectors

Format response body as follows:

{
 "connectorName": "hana db",
 "databaseType": "EXTENDED",
 "environmentId": 1,
 "jdbc": "JDBC_SERVER_URL",

If the JDBC driver's referenced driver support plugin tasks are enabled on any existing masking
job, validation on update is done in order to prevent changing the driver support plugin to another
one unless it implements all enabled tasks. If the other driver support does not implement all
enabled tasks, the update will fail.



This assumes an application and environment already exists, to which you can add this extended
connector.



Continuous Compliance – Continuous Compliance Home

Delphix masking APIs – 721

 "username": "USERNAME",
 "password": "PASSWORD",
 "kerberosAuth": false,
 "jdbcDriverId": 7,
 "enableLogger": false
}

The response will look similar to the following with a return status of 200:

{
 "databaseConnectorId": 1,
 "connectorName": "hana db",
 "databaseType": "EXTENDED",
 "environmentId": 1,
 "jdbc": "JDBC_SERVER_URL",
 "username": "USERNAME",
 "kerberosAuth": false,
 "jdbcDriverId": 7,
 "enableLogger": false
}

11.1.3.5 Managing masking job driver support tasks

For information on managing masking driver support tasks, see API Calls for Managing Masking Job Driver
Support Tasks. (see page 738)

11.1.4 API calls for ASDD profile set import and export

A profile set defines the set of classifiers or expressions that will be used to identify sensitive information in
the rule set when a profiling job is run. Refer to Discovering your sensitive data (see page 382) for an overview
of profile sets and related concepts. More information about ASDD profile set import and export can be
found in the ASDD profile set import and export article (see page 457). More information about configuring
profile sets can be found in the Configuring Profile Sets article (see page 440).

In order to perform ASDD profile set import and export using the API client, you should have some familiarity
with REST APIs and JSON data encoding. Access the API Client, as described in the Masking API Client (see
page 658) section, and authenticate by pressing the Authorize button at the upper right part of the screen.

The ASDD profile set import and export endpoints utilize the file upload and download endpoints,
respectively.

The generated curl command for file upload and download visible in the API client is incorrect If
using curl over the API client is desired, see API calls involving file upload and download (see page

752) for more information on how to format file upload and download curl requests correctly.

Continuous Compliance – Continuous Compliance Home

Delphix masking APIs – 722

1.

2.

11.1.4.1 ASDD profile set import

Import requires two API calls:

POST /file-upload (under fileUpload)

POST /configuration-install (under configuration)

These API path's purposes are as expected based on the path and operation; the purpose of POST /file-
upload is to upload the profile set configuration zip file to the engine file system, and the purpose of POST /
configuration-install is to unpack the zip file and import the profile set configuration onto the engine.

11.1.4.1.1 Example

In this example, a new profile set is configured that has a new domain and a few classifiers (one PATH
classifier, one LIST and one TYPE). The content of the Standard.json file is as follows:

{

Continuous Compliance – Continuous Compliance Home

Delphix masking APIs – 723

 "profileSetName": "Custom ASDD Profile Set",
 "domains": [
 {
 "domain": "CUSTOM_PII",
 "maskingAlgorithmName": "dlpx-core:CM Alpha-Numeric"
 }
],
 "classifiers": [
 {
 "domain": "CUSTOM_PII",
 "name": "Capital - Path",
 "type": "PATH",
 "properties": {
 "paths": [
 {
 "allowPartialMatch": true,
 "caseSensitive": false,
 "fieldValue": "(?i)capital",
 "matchStrength": 0.67,
 "matchType": "REGEX",
 "parentValue": ""
 },
 {
 "allowPartialMatch": true,
 "caseSensitive": false,
 "fieldValue": "(?i)capital[_-]?(city)?",
 "matchStrength": 0.5,
 "matchType": "REGEX",
 "parentValue": ""
 }
],
 "rejectStrength": 0.0
 }
 },
 {
 "domain": "CUSTOM_PII",
 "name": "Capital - Type",
 "type": "TYPE",
 "properties": {
 "allowedTypes": [
 {
 "minimumLength": 10,
 "typeName": "String"
 }
],
 "matchAutoIncrementingColumn": false
 }
 },
 {
 "domain": "CUSTOM_PII",
 "name": "Capitals - List",
 "type": "LIST",

Continuous Compliance – Continuous Compliance Home

Delphix masking APIs – 724

1.

2.

 "properties": {
 "rejectStrength": 0.5,
 "valueLists": [
 {
 "file": "file://de_capitals.txt",
 "matchStrength": 1.0
 }
]
 }
 }
]
}

The above profile set configuration file (Standard.json) and the file used by the LIST classifier
(de_capitals.txt) are contained in a zip file that is uploaded to the engine filesystem via POST /file-upload
(with the default permanent query parameter value of false). The API response is:

{
 "fileReferenceId": "delphix-file://upload/f_8f90c13fb1b9434abdbe871da894a2a8/
custom_profile_set_1.zip",
 "filename": "custom_profile_set_1.zip",
 "fileSize": 3724,
 "persistenceType": "OBJECT/TEMPORARY"
}

The fileReferenceID value returned by POST /file-upload is used for the POST /configuration-install request
to initiate profile set import:

{
 "fileReferenceId": "delphix-file://upload/f_8f90c13fb1b9434abdbe871da894a2a8/
custom_profile_set_1.zip"
}

The API response is:

{
 "fileReferenceId": "delphix-file://upload/f_8f90c13fb1b9434abdbe871da894a2a8/
custom_profile_set_1.zip",
 "requiresRestart": false
}

11.1.4.2 ASDD profile set export

Export requires two API calls:

POST /profile-sets/{profileSetId}/export

GET /file-downloads/{fileDownloadId}

Continuous Compliance – Continuous Compliance Home

Delphix masking APIs – 725

This API path's purpose is as expected based on the path and operation; the purpose of POST /profile-sets/
{profileSetId}/export is to export the given profile set's configuration in a zip file in the same format expected
for import. This API call is asynchronous, so it spawns an async task with a file reference that you can then
download via GET /file-downloads/{fileDownloadId} when the task is complete. The API response for the
custom profile set imported above (POST /profile-sets/5/export) is:

{
 "asyncTaskId": 1,
 "operation": "EXPORT_PROFILE_SET",
 "reference": "EXPORT_PROFILE_SET-cHJvZmlsZV9zZXRfNS56aXA=",
 "status": "WAITING",
 "cancellable": false
}

GET /file-downloads/EXPORT_PROFILE_SET-cHJvZmlsZV9zZXRfNS56aXA= then provides a link to
download the file in the response body.

11.1.5 API calls for managing classifiers

Classifier instances define logic used by the ASDD profiler to identify sensitive information. Refer to
Discovering your sensitive data (see page 382) for an overview of classifiers and related concepts. Each
classifier instance is based on a classifier framework that implements the recognition logic. An overview of
the available frameworks is available under the classifier concept section (see page 383). More information
about managing classifiers can be found in the Managing classifiers article (see page 446).

In order to manage classifiers using the API client, you should have some familiarity with REST APIs and
JSON data encoding. Access the API Client, as described in the Masking API client (see page 658) section, and
authenticate by pressing the Authorize button at the upper right part of the screen. Locate the API paths
related to classifiers:

Creating or modifying profile sets can also be done via the API and requires only two API calls
See ASDD profile set import and export (see page 457) for usage instructions.



Continuous Compliance – Continuous Compliance Home

Delphix masking APIs – 726

Each of these API path's purposes are as expected based on the operation; GET to view the configuration of
existing classifiers, PUT to modify the configuration of an existing classifier, POST to create a new classifier,
and DELETE to delete a classifier.

11.1.5.1 Retrieving classifier framework configurations

The classifiers/frameworks paths allow retrieval of information about the available classifier frameworks. In
particular, making a request to these endpoints with include_schema=true will return open API style
descriptions of the schema for the classifier frameworks. It is also necessary to use this API to map
classifier framework type names, such as 'PATH' or 'REGEX', to the numeric frameworkId when creating
classifier instances.

When creating a new classifier, it can be helpful to first perform a GET operation that retrieves the
configuration of an existing classifier instance, using the intended framework as a starting point.

11.1.5.2 Example: Creating a new PATH classifier

In this example, a database contains some columns named snack_pref1, snack_pref2, etc. The columns
contain sensitive user data that should be masked, thus, a good regex for recognizing these columns would
be snack_pref[0-9]+. A SNACK_PREF domain has been created with an appropriate algorithm for this type of
data. To match the column name to profile, the type of classifier needed is PATH.

First, perform a GET operation on the classifiers/frameworks path. In the output below, the respective
frameworkId of the PATH classifier is 3.

{
 "_pageInfo": {
 "numberOnPage": 4,
 "total": 4
 },
 "responseList": [
 {
 "frameworkId": 1,
 "frameworkName": "REGEX",
 "description": "The regex framework can be used to specify one or more regular
expressions to match the data in a field."
 },
 {
 "frameworkId": 2,
 "frameworkName": "LIST",
 "description": "The list framework can be used to specify one or more value
lists to match the data in a field."
 },
 {
 "frameworkId": 3,
 "frameworkName": "PATH",
 "description": "The path framework can be used to specify exact values or
regular expressions to match the name of a field."
 },

Continuous Compliance – Continuous Compliance Home

Delphix masking APIs – 727

 {
 "frameworkId": 4,
 "frameworkName": "TYPE",
 "description": "The type framework can be used to specify valid types and type
lengths for fields to rule out invalid data types and lengths during classification."
 }
]
}

After determining that classifier 1 has frameworkId=3, perform the GET operation on classifiers/1:

{
 "classifierId": 1,
 "classifierName": "Account Number - Path",
 "frameworkId": 3,
 "domainName": "ACCOUNT_NO",
 "createdBy": "System",
 "builtIn": true,
 "classifierConfiguration": {
 "paths": [
 {
 "matchType": "REGEX",
 "fieldValue": "(?i)(?>(account|accnt|acct)_?-? ?(number|num|nbr|no|user))$",
 "parentValue": "",
 "caseSensitive": false,
 "matchStrength": 0.67,
 "allowPartialMatch": true
 }
],
 "rejectStrength": 0
 }
}

To exemplify, this configuration is edited, replacing several configuration values to create a new classifier:

{
 "classifierName": "Snack Preference - Path",
 "frameworkId": 3,
 "domainName": "SNACK_PREF",
 "classifierConfiguration": {
 "paths": [
 {
 "matchType": "REGEX",
 "fieldValue": "snack_pref[0-9]+",
 "parentValue": "",
 "caseSensitive": false,
 "matchStrength": 0.67,
 "allowPartialMatch": false
 }
],

Continuous Compliance – Continuous Compliance Home

239 https://delphixdocs.atlassian.net/continuous-compliance-12-0-0-0/docs/api-calls-involving-file-upload-and-download

Delphix masking APIs – 728

 "rejectStrength": 0
 }
}

This body can then be used with a POST operation to the classifiers path to create the new classifier. The
API response will include the newly assigned classifierId.

11.1.5.3 Downloading files associated with classifiers

Using the classifiers/{classifierId}/export-files endpoint, files associated with classifiers can be downloaded
by specifying the classifierId. This endpoint will return an async task similar to the following:

{
 "asyncTaskId": 2,
 "operation": "EXPORT_CLASSIFIER_FILES",
 "reference": "EXPORT_CLASSIFIER_FILES-Y2xhc3NpZmllcl80NV92YWx1ZV9saXN0cy56aXA=",
 "status": "RUNNING",
 "startTime": "2023-03-21T18:45:59.390+00:00",
 "cancellable": false
}

You can check the status of this task by using the

asyncTask/{asyncTaskId} endpoint.

{
 "asyncTaskId": 2,
 "operation": "EXPORT_CLASSIFIER_FILES",
 "reference": "EXPORT_CLASSIFIER_FILES-Y2xhc3NpZmllcl80NV92YWx1ZV9saXN0cy56aXA=",
 "status": "SUCCEEDED",
 "startTime": "2023-03-21T18:45:59.390+00:00",
 "endTime": "2023-03-21T18:45:59.520+00:00",
 "cancellable": false
}

LIST type classifiers
Note that LIST type classifiers require one or more input files to define the value lists for
recognition. These files must first be uploaded by doing a POST to the fileUpload (see page

752)API endpoint239. The resulting fileReferenceId values may then be used for fields of type FILE
in the classifier configuration when creating the classifier.



https://delphixdocs.atlassian.net/continuous-compliance-12-0-0-0/docs/api-calls-involving-file-upload-and-download
https://delphixdocs.atlassian.net/continuous-compliance-12-0-0-0/docs/api-calls-involving-file-upload-and-download

Continuous Compliance – Continuous Compliance Home

Delphix masking APIs – 729

•

•

•

•

•

Once this task has succeeded, the fileDownload/{fileDownloadId} endpoint can be used to download the
files where fileDownloadId is the reference provided in the classifiers/{classifierId}/export-files API
response. The files are returned in a .zip that contains all files associated with the specified classifier.

11.1.5.4 Searching and Filtering Classifiers

The classifiers/search endpoint allows for searching and filtering of classifiers. More information on syntax
can be found at API calls for searching and filtering (see page 732).

11.1.6 API calls for managing profile set usage

11.1.6.1 Overview

The Masking Engine provides an API endpoint to view the usage of profile sets globally.

11.1.6.2 Viewing profile set usage

The following API endpoint retrieves all usages of profile sets:

profileSet GET profile-sets/usage

This endpoint supports the following options in the query parameters:

includeAssignmentDetail (required, default=false)

boolean Enabling this option causes the API response to include a list of human-readable assignment detail
objects, one for each individual usage of the profile set on the engine. This can result in a very large
response if there are many profile sets and/or there is heavy usage of the profile sets.

profileSetType (optional)

String Report only usage of profile sets with type ASDD or LEGACY. ASDD profile sets are comprised of
classifiers which are used by the new ASDD profiler. LEGACY profile sets are comprised of profile
expressions and profile type expressions used by the old profile.

connectorType (optional)

String Report only usage of profile sets used by jobs of the specific connector types: DATABASE, FILE, or
MAINFRAME. Note that Mainframe DB2 is categorized under the DATABASE option.

environmentFilter (optional)

String Report only usage occurring within the specified environment(s). This query option may be included
multiple times, in which case usage for all matching environments will be reported.

profileSetFilter (optional)

Continuous Compliance – Continuous Compliance Home

Delphix masking APIs – 730

String Report only usage occurring of the specified profile set(s). This query option may be included multiple
times, in which case usage for all matching profile sets will be reported.

11.1.6.3 Examples

Getting usage for all profile sets:

REQUEST

curl -X 'GET' \
 'http://masking-engine.example.com/masking/api/v5.1.26/profile-sets/usage?
includeAssignmentDetail=false' \
 -H 'accept: application/json' \
 -H 'Authorization: aa20e962-0bcf-4e65-bb44-8028dd3544ce'

RESPONSE

{
 "responseList": [
 {
 "profileSetName": "ASDD Standard",
 "profileSetId": 4,
 "jobIds": [
 1
]
 },
 {
 "profileSetName": "Financial - Legacy",
 "profileSetId": 1,
 "jobIds": []
 },
 {
 "profileSetName": "HIPAA - Legacy",
 "profileSetId": 2,
 "jobIds": []
 },
 {
 "profileSetName": "Standard",
 "profileSetId": 3,
 "jobIds": [
 2
]
 }
]
}

The same request with additional details:

REQUEST

Continuous Compliance – Continuous Compliance Home

Delphix masking APIs – 731

curl -X 'GET' \
 'http://masking-engine.example.com/masking/api/v5.1.26/profile-sets/usage?
includeAssignmentDetail=true' \
 -H 'accept: application/json' \
 -H 'Authorization: aa20e962-0bcf-4e65-bb44-8028dd3544ce'

RESPONSE

{
 "responseList": [
 {
 "profileSetName": "ASDD Standard",
 "profileSetId": 4,
 "jobIds": [
 1
],
 "assignmentDetails": [
 {
 "assignmentType": "DATABASE",
 "asddProfileSet": true,
 "environmentName": "TestEnvironment",
 "environmentId": 1,
 "jobName": "TestDatabaseJob",
 "jobId": 1,
 "rulesetName": "DatabaseRuleset",
 "rulesetId": 5
 }
]
 },
 {
 "profileSetName": "Financial - Legacy",
 "profileSetId": 1,
 "jobIds": [],
 "assignmentDetails": []
 },
 {
 "profileSetName": "HIPAA - Legacy",
 "profileSetId": 2,
 "jobIds": [],
 "assignmentDetails": []
 },
 {
 "profileSetName": "Standard",
 "profileSetId": 3,
 "jobIds": [
 2
],
 "assignmentDetails": [
 {
 "assignmentType": "FILE",

Continuous Compliance – Continuous Compliance Home

Delphix masking APIs – 732

•
•
•
•

 "asddProfileSet": false,
 "environmentName": "TestEnvironment",
 "environmentId": 1,
 "jobName": "TestFileJob",
 "jobId": 2,
 "rulesetName": "FileRuleset",
 "rulesetId": 2
 }
]
 }
]
}

11.1.7 API calls for searching and filtering

API endpoints are available for certain objects that allow searching and filtering. The body of these endpoints
takes a single key-value pair {“filter_expression“: “<expression>”} that should conform to the filter-query
language specified below.

The following objects support searching and filtering:

classifiers (see page 446)

profileExpressions (see page 452)

profileTypeExpressions (see page 452)

executions

11.1.7.1 Comparison operators

Operator Description Example

CONTAINS Substring or membership testing for string and
list attributes respectively.

field3 CONTAINS 'foobar',
field4 CONTAINS TRUE

IN Tests if field is a member of a list literal. List can
contain a maximum of 100 values.

field2 IN ['Goku', 'Vegeta']

GE Tests if a field is greater than or equal to a literal
value

field1 GE 1.2e-2

GT Tests if a field is greater than a literal value field1 GT 1.2e-2

LE Tests if a field is less than or equal to a literal
value

field1 LE 9000

Continuous Compliance – Continuous Compliance Home

Delphix masking APIs – 733

•

Operator Description Example

LT Tests if a field is less than a literal value field1 LT 9.02

NE Tests if a field is not equal to a literal value field1 NE 42

EQ Tests if a field is equal to a literal value field1 EQ 42

11.1.7.2 Search operator

The SEARCH operator filters for items that have any filterable attribute that contains the input string as a
substring. The comparison is done case-insensitively. This is not restricted to attributes with string values.
Specifically `SEARCH '12'` would match an item with an attribute with an integer value of `123`.

11.1.7.3 Logical operators

Logical operators are ordered by precedence.

Operator Description Example

NOT Logical NOT (right associative) NOT filed1 LE 9000

AND Logical AND (left associative) field1 GT 9000 AND field2 EQ 'Goku'

OR Logical OR (left associative) field1 GT 9000 OR field2 EQ 'Goku'

11.1.7.4 Grouping

Parentheses '()' can be used to override operator precedence.

For example:

NOT (field1 LT 1234 AND field2 CONTAINS 'foo')

11.1.7.5 Literal Values

Literal Description Example

Nil Represents the absence of a value nil, Nil, nIl, NIL

Continuous Compliance – Continuous Compliance Home

240 https://www.ietf.org/rfc/rfc3339.txt

Delphix masking APIs – 734

•

•

•

•

Literal Description Example

Boolean true/false boolean true, false, True, False, TRUE,
FALSE

Number Signed integer and floating point numbers. Also
supports scientific notation.

 0, 1, -1, 1.2, 0.35, 1.2e-2, -1.2e+2

String Single or double quoted "foo", "bar", "foo bar", 'foo', 'bar',
'foo bar'

Datetime Formatted according to RFC3339240 2018-04-27T18:39:26.397237+0
0:00

List Comma-separated literals wrapped in square
brackets

[0], [0, 1], ['foo', "bar"]

11.1.7.6 Limitations

Not all fields of the objects are filterable or searchable. The allowed fields for the specific object are
listed in the body description of that object API endpoint.
For a filterable field of the form-field1[field2], the query within filter_expression should start with the
"contains" operator.

For example, for a filterable-field of "domain[domain_name]" the query body should be
{“filter_expression": "domain contains {domain_name EQ ‘Account_NO’}”}

A maximum of 8 unique identifiers may be used inside a filter expression.

11.1.7.7 Filtering usage examples

Below is a sample 'fruit_inventory' table containing information that will be filtered using the above syntax.

id name color size quantity in_season

1 apple red medium 4 false

2 watermelon red large 1 true

3 strawberry red small 10 true

https://www.ietf.org/rfc/rfc3339.txt
https://www.ietf.org/rfc/rfc3339.txt

Continuous Compliance – Continuous Compliance Home

Delphix masking APIs – 735

id name color size quantity in_season

4 orange orange medium 7 false

5 kiwi green small 3 false

6 raspberry red small 20 false

7 lemon yellow medium 2 true

8 lime green small 8 false

9 pineapple yellow large 3 true

10 blueberry blue small 132 true

11.1.7.7.1 Example 1:

This example uses the CONTAINS operator to search for the substring "berry" in the name field.

{"filter_expression": "name CONTAINS 'berry'"}

This query returns the following objects:

id name color size quantity in_season

3 strawberry red small 10 true

6 raspberry red small 20 false

10 blueberry blue small 132 true

11.1.7.7.2 Example 2:

This example uses the GT operator to filter for quantities greater than 5 and the EQ operator to filter for size
"small".

Continuous Compliance – Continuous Compliance Home

Delphix masking APIs – 736

{"filter_expression": "quantity GT 5 AND size EQ 'small'"}

This query returns the following objects:

id name color size quantity in_season

3 strawberry red small 10 true

6 raspberry red small 20 false

8 lime green small 8 false

10 blueberry blue small 132 true

11.1.7.7.3 Example 3:

This example uses the NOT operator to filter for objects where the color is not in list ['red', 'orange', 'green'].

{"filter_expression": "NOT color IN ['red','orange','green']"}

This query returns the following objects:

id name color size quantity in_season

7 lemon yellow medium 2 true

9 pineapple yellow large 3 true

10 blueberry blue small 132 true

11.1.7.7.4 Example 4:

This example uses the EQ operator to filter for objects where the boolean value of in_season is equal to true.

{"filter_expression": "in_season EQ true"}

This query returns the following objects:

Continuous Compliance – Continuous Compliance Home

Delphix masking APIs – 737

id name color size quantity in_season

2 watermelon red large 1 true

3 strawberry red small 10 true

7 lemon yellow medium 2 true

9 pineapple yellow large 3 true

10 blueberry blue small 132 true

11.1.7.7.5 Example 5:

This example uses a combination of many operators with grouping to filter for objects that are green, small,
and have a quantity greater than or equal to 8, or objects that are medium, not in season, and are in list
['apple', 'lemon'].

{"filter_expression": "(color EQ ‘green’ AND size EQ ‘small’ AND quantity GE 8) OR
(size EQ ‘medium’ AND in_season EQ false AND name IN [‘apple’, ‘lemon’])"}

This query returns the following objects:

id name color size quantity in_season

1 apple red medium 4 false

8 lime green small 8 false

11.1.7.7.6 Example 6:

This example demonstrates the filter query on an 'order' table (described below), which is joined to the
'fruit_inventory' table (above) by the fruit-'name' column. Use the 'contains' query only when the allowed
filterable_attribute in the API mentions

explicitly like 'order[order_id]' instead of 'order_id'.

order_id name order_quantity

1 apple 2

Continuous Compliance – Continuous Compliance Home

Delphix masking APIs – 738

•

•

•

•

•

•

order_id name order_quantity

2 strawberry 5

3 lime 7

{"filter_expression": "order contains {name EQ 'lime'}"}

This query returns the following objects:

order_id name order_quantity

3 lime 7

11.1.8 API calls for managing masking job driver support tasks

Enabling driver support tasks is possible for built-in Oracle and MSSQL connectors as well as extended
connectors that have a JDBC driver that uses a driver support plugin (see page 717) at the following endpoints:

Masking jobs - POST /masking-jobs and PUT /masking-jobs/{maskingJobId}

Reidentification jobs - POST /reidentification-jobs and PUT /reidentification-

jobs/{reidentificationJobId}

Tokenization jobs - POST /tokenization-jobs and PUT /tokenization-jobs/

{tokenizationJobId}

Disabling driver support tasks is possible for built-in Oracle and MSSQL connectors as well as extended
connectors that have a JDBC driver that uses a driver support plugin (see page 717) at the following endpoints:

PUT /masking-jobs/{maskingJobId}

PUT /reidentification-jobs/{reidentificationJobId}

PUT /tokenization-jobs/{tokenizationJobId}

The following instructions to enable driver support tasks on an Oracle masking job can be used to enable
driver support tasks for applicable reidentification and tokenization jobs as well.

The order of the tasks returned in enabledTasks in the Job APIs' responses is not indicative
of the task execution order. The task order is determined by the order the tasks are added to
getTasks in the Driver support plugin implementation. (see page 831)



Continuous Compliance – Continuous Compliance Home

Delphix masking APIs – 739

1.

2.

3.

11.1.8.1 View the tasks implemented by driver support plugin

Select GET /plugin (or GET /plugin/{pluginId} if the plugin ID of the driver support is
known).

Change `pluginType query parameter to DRIVER_SUPPORT (default is EXTENDED_ALGORITHM)
.

The response should include the full list of driver support plugins on the masking engine. If the engine
only has the builtin Oracle driver support plugin installed, the response will look as follows:

{
 "_pageInfo": {
 "numberOnPage": 1,
 "total": 1
 },
 "responseList": [
 {
 "pluginId": 8,
 "pluginName": "dlpx-oracle-driver-support",
 "pluginAuthor": "Delphix Engineering",
 "pluginType": "DRIVER_SUPPORT",
 "originalFileName": "delphix-oracle-driver-support-plugin-1.0.0.jar",
 "originalFileChecksum":
"17b06f2fd888888e26a634d501b4ac9be5a91a7f50000a995934145c7afe7e12",
 "installDate": "2021-10-24T18:08:50.868+00:00",
 "builtIn": true,
 "pluginVersion": "1.0.0",
 "description": "This plugin provides built-in driver support
functionality for the Oracle JDBC driver that ships with the Delphix Masking
Engine.",
 "pluginObjects": [
 {
 "objectIdentifier": "1",
 "objectName": "Disable Constraints",
 "objectType": "DRIVER_SUPPORT_TASK"
 },
 {
 "objectIdentifier": "2",
 "objectName": "Drop Indexes",
 "objectType": "DRIVER_SUPPORT_TASK"
 },
 {
 "objectIdentifier": "3",
 "objectName": "Disable Triggers",
 "objectType": "DRIVER_SUPPORT_TASK"
 }
]
 }

Continuous Compliance – Continuous Compliance Home

Delphix masking APIs – 740

1.

2.

]
}

11.1.8.2 Create masking Job that enables tasks

Select POST /masking-jobs to create a masking job using the ruleset you created earlier that
targets the desired connector.

Format the request body as follows to enable Disable Constraints, Drop Indexes and Disable Triggers
per the objectIdentifier values returned from the GET Plugin API endpoint:

{
 "jobName": "Oracle IP job",
 "rulesetId": 1,
 "jobDescription": "Job description",
 "enabledTasks": [
 {
 "taskId": 1
 },
 {
 "taskId": 2
 },
 {
 "taskId": 3
 }
]
}

The response will look similar to the following with a return status of 200:

{
 "maskingJobId": 1,
 "jobName": "Oracle IP job",
 "rulesetId": 1,
 "rulesetType": "table",
 "createdBy": "admin",

This assumes a ruleset using the desired connector already exists. The following example
demonstrates the creation of an in-place masking job on a built-in Oracle connector. This also
assumes you know the ID of the task that you want to enable and have execute as part of a given
masking job. To enable tasks to execute as part of a masking job on an extended connector, you
need to ensure the ruleset points to an extended connector that is using a JDBC driver with a
driver support and include the property enabledTasks in your request.



Continuous Compliance – Continuous Compliance Home

Delphix masking APIs – 741

 "createdTime": "2021-04-27T21:29:46.043+00:00",
 "feedbackSize": 50000,
 "jobDescription": "Job description",
 "maxMemory": 1024,
 "minMemory": 1024,
 "multiTenant": false,
 "numInputStreams": 1,
 "onTheFlyMasking": false,
 "databaseMaskingOptions": {
 "batchUpdate": true,
 "commitSize": 10000,
 "disableConstraints": false,
 "dropIndexes": false,
 "disableTriggers": false,
 "numOutputThreadsPerStream": 1,
 "truncateTables": false
 },
 "failImmediately": false,
 "enabledTasks": [
 {
 "taskId": 1
 },
 {
 "taskId": 2
 },
 {
 "taskId": 3
 }
],
 "streamRowLimit": 20000
}

11.1.8.3 Disable tasks

To disable the Disable Triggers task on an Oracle masking job, the request body to PUT /masking-jobs/

1 should exclude the taskId of the task to disable. Using the above request body as an example, Disable

Triggers has a task ID of 3 so the request body to PUT /masking-job/1 should exclude the object in

enabledTasks with "taskId": 3 . The request body should thus be:

{
 "jobName": "Oracle IP job",
 "rulesetId": 1,
 "jobDescription": "Job description",
 "onTheFlyMasking": false,
 "enabledTasks": [
 {
 "taskId": 1
 },

Continuous Compliance – Continuous Compliance Home

Delphix masking APIs – 742

 {
 "taskId": 2
 }
]
}

The Oracle masking job will now only have Disable Constraints and Drop Indexes enabled (in this example,
their respective task IDs are 1 and 2). The response will look similar to the following with a return status of
200:

{
 "maskingJobId": 1,
 "jobName": "Oracle IP job",
 "rulesetId": 1,
 "rulesetType": "table",
 "createdBy": "admin",
 "createdTime": "2021-04-27T21:29:46.043+00:00",
 "feedbackSize": 50000,
 "jobDescription": "Job description",
 "maxMemory": 1024,
 "minMemory": 1024,
 "multiTenant": false,
 "numInputStreams": 1,
 "onTheFlyMasking": false,
 "databaseMaskingOptions": {
 "batchUpdate": true,
 "commitSize": 10000,
 "disableConstraints": false,
 "dropIndexes": false,
 "disableTriggers": false,
 "numOutputThreadsPerStream": 1,
 "truncateTables": false
 },
 "failImmediately": false,
 "enabledTasks": [
 {
 "taskId": 1
 },
 {
 "taskId": 2
 }
],
 "streamRowLimit": 20000
}

11.1.9 API calls for creating an inventory

Below are examples of requests you might enter and responses you might receive from the Masking API
client. For commands specific to your masking engine, work with your interactive client at http://
<myMaskingEngine>/masking/api-client/

Continuous Compliance – Continuous Compliance Home

Delphix masking APIs – 743

•

11.1.9.1 Fetch table names from database connector

Object references you will need:

The ID of the database connector to fetch tables for

11.1.9.1.1 REQUEST

curl -X GET --header 'Accept: application/json' --header 'Authorization:
7c856e3d-5b20-4261-b5fe-cc2ffcee5ae0'
'http://<myMaskingEngine>/masking/api/database-connectors/1/fetch'

11.1.9.1.2 RESPONSE

["ALL_COLUMNS", "DBVERIFICATION_TABLE"]

11.1.9.1.3 More info

http://<myMaskingEngine>/masking/api-client/#!/databaseConnector/fetchTableMetadata

11.1.9.1.4 Example

See how to use this in the context of a script here (see page 768).

HTTPS (SSL/TLS) is recommended, but for explanatory purposes these examples use insecure
HTTP



In all code examples, replace <> with the hostname or IP address of your virtual machine.

This database connector ID (1, in this example) is included in the PATH for this operation, NOT
the payload.

Continuous Compliance – Continuous Compliance Home

Delphix masking APIs – 744

•
•

•

11.1.9.2 Create table metadata

Object references you will need:

The name of the table to create the metadata for
The ruleset ID

11.1.9.2.1 REQUEST

curl -X POST --header 'Content-Type: application/json' --header 'Accept:
application/json' --header 'Authorization:
7c856e3d-5b20-4261-b5fe-cc2ffcee5ae0' -d '{ "tableName": "ALL_COLUMNS",
"rulesetId": 2 }'
'http://<myMaskingEngine>/masking/api/table-metadata'

11.1.9.2.2 RESPONSE

{ "tableMetadataId": 2, "tableName": "ALL_COLUMNS", "rulesetId": 2
}

11.1.9.2.3 More info

http://<myMaskingEngine>/masking/api-client/#!/tableMetadata/createTableMetadata

11.1.9.2.4 Example

See how to use this in the context of a script here (see page 768).

11.1.9.3 Get All column metadata belonging to table metadata

Object references you will need:

The table metadata ID to get the columns for

This table metadata ID (2, in this example) is included in the QUERY STRING for this operation,
NOT the payload.



Continuous Compliance – Continuous Compliance Home

Delphix masking APIs – 745

•

•

•
•

11.1.9.3.1 REQUEST

curl -X GET --header 'Accept: application/json' --header 'Authorization:
7c856e3d-5b20-4261-b5fe-cc2ffcee5ae0'
'http://<myMaskingEngine>/masking/api/column-metadata?table_metadata_id=2'

11.1.9.3.2 RESPONSE

[{ "columnMetadataId": 12, "columnName": "schoolnme",
"tableMetadataId": 2, "columnLength": 50, "isMasked": false,
"isPrimaryKey": false, "isIndex": false, "isForeignKey": false }, …]

Note that the above response has been truncated due to its length for the purposes of this documentation.

11.1.9.3.3 More info

http://<myMaskingEngine>/masking/api-client/#!/columnMetadata/getAllColumnMetadata

11.1.9.3.4 Example

See how to use this in the context of a script here (see page 768).

11.1.9.4 Update column metadata with algorithm assignment

Object references you will need:

Column metadata ID for the column you wish to update

Since the names can vary in the API and UI, you should use the names obtained through the API
(these may not align with the UI).
Algorithm name
Domain name

Tip
This column metadata ID (20, in this example) is included in the PATH for this operation, NOT the
payload.



Continuous Compliance – Continuous Compliance Home

Delphix masking APIs – 746

11.1.9.4.1 REQUEST

curl -X PUT --header 'Content-Type: application/json' --header 'Accept:
application/json' --header 'Authorization:
7c856e3d-5b20-4261-b5fe-cc2ffcee5ae0' -d '{ "algorithmName":
"AddrLine2Lookup", "domainName": "ADDRESS_LINE2", "isProfilerWritable": false }'
'http://<myMaskingEngine>/masking/api/column-metadata/20'

11.1.9.4.2 RESPONSE

{ "columnMetadataId": 20, "columnName": "l2_address",
"tableMetadataId": 2, "algorithmName": "AddrLine2Lookup", "domainName":
"ADDRESS_LINE2", "columnLength": 512, "isMasked": true, "isProfilerWritable": false,
"isPrimaryKey":
false, "isIndex": false, "isForeignKey": false, "domainAssignedBy": "admin_user"
}

11.1.9.4.3 More info

http://<myMaskingEngine>/masking/api-client/#!/columnMetadata/updateColumnMetadata

11.1.9.4.4 Example

See how to use this in the context of a script here (see page 768).

11.1.10 API calls for creating and running masking jobs

Below are examples of requests you might enter and responses you might receive from the Masking API
client. For commands specific to your masking engine, work with your interactive client at http://
<myMaskingEngine>/masking/api-client/

In all code examples, replace <myMaskingEngine> with the hostname or IP address of your
virtual machine.

HTTPS (SSL/TLS) is recommended, but for explanatory purposes these examples use insecure
HTTP.



Continuous Compliance – Continuous Compliance Home

Delphix masking APIs – 747

•

•

11.1.10.1 Creating a masking job

Object references you will need:

The ID of the ruleset for which you wish to create the masking job

REQUEST

curl -X POST --header 'Content-Type: application/json' --header 'Accept:
application/json' --header 'Authorization:
e23bad24-8760-4091-a131-34f235d9b2d6' -d '{ "jobName":
"some_masking_job", "rulesetId": 7, "jobDescription": "This example
illustrates a MaskingJob with just a handful of the possible fields set.
It is meant to exemplify a simple JSON body that can be passed to the
endpoint to create a MaskingJob.", "feedbackSize": 100000,
"onTheFlyMasking": false }'
'http://<myMaskingEngine>/masking/api/masking-jobs'

11.1.10.1.1 RESPONSE

{ "jobId": 1, "jobName": "some_masking_job", "rulesetId": 7,
"createdBy": "Axistech", "createdTime": "2017-07-04T00:31:00.952+0000",
"environmentId": 2, "feedbackSize": 100000, "jobDescription": "This
example illustrates a MaskingJob with just a handful of the possible
fields set. It is meant to exemplify a simple JSON body that can be
passed to the endpoint to create a MaskingJob.", "maxMemory": 1024,
"minMemory": 1024, "multiTenant": false, "numInputStreams": 1,
"onTheFlyMasking": false }

11.1.10.1.2 More info

http://<myMaskingEngine>/masking/api-client/#!/maskingJob/createMaskingJob

11.1.10.2 Running a masking job

Create a new execution of a masking job.

Object references you will need:

The ID of the job you want to run

The response includes the ID of the newly created job (“jobId”).

Continuous Compliance – Continuous Compliance Home

Delphix masking APIs – 748

•

11.1.10.2.1 REQUEST

curl -X POST --header 'Content-Type: application/json' --header 'Accept:
application/json' --header 'Authorization:
e23bad24-8760-4091-a131-34f235d9b2d6' -d '{ "jobId": 1 }'
'http://<myMaskingEngine>/masking/api/executions'

11.1.10.2.2 RESPONSE

{ "executionId": 1, "jobId": 1, "status": "RUNNING"
}

11.1.10.2.3 More info

http://<myMaskingEngine>/masking/api-client/#!/execution/createExecution

11.1.10.3 Checking the status of a masking job

Object references you will need:

The ID of the execution you want to check (IN THE PATH)

11.1.10.3.1 REQUEST

curl -X GET --header 'Accept: application/json' --header 'Authorization:
8935f7f7-6de6-40ba-80d8-d8956b71248b'
'http://<myMaskingEngine>/masking/api/executions/1'

11.1.10.3.2 RESPONSE

{

This execution id (1, in this example) is included in the PATH for this operation, NOT the
payload.

Continuous Compliance – Continuous Compliance Home

Delphix masking APIs – 749

•

 "executionId": 1,
 "jobId": 1,
 "status": "SUCCEEDED",
 "rowsMasked": 1000,
 "rowsTotal": 1000,
 "startTime": "2019-02-14T21:51:13.253+0000",
 "endTime": "2019-02-14T21:51:54.956+0000"
}

11.1.10.3.3 More info

http://<myMaskingEngine>/masking/api-client/#!/execution/getExecutionById

11.1.10.4 Retrieving execution events related to a masking job

Object references you will need:

The ID of the execution you want to check (as a URL parameter).

The execution-events endpoint returns execution events for a specified job execution. These execution
events report failures or warnings associated with the masking job execution. NOT specifying the execution
in the URL parameter will retrieve all execution events for all masking jobs.

11.1.10.4.1 REQUEST

curl -X GET --header 'Accept: application/json' --header 'Authorization:
8935f7f7-6de6-40ba-80d8-d8956b71248b'
'http://<myMaskingEngine>/masking/api/execution-events?execution_id=1&page_number=1'

11.1.10.4.2 RESPONSE

{
 "_pageInfo": {
 "numberOnPage": 1,
 "total": 1
 },
 "responseList": [
 {
 "executionEventId": 1,

This execution id (1, in this example) is specified as a URL parameter for this operation.

Continuous Compliance – Continuous Compliance Home

Delphix masking APIs – 750

•

 "executionId": 1,
 "eventType": "UNMASKED_DATA",
 "severity": "WARNING",
 "cause": "PATTERN_MATCH_FAILURE",
 "count": 1000,
 "timeStamp": "2019-02-14T21:51:51.790+0000",
 "executionComponentId": 1,
 "maskedObjectName": "RCHARS64_T1_0",
 "algorithmName": "DateShiftVariable"
 }
]
}

11.1.10.4.3 More info

http://<myMaskingEngine>/masking/api-client/#!/execution-events/getAllExecutionEvents

11.1.10.5 Retrieving non-conformant data samples associated with an execution
Event

Object references you will need:

The ID(s) of the execution event(s) you want to check (as one or more URL parameters).

11.1.10.5.1 REQUEST

curl -X GET --header 'Accept: application/json' --header 'Authorization:
8935f7f7-6de6-40ba-80d8-d8956b71248b'
'http://<myMaskingEngine>/masking/api/non-conformant-data-sample?
execution_event_id=1&page_number=1'

This execution event id (1, in this example) is specified as a URL parameter for this operation.

The non-conformant-data-sample endpoint returns non-conformant data samples for a
specified job execution event. These non-conformant data samples will report the data patterns
that caused the non-conformant data execution event to help identify why data is not getting
masked. NOT specifying an execution event in the URL parameter will retrieve all non-
conformant data samples events for all masking jobs.

Continuous Compliance – Continuous Compliance Home

Delphix masking APIs – 751

11.1.10.5.2 RESPONSE

{
 "_pageInfo": {
 "numberOnPage": 7,
 "total": 7
 },
 "responseList": [
 {
 "dataSampleId": 1,
 "executionEventId": 1,
 "dataSample": "LLLLL",
 "count": 200
 },
 {
 "dataSampleId": 2,
 "executionEventId": 1,
 "dataSample": "LLLLLL",
 "count": 400
 },
 {
 "dataSampleId": 3,
 "executionEventId": 1,
 "dataSample": "LLLL",
 "count": 80
 },
 {
 "dataSampleId": 4,
 "executionEventId": 1,
 "dataSample": "LLLLLLL",
 "count": 100
 },
 {
 "dataSampleId": 5,
 "executionEventId": 1,
 "dataSample": "LLLLLLLLLLL",
 "count": 50
 },
 {
 "dataSampleId": 6,
 "executionEventId": 1,
 "dataSample": "LLLLLLLLL",
 "count": 10
 },
 {
 "dataSampleId": 7,
 "executionEventId": 1,
 "dataSample": "LLLLLLLL",
 "count": 40

Continuous Compliance – Continuous Compliance Home

Delphix masking APIs – 752

 }
]
}

11.1.10.5.3 More info

http://<myMaskingEngine>/masking/api-client/#!/non-conformant-data-sample/getAllNon-
conformantDataSamples

11.1.11 API calls involving file upload and download

11.1.11.1 File download

API calls involving file download through API client are noteworthy because if the request fails, the API client
will continue to show the "loading" icon indefinitely.

To avoid this, make all file download calls through CURL instead. An example of a file download call using
CURL is below.

curl -X GET --header 'Accept: application/octet-stream' --header
'Authorization: ec443730-124e-4958-a872-324a975bb500'
-o "/home/user/downloads"
'http://<myMaskingEngine>/masking/api/file-downloads/EXPORT-
ZXhwb3J0X2RvY3VtZW50X2dGZU9JMVYxLmpzb24%3D'

The -o flag from above specifies the location to save the file to.

11.1.11.2 File upload

API calls involving file upload are noteworthy because the generated curl from the Masking API client will be
missing the parameter referencing the file; as such, those commands from the Masking API client will not
work.

Instead, below are examples of working requests and responses for API calls involving file upload.

For commands specific to your masking engine, work with your interactive client at http://
<myMaskingEngine>/masking/api-client/

HTTPS (SSL/TLS) is recommended, but for explanatory purposes these examples use insecure
HTTP.



Continuous Compliance – Continuous Compliance Home

Delphix masking APIs – 753

11.1.11.3 Creating a file format

11.1.11.3.1 REQUEST

curl -X POST --header 'Content-Type: multipart/form-data' --header
'Accept: application/json' --header 'Authorization:
d1313dd8-2ed9-4699-8e88-2b6a089ae2a6' -F
fileFormat=@/path/to/file_format/delimited_format.txt -F
fileFormatType=DELIMITED
'http://<myMaskingEngine>/masking/api/file-formats'

11.1.11.3.2 RESPONSE

{ "fileFormatId": 123, "fileFormatName": "delimited_format.txt",
"fileFormatType": "DELIMITED"
}

11.1.11.3.3 More info

http://<myMaskingEngine>/masking/api-client/#!/fileFormat/createFileFormat

11.1.11.4 Creating an SSH Key

11.1.11.4.1 REQUEST

curl -X POST --header 'Content-Type: multipart/form-data' --header
'Accept: application/json' --header 'Authorization:
d1313dd8-2ed9-4699-8e88-2b6a089ae2a6' -F
sshKey=@/path/to/ssh_key/this_file_name_is_your_ssh_key_name.txt
'http://<myMaskingEngine>/masking/api/ssh-keys'

In all code examples, replace \<myMaskingEngine> with the hostname or IP address of your
virtual machine.

Continuous Compliance – Continuous Compliance Home

Delphix masking APIs – 754

11.1.11.4.2 RESPONSE

{ "sshKeyName": "this_file_name_is_your_ssh_key_name.txt"
}

11.1.11.4.3 More info

http://<myMaskingEngine>/masking/api-client/#!/sshKey/createSshKey

11.1.12 Backwards compatibility API usage

In all examples, replace <myMaskingEngine> with the hostname or IP address of your virtual machine.

11.1.12.1 API versioning context

The Masking API is versioned in accordance with the Semantic Versioning format: http://semver.org/. When
the Masking API is updated, a new API version will be released. Scripts must reference an explicit API version
or else there are no guarantees that the scripts will work on future releases of the Masking API.

11.1.12.2 Pinning down a version number to guarantee backwards-compatibility

'http://<myMaskingEngine>/masking/api/v5.0.0/environments'

This is the format for specifying a version in the URL of an API request targeting the environments
endpoints.

Specifying the version for endpoint guarantees that the requester receives a response containing all of the
fields that were present in that version of the API. This is intended to allow scripts that specify a masking API
version in the URL to continue working upon future upgrades of the Masking product--even if a newer version
of the API is available in the future Masking product.

For example, consider the scenario where a script is being developed today with a pinned down version
v5.0.0 in the URL of the API requests. Upon upgrade to a future release of the Masking product that has the
API v5.1.0 available, the same, untouched script that was developed with the pinned down version v5.0.0 in
the URL of the API requests are expected to continue working. That said, in order to leverage any new
features of the API v5.1.0, the original script will need to be updated to specify the new API version in the
URL, and the requests may need to be updated to conform to the new API specification.

While specifying a version for endpoint guarantees that all fields present in that version will be contained in
the API response, it does not mean that new fields that have since been added to that endpoint in

In all examples, replace <myMaskingEngine> with the hostname or IP address of your virtual
machine.

http://semver.org/

Continuous Compliance – Continuous Compliance Home

Delphix masking APIs – 755

subsequent versions will be excluded. We, therefore, recommend that API users write their scripts to parse
the JSON response objects by key name, rather than by key index, to prevent these additional fields from
breaking any scripts.

11.1.12.3 Omitted version numbers

'http://<myMaskingEngine>/masking/api/environments'

This is the format for not specifying a version in the URL of an API request targeting the environments
endpoints. When the API version number is omitted, the latest API version is taken as a default. In the first
5.2 release, an API request with an omitted version number will be interpreted as a request against the v5.0.0
version of the API. In a future release that hypothetically has the API v5.3.0 available, an API request with an
omitted version number will be interpreted as a request against the v5.3.0 version of the API.

Scripts that omit the version of the Masking API in the URL are not guaranteed to work upon future upgrades
of the Masking product because the API specification may change between versions and requests that
conform to the old API specification may not work on the new API specification.

11.1.12.3.1 DefaultApiVersion

If the version is omitted from the base path of the request's URL, but wishes to be treated using a specific
masking API version that is not the latest version, set the DefaultApiVersion application setting. If the
DefaultApiVersion is not set and the version is omitted from the URL, the latest version of the API on that
engine will be used.

11.1.13 API response escaping

In Masking API responses, a backslash character (\) is escaped with an additional backslash character (\

\). Special attention should be paid to this behavior in scenarios where an API response is passed to
another system as an input, for example, an automation system.

In such cases, a response might need special handling to convert the double backslash sequence (\\) back

to a single backslash (\).

For example, consider the POST /ssh-key API for creating/installing an SSH Key. The result when the

POST /ssh-key API is called with a file name that contains \ , such as \key.txt , is shown below.

Response Body:

The DefaultApiVersion application setting will not be applied to any requests made from within
the masking engine. This mean that the UI, api-client, and phone home will always use the latest
API version supported on the engine.

Continuous Compliance – Continuous Compliance Home

Delphix masking APIs – 756

{
 "errorMessage": "SSH Key file name should not contain [\\, ;, %, ?, :]"
}

11.1.14 API call for generating support bundle

Below are examples of requests you might enter and responses you might receive from the Masking API
client. For commands specific to your masking engine, work with your interactive client at http://
<myMaskingEngine>/masking/api-client/

11.1.14.1 Generating a support bundle

No arguments are required for launching a support bundle generation task

11.1.14.1.1 REQUEST

curl -X POST --header 'Content-Type: application/json' --header 'Accept:
application/json' --header 'Authorization:
5f745517-d4ce-45de-afb3-6be06205188f'
'http://<myMaskingEngine>/masking/api/v5.2.0/support-bundle'

11.1.14.1.2 RESPONSE

{
 "asyncTaskId": 5,
 "operation": "SUPPORT_BUNDLE_GENERATE",
 "reference": "",
 "status": "RUNNING",
 "startTime": "2022-06-02T16:33:42.792+00:00",
 "cancellable": true

In all code examples, replace <myMaskingEngine> with the hostname or IP address of your
virtual machine.

HTTPS (SSL/TLS) is recommended, but for explanatory purposes these examples use insecure
HTTP.



Continuous Compliance – Continuous Compliance Home

Delphix masking APIs – 757

•

}

11.1.14.2 Reading the async task result

Object references you will need:

The ID of the asyncTask retrieved from the response of the supportBundle endpoint (in the
response example above equals 5)

Retrieve the result of the async task by running asyncTask GET /async-tasks/{asyncTaskId}
endpoint.

11.1.14.2.1 REQUEST

curl -X GET --header 'Accept: application/json' --header
'Authorization: 5f745517-d4ce-45de-afb3-6be06205188f'
'http://<myMaskingEngine>/masking/api/v5.2.0/async-tasks/6'

After the task is finished the response will look like:

{
 "asyncTaskId": 6,
 "operation": "SUPPORT_BUNDLE_GENERATE",
 "reference": "SUPPORT_BUNDLE-dlpx-support-564db0c0-162b-c22f-f2ed-
b17ff6b933b0-20220602-16-48-03.tar.gz",
 "status": "SUCCEEDED",
 "startTime": "2022-06-02T16:48:02.969+00:00",
 "endTime": "2022-06-02T16:50:25.960+00:00",
 "cancellable": true
}

The response includes the ID of the launched asynchronous task (“asyncTaskId”) which runs the
scripts collecting the Support Bundle information and packs it into tar.gz file.

Gathering the support bundle information might be a relatively long task, running minutes
(depending on the amount of the accumulated information on the Masking Engine). While it's
not finished the response will have "status": "RUNNING" and "reference":"" (i.e. empty).

Continuous Compliance – Continuous Compliance Home

Delphix masking APIs – 758

•

1.

2.

11.1.14.3 Retrieving the generated support bundle file

The Support Bundle file may be downloaded using the fileDownload GET /file-downloads/

{fileDownloadId} API endpoint.

Object references you will need:

The reference provided in the succeeded async task response, to be used as fileDownloadId
input argument.

11.1.14.3.1 REQUEST

curl -X GET --header 'Accept: application/octet-stream'
--header 'Authorization: 5f745517-d4ce-45de-afb3-6be06205188f'
'http://<myMaskingEngine>/masking/api/v5.2.0/file-downloads/SUPPORT_BUNDLE-dlpx-
support-564db0c0-162b-c22f-f2ed-b17ff6b933b0-20220602-16-48-03.tar.gz'

11.1.14.3.2 RESPONSE

The Response Body is represented as a clickable download URL, for example: Download

SUPPORT_BUNDLE-dlpx-support-564db0c0-162b-c22f-f2ed-

b17ff6b933b0-20220602-16-48-03.tar.gz

Here you have 2 options:

Click on that link, and the Support Bundle tar file would be downloaded to your default download
directory.

Use the above curl command to download the support bundle file. To keep the same file name you
need to add -O (capital letter O) argument to this curl command, for example:

Getting the Support Bundle file to the browser memory might take few minutes (depending on
the generated Support Bundle size).

The Response Content Type field should be set to application/octet-stream

value. If it's left on the default application/json than the downloaded file wouldn't be
recognized as a valid tar file.

Continuous Compliance – Continuous Compliance Home

Delphix masking APIs – 759

•
•

•
•
•
•
•
•

$ curl -X GET --header 'Accept: application/octet-stream' --header 'Authorization:
5f745517-d4ce-45de-afb3-6be06205188f' 'http://<myMaskingEngine>/masking/api/v5.2.0/
file-downloads/SUPPORT_BUNDLE-dlpx-support-564db0c0-162b-c22f-f2ed-
b17ff6b933b0-20220602-16-48-03.tar.gz' -O
 % Total % Received % Xferd Average Speed Time Time Time Current
 Dload Upload Total Spent Left Speed
100 17.5M 0 17.5M 0 0 735k 0 --:--:-- 0:00:24 --:--:-- 782k

or

$ curl -X GET --header 'Accept: application/octet-stream' --header 'Authorization:
5f745517-d4ce-45de-afb3-6be06205188f' 'http://<myMaskingEngine>/masking/api/v5.2.0/
file-downloads/SUPPORT_BUNDLE-dlpx-support-564db0c0-162b-c22f-f2ed-
b17ff6b933b0-20220602-16-48-03.tar.gz' --output support_bundle.tar.gz
 % Total % Received % Xferd Average Speed Time Time Time Current
 Dload Upload Total Spent Left Speed
100 17.5M 0 17.5M 0 0 660k 0 --:--:-- 0:00:27 --:--:-- 426k

11.1.14.3.3 More info

Only one support bundle generation task can be running at a time.
Support Bundle generation is cancellable (via asyncTask PUT /async-tasks/{asyncTaskId}/

cancel endpoint).

11.2 API examples
This section covers the following topics:

loginCredentials (see page 760)

helpers (see page 760)

apiHostInfo (see page 764)

Configure enclosure escape character (see page 764)

createApplication (see page 767)

createEnvironment (see page 767)

If you choose not to use the curl command but clicking to the download URL - the downloaded
file has autogenerated suffix added to the name of the file, for example:
application_octet-stream_SUPPORT_BUNDLE-dlpx-support-564db0c0-162b-

c22f-f2ed-b17ff6b933b0-20220602-16-48-03.tar.gz_blob_http___<> You might
use that file as is, or rename it to the desired name. The recommendation is to leave the .tar.gz
extension.

Continuous Compliance – Continuous Compliance Home

Delphix masking APIs – 760

•
•
•
•
•
•
•
•
•
•

createInventory (see page 768)

create DatabaseConnector (see page 769)

create DatabaseRuleset (see page 770)

getBillingUsage (see page 770)

getAuditLogs (see page 771)

getSyncableObjects (see page 772)

getSyncableObjectsExport (see page 772)

profileTypeExpressions (see page 774)

runMaskingJob (see page 775)

getDatabaseUsage (see page 776)

11.2.1 loginCredentials

#!/bin/bash

#
This file contains all the login information for the masking engine.
#

Login credentials for the Masking Engine.
USERNAME="myUsername"
PASSWORD="myPassword"

Login into a masking engine
curl -X POST --header 'Content-Type: application/json' --header 'Accept: application/
json' -d '\{ \ "username": "myUsername", \ "password": "myPassword" \ }' 'http://
<myMaskingEngine>/masking/api/login'

11.2.2 helpers

#!/bin/bash

#
This file contains helpers for the various Masking API cookbook scripts.
This script uses jq to process JSON. More information can be found here - https://
stedolan.github.io/jq/.
#

Login and set the correct $AUTH_HEADER.
login() {
 echo "* logging in..."
 LOGIN_RESPONSE=$(curl -s $SSL_CERT -X POST -H 'Content-Type: application/json' -H
'Accept: application/json' --data @- $MASKING_ENGINE/login <<EOF
{
 "username": "$USERNAME",

Continuous Compliance – Continuous Compliance Home

Delphix masking APIs – 761

 "password": "$PASSWORD"
}
EOF
) || die "Login failed with exit code $?"
 check_error "$LOGIN_RESPONSE"
 TOKEN=$(echo $LOGIN_RESPONSE | jq -r '.Authorization')
 AUTH_HEADER="Authorization: $TOKEN"
}

Get all applications and select the first one. Place the applicationName in
$APPLICATION_ID.
get_application_id() {
 echo "* getting all applications and selecting first one"
 APPLICATIONS_RESPONSE=$(curl -s $SSL_CERT -X GET -H ''"$AUTH_HEADER"'' -H
'Content-Type: application/json' $MASKING_ENGINE/applications)
 check_error "$APPLICATIONS_RESPONSE"
 NUM_APPLICATIONS=$(echo $APPLICATIONS_RESPONSE | jq -r '._pageInfo.total')
 check_empty $NUM_APPLICATIONS "found no applications to use"
 APPLICATION_ID=$(echo $APPLICATIONS_RESPONSE | jq -r
'.responseList[0].applicationName')
 echo "using application '$APPLICATION_ID'"
}
Get all environments and select the first one. Place the environmentId in
$ENVIRONMENT_ID.
get_environment_id() {
 echo "* getting all environments and selecting first one"
 ENVIRONMENTS_RESPONSE=$(curl -s $SSL_CERT -X GET -H ''"$AUTH_HEADER"'' -H
'Content-Type: application/json' $MASKING_ENGINE/environments)
 check_error "$ENVIRONMENTS_RESPONSE"
 NUM_ENVIRONMENTS=$(echo $ENVIRONMENTS_RESPONSE | jq -r '._pageInfo.total')
 check_empty $NUM_ENVIRONMENTS "found no environments to use"
 ENVIRONMENT_ID=$(echo $ENVIRONMENTS_RESPONSE | jq -r
'.responseList[0].environmentId')
 echo "using environment '$ENVIRONMENT_ID'"
}
Get all database connectors and select the first one. Place the databaseConnectorId
in $CONNECTOR_ID.
get_connector_id() {
 echo "* getting all database connectors and selecting first one"
 CONNECTORS_RESPONSE=$(curl -s $SSL_CERT -X GET -H ''"$AUTH_HEADER"'' -H 'Content-
Type: application/json' $MASKING_ENGINE/database-connectors)
 check_error "$CONNECTORS_RESPONSE"
 NUM_CONNECTORS=$(echo $CONNECTORS_RESPONSE | jq -r '._pageInfo.total')
 check_empty $NUM_CONNECTORS "found no db connectors to use"
 CONNECTOR_ID=$(echo $CONNECTORS_RESPONSE | jq -r
'.responseList[0].databaseConnectorId')
 echo "using database connector '$CONNECTOR_ID'"
}

Get all database rulesets and select the first one. Place the databaseRulesetId in
$RULESET_ID.
get_ruleset_id() {
 echo "* getting all database rulesets and selecting first one"

Continuous Compliance – Continuous Compliance Home

Delphix masking APIs – 762

 RULESETS_RESPONSE=$(curl -s $SSL_CERT -X GET -H ''"$AUTH_HEADER"'' -H 'Content-
Type: application/json' $MASKING_ENGINE/database-rulesets)
 check_error "$RULESETS_RESPONSE"
 NUM_RULESETS=$(echo $RULESETS_RESPONSE | jq -r '._pageInfo.total')
 check_empty $NUM_RULESETS "found no db rulesets to use"
 RULESET_ID=$(echo $RULESETS_RESPONSE | jq -r '.responseList[0].databaseRulesetId')
 echo "using database ruleset '$RULESET_ID'"
}
Get all database tables for a database connector specified by $CONNECTOR_ID. Select
the first one and place in $TABLE_NAME.
get_table() {
 echo "* getting all tables for connector '$CONNECTOR_ID' and selecting first one"
 TABLES_RESPONSE=$(curl -s $SSL_CERT -X GET -H ''"$AUTH_HEADER"'' -H 'Content-
Type: application/json' $MASKING_ENGINE/database-connectors/$CONNECTOR_ID/fetch)
 check_error "$TABLES_RESPONSE"
 NUM_TABLES=$(echo $TABLES_RESPONSE | jq -r '. | length')
 check_empty $NUM_TABLES "found no tables to use"
 TABLE_NAME=$(echo $TABLES_RESPONSE | jq -r '.[0]')
 echo "using table '$TABLE_NAME'"
}

Get all column metadata for table metadata specified by $TABLE_METADATA_ID. Select
the first one and place in $COLUMN_METADATA_ID.
get_column_metadata_id() {
 echo "* getting all column metadata belonging to table metadata
'$TABLE_METADATA_ID' and selecting the first one"
 COLUMNS_RESPONSE=$(curl -s $SSL_CERT -X GET -H ''"$AUTH_HEADER"'' -H 'Content-
Type: application/json' $MASKING_ENGINE/column-metadata?
table_metadata_id=$TABLE_METADATA_ID)
 check_error "$COLUMNS_RESPONSE"
 NUM_COLUMNS=$(echo $COLUMNS_RESPONSE | jq -r '. | length')
 check_empty $NUM_COLUMNS "found no columns to use"
 COLUMN_METADATA=$(echo $COLUMNS_RESPONSE | jq -r '.responseList[0]')
 COLUMN_METADATA_ID=$(echo $COLUMN_METADATA | jq -r '.columnMetadataId')
 echo "using column '$COLUMN_METADATA_ID'"
}

Get all masking jobs and select the first one. Place the jobId in $MASKING_JOB_ID.
get_masking_job_id() {
 echo "* getting all masking jobs and selecting first one"
 MASKINGJOB_RESPONSE=$(curl -s $SSL_CERT -X GET -H ''"$AUTH_HEADER"'' -H 'Content-
Type: application/json' $MASKING_ENGINE/masking-jobs)
 check_error "$MASKINGJOB_RESPONSE"
 NUM_MASKINGJOB=$(echo $MASKINGJOB_RESPONSE | jq -r '._pageInfo.total')
 check_empty $NUM_MASKINGJOB "found no masking jobs to use"
 MASKING_JOB_ID=$(echo $MASKINGJOB_RESPONSE | jq -r
'.responseList[0].maskingJobId')
 echo "using masking job '$MASKINGJOB_ID'"
}

run_masking_job and save execution id in $MASKING_EXECUTION_ID.
run_masking_job() {
 echo "* running masking job '$MASKING_JOB_ID'..."

Continuous Compliance – Continuous Compliance Home

Delphix masking APIs – 763

 MASKINGJOB_RESPONSE1=$(curl $SSL_CERT -X POST -H ''"$AUTH_HEADER"'' -H 'Content-
Type: application/json' -H 'Accept: application/json' --data @- $MASKING_ENGINE/
executions <<EOF
 {
 "jobId": "$MASKING_JOB_ID"
 }
EOF
)
 echo "Response for Masking job is: '$MASKINGJOB_RESPONSE1'"
 MASKING_EXECUTION_ID=$(echo $MASKINGJOB_RESPONSE1 | jq -r '.executionId')
}

get_execution_status in $MASKING_EXECUTION_STATUS.
get_execution_status() {
 echo "* Getting execution details......for execution id = $1"
 MASKINGJOB_RESPONSE=$(curl -s $SSL_CERT -X GET -H ''"$AUTH_HEADER"'' -H 'Content-
Type: application/json' $MASKING_ENGINE/executions/$1)
 check_error "$MASKINGJOB_RESPONSE"
 MASKING_EXECUTION_STATUS=$(echo $MASKINGJOB_RESPONSE | jq -r '.status')
 echo "Execution status for id= $1 is '$MASKING_EXECUTION_STATUS'"
}
Check if $1 is equal to 0. If so print out message specified in $2 and exit.
check_empty() {
 if [$1 -eq 0]; then
 echo $2
 exit 1
 fi
}

Check if $1 is an object and if it has an 'errorMessage' specified. If so, print
the object and exit.
check_error() {
 # jq returns a literal null so we have to check against that...
 if ["$(echo "$1" | jq -r 'if type=="object" then .errorMessage else "null"
end')" != 'null']; then
 echo $1
 exit 1
 fi
}

Print the message and exit the program.
die() {
 echo
"***"
 echo "$(basename $0) ERROR: $*" >&2
 echo
"***"
 exit 1
}

Continuous Compliance – Continuous Compliance Home

Delphix masking APIs – 764

11.2.3 apiHostInfo

#!/bin/bash

#
This file contains all the host information for the masking engine. Additionally,
this file allows configuration of SSL if desired.
#

update host name
HOST="myMaskingEngine.com"
API_PATH="masking/api"

To connect via SSL, set $SSL to "on" and update the port if necessary (default 8443)
.
Additionally, you must update the path to the ssl certificate.
SSL="off"
SSL_PORT="8443"
update cert name
SSL_CERT_PATH="self-signed.cer"

if ["$SSL" = "on"]
then
 MASKING_ENGINE="https://$HOST:$SSL_PORT/$API_PATH"
 SSL_CERT="--cacert $SSL_CERT_PATH"
else
 MASKING_ENGINE="http://$HOST/$API_PATH"
 SSL_CERT=""
fi

11.2.4 Configure enclosure escape character

#!/bin/bash

#
This script uses the Masking Engine APIs to configure the enclosure escape
character feature.
The script uses the /login API to obtain an authentication token and then uses the
PUT /file-metadata API.
#
To use this script, you must set DOUBLE_ENCLOSURE,
CUSTOM_ENCLOSURE_ESCAPE_CHARACTER, ESCAPE_ENCLOSURE_ESCAPE_CHARACTER and RULESET_ID
accordingly
#

source ./apiHostInfo.bash

Continuous Compliance – Continuous Compliance Home

Delphix masking APIs – 765

eval $(cat ./loginCredentials.bash)
source ./helpers.bash

helpFunction() {
 echo ""
 echo "Usage: $0 -h HELP -d DOUBLE_ENCLOSURE -c CUSTOM_ENCLOSURE_ESCAPE_CHARACTER
-e ESCAPE_ENCLOSURE_ESCAPE_CHARACTER -r RULESET_ID"
 echo -e "\t-h Show the usage of the script"
 echo -e "\t-d Set the value for DOUBLE_ENCLOSURE"
 echo -e "\t-c Set the value for CUSTOM_ENCLOSURE_ESCAPE_CHARACTER"
 echo -e "\t-e Set the value for ESCAPE_ENCLOSURE_ESCAPE_CHARACTER"
 echo -e "\t-r Set the value for RULESET_ID"
 echo -e "\n\tAdditional Note:"
 echo -e "\t1: The default value for parameter D=true, no need to set the value if
you want to set enclosure escape character same as enclosure character."
 echo -e "\t2: If parameter D=true then custom enclosure escape character value
will be ignored."
 echo -e "\t3: The default value for parameter E=false, change accordingly as per
the requirement."
 echo -e "\t4: If parameter R is blank, it means changes will be applicable for
all rulesets. Pass the R={RULESET_ID} if you want to update the settings only for the
given ruleset. Example R=1"
 exit 1 # Exit script after printing help
}

Set DOUBLE_ENCLOSURE=true if you want to set enclosure escape character same as
enclosure character,
and if DOUBLE_ENCLOSURE=true then CUSTOM_ENCLOSURE_ESCAPE_CHARACTER value will be
ignored.
DOUBLE_ENCLOSURE=true
Replace * with your custom escape character if you want to set custom enclosure
escape character
and also DOUBLE_ENCLOSURE=false need to set
CUSTOM_ENCLOSURE_ESCAPE_CHARACTER="*"
Modify ESCAPE_ENCLOSURE_ESCAPE_CHARACTER value accordingly.
ESCAPE_ENCLOSURE_ESCAPE_CHARACTER=false
Comment this RULESET_ID if you want to update for all delimited file ruleset for
 which enclosure is defined.
#RULESET_ID=1

while getopts "h:d:c:e:r:" opt; do
 case "$opt" in
 h) helpFunction exit ;;
 d) DOUBLE_ENCLOSURE="$OPTARG" ;;
 c) CUSTOM_ENCLOSURE_ESCAPE_CHARACTER="$OPTARG" ;;
 e) ESCAPE_ENCLOSURE_ESCAPE_CHARACTER="$OPTARG" ;;
 r) RULESET_ID="$OPTARG" ;;
 ?) helpFunction ;; # Print helpFunction in case parameter is non-existent
 esac
done

Print helpFunction in case parameters are empty

Continuous Compliance – Continuous Compliance Home

Delphix masking APIs – 766

if [-z "$DOUBLE_ENCLOSURE"] || [-z "$CUSTOM_ENCLOSURE_ESCAPE_CHARACTER"] || [-z
"$ESCAPE_ENCLOSURE_ESCAPE_CHARACTER"]; then
 echo "Some or all of the parameters are empty"
 helpFunction
fi

login

echo "Calling GET /file-metadata API"
if [[-z "$RULESET_ID"]] || ["$RULESET_ID" = "null"] || ["$RULESET_ID" = ""];
then
 echo "Configuring the enclosure escape character feature for all File Ruleset."
 FILE_METADATA_RESPONSE=$(curl $SSL_CERT -X GET -H ''"$AUTH_HEADER"'' -H 'Accept:
application/json' ''"$MASKING_ENGINE/file-metadata"'')
else
 echo "Configuring the enclosure escape character feature for File
Ruleset(RULESET_ID=$RULESET_ID)"
 FILE_METADATA_RESPONSE=$(curl $SSL_CERT -X GET -H ''"$AUTH_HEADER"'' -H 'Accept:
application/json' ''"$MASKING_ENGINE/file-metadata?ruleset_id=$RULESET_ID"'')
fi

i=0
while true; do
 ENCLOSURE=$(jq '.responseList['$i'] .enclosure' <<<"$FILE_METADATA_RESPONSE")

 if ["$DOUBLE_ENCLOSURE" = true]; then
 CUSTOM_ENCLOSURE_ESCAPE_CHARACTER=$ENCLOSURE
 fi

 UPDATED_FILE_METADATA_RESPONSE=$(jq '.responseList['$i'] .enclosureEscapeCharacte
r='$CUSTOM_ENCLOSURE_ESCAPE_CHARACTER'' <<<"$FILE_METADATA_RESPONSE")
 UPDATED_FILE_METADATA_RESPONSE=$(jq '.responseList['$i'] .escapeEnclosureEscapeCh
aracter='$ESCAPE_ENCLOSURE_ESCAPE_CHARACTER'' <<<"$UPDATED_FILE_METADATA_RESPONSE")
 FILE_METADATA_RESPONSE=$UPDATED_FILE_METADATA_RESPONSE
 FILE_METADATA_OBJECT=$(jq '.responseList['$i']' <<<"$FILE_METADATA_RESPONSE")
 FILE_METADATA_ID=$(jq '.responseList['$i'] .fileMetadataId' <<<"$FILE_METADATA_RE
SPONSE")

 if [[-z "$FILE_METADATA_ID"]] || ["$FILE_METADATA_ID" = "null"]; then
 break
 else
 if [[! -z "$ENCLOSURE"]] && [! "$ENCLOSURE" = "null"] && [! "$ENCLOSURE"
 = ""]; then
 echo "Calling $MASKING_ENGINE/file-metadata/$FILE_METADATA_ID API to
update enclosureEscapeCharacter=$CUSTOM_ENCLOSURE_ESCAPE_CHARACTER and
escapeEnclosureEscapeCharacter=$ESCAPE_ENCLOSURE_ESCAPE_CHARACTER"
 UPDATE_RESPONSE=$(curl $SSL_CERT -X PUT -H ''"$AUTH_HEADER"'' -H
'Content-Type: application/json' -H 'Accept: application/json' -d ''"$FILE_METADATA_O
BJECT"'' ''"$MASKING_ENGINE/file-metadata/$FILE_METADATA_ID"'')
 check_error "$UPDATE_RESPONSE"
 fi
 fi
 ((i++))

Continuous Compliance – Continuous Compliance Home

Delphix masking APIs – 767

done

echo

11.2.5 createApplication

#!/bin/bash

#
This script will login and create an application. It depends on helpers in the
helpers script as well as host and login
information found in apiHostInfo and loginCredentials, respectively.
#

source apiHostInfo
eval $(cat loginCredentials)
source helpers

login

echo "* creating application 'App123'..."
curl $SSL_CERT -X POST -H ''"$AUTH_HEADER"'' -H 'Content-Type: application/json' -H
'Accept: application/json' --data @- $MASKING_ENGINE/applications <<EOF
{
 "applicationName": "App123"
}
EOF

echo

11.2.6 createEnvironment

#!/bin/bash

#
This script will login and create an environment with an application. It depends on
helpers in the helpers
script as well as host and login information found in apiHostInfo and
loginCredentials, respectively.
#

source apiHostInfo
eval $(cat loginCredentials)
source helpers

login

Continuous Compliance – Continuous Compliance Home

Delphix masking APIs – 768

#
When deciding which application to place the environment in we simply choose the
first application found. You are
encouraged to modify this to suit your needs. Please see get_application_id in
helpers for more information.
#
get_application_id

echo "* creating environment 'newEnv' in application '$APPLICATION_ID'..."
curl $SSL_CERT -X POST -H ''"$AUTH_HEADER"'' -H 'Content-Type: application/json' -H
'Accept: application/json' --data @- $MASKING_ENGINE/environments <<EOF
{
 "environmentName": "newEnv",
 "application": "$APPLICATION_ID",
 "purpose": "MASK"
}
EOF

echo

11.2.7 createInventory

#!/bin/bash

#
This script will login and create an environment with an application. It depends on
helpers in the helpers
script as well as host and login information found in apiHostInfo and
loginCredentials, respectively.
#

source apiHostInfo
eval $(cat loginCredentials)
source helpers

login

#
When deciding which application to place the environment in we simply choose the
first application found. You are
encouraged to modify this to suit your needs. Please see get_application_id in
helpers for more information.
#
get_application_id

echo "* creating environment 'newEnv' in application '$APPLICATION_ID'..."
curl $SSL_CERT -X POST -H ''"$AUTH_HEADER"'' -H 'Content-Type: application/json' -H
'Accept: application/json' --data @- $MASKING_ENGINE/environments <<EOF
{
 "environmentName": "newEnv",

Continuous Compliance – Continuous Compliance Home

Delphix masking APIs – 769

 "application": "$APPLICATION_ID",
 "purpose": "MASK"
}
EOF

echo

11.2.8 create DatabaseConnector

#!/bin/bash

#
This script will login and create a database connector in an environment. It
depends on helpers in the helpers
script as well as host and login information found in apiHostInfo and
loginCredentials, respectively.
#

source apiHostInfo
eval $(cat loginCredentials)
source helpers

login

#
When deciding which environment to place the connector in we simply choose the
first environment found. You are
encouraged to modify this to suit your needs. Please see get_environment_id in
helpers for more information.
#
get_environment_id

echo "* creating database connector 'connector' in environment '$ENVIRONMENT_ID'..."
curl $SSL_CERT -X POST -H ''"$AUTH_HEADER"'' -H 'Content-Type: application/json' -H
'Accept: application/json' --data @- $MASKING_ENGINE/database-connectors <<EOF
{
 "connectorName": "connector",
 "databaseType": "ORACLE",
 "environmentId": $ENVIRONMENT_ID,
 "host": "myHost",
 "password": "myPassword",
 "port": 1234,
 "schemaName": "MYSCHEMA",
 "sid": "mySID",
 "username": "MYUSERNAME"
}
EOF

echo

Continuous Compliance – Continuous Compliance Home

Delphix masking APIs – 770

11.2.9 create DatabaseRuleset

#!/bin/bash

#
This script will login and create a database ruleset for a database connector. It
depends on helpers in the helpers
script as well as host and login information found in apiHostInfo and
loginCredentials, respectively.
#

source apiHostInfo
eval $(cat loginCredentials)
source helpers

login

#
When deciding which database connector we will use, we simply choose the first
database connector found. You are
encouraged to modify this to suit your needs. Please see get_connector_id in
helpers for more information.
#
get_connector_id

echo "* creating database ruleset 'myRuleset' in db connector '$CONNECTOR_ID'..."
curl $SSL_CERT -X POST -H ''"$AUTH_HEADER"'' -H 'Content-Type: application/json' -H
'Accept: application/json' --data @- $MASKING_ENGINE/database-rulesets <<EOF
{
 "rulesetName": "myRuleset",
 "databaseConnectorId": $CONNECTOR_ID
}
EOF

echo

11.2.10 getBillingUsage

#!/bin/bash

#
This script is an "out of the box" script that goes through
Login and GET /billing-usage with the authentication
token from Login
#

Continuous Compliance – Continuous Compliance Home

Delphix masking APIs – 771

source apiHostInfo
eval $(cat loginCredentials)
source helpers

login

START_DATE=yyyy-mm-dd
END_DATE=yyyy-mm-dd

echo "* GET /billing-usage for date range $START_DATE - $END_DATE from
$EXPORT_ENGINE"
EXPORT_RESPONSE=$(curl $SSL_CERT -X GET -H ''"$AUTH_HEADER"'' -H 'Accept:
application/json' $MASKING_ENGINE/billing-usage?
start_date=$START_DATE\&end_date=$END_DATE) || die "curl failed with exit code $?"
echo $EXPORT_RESPONSE

11.2.11 getAuditLogs

#!/bin/bash

#
This script is an "out of the box" script that goes through
Login and GET /audit-logs with the authentication
token from Login
#

source apiHostInfo
eval $(cat loginCredentials)
source helpers

login

echo "* GET /audit-logs from $EXPORT_ENGINE"
EXPORT_RESPONSE=$(curl $SSL_CERT -X GET -H ''"$AUTH_HEADER"'' -H 'Accept:
application/json' $MASKING_ENGINE/audit-logs)

Calculate the number of audit log entries and the proximity to the entry limit.
AUDIT_ENTRY_COUNT=$(jq '._pageInfo.total' <<<"$EXPORT_RESPONSE")
MAX_ENTRIES=1000000
DIFFERENCE=$((MAX_ENTRIES-AUDIT_ENTRY_COUNT))

Retrieve the date of the oldest audit entry retained.
OLDEST_DATE=$(jq '.responseList[1].activityTime' <<<"$EXPORT_RESPONSE")

echo "There are $AUDIT_ENTRY_COUNT entries in the audit log. After $DIFFERENCE more
audits you will hit the $MAX_ENTRIES limit and will begin to overwrite entries
starting from the oldest, which was created on: $OLDEST_DATE"

Continuous Compliance – Continuous Compliance Home

Delphix masking APIs – 772

11.2.12 getSyncableObjects

#!/bin/bash

#
This script is an "out of the box" script that goes through
Login and GET /syncable-objects with the authentication
token from Login
#

source apiHostInfo
eval $(cat loginCredentials)
source helpers

login

echo "* GET /syncable-objects from $EXPORT_ENGINE"
EXPORT_RESPONSE=$(curl $SSL_CERT -X GET -H ''"$AUTH_HEADER"'' -H 'Accept:
application/json' $MASKING_ENGINE/syncable-objects)
echo $EXPORT_RESPONSE

11.2.13 getSyncableObjectsExport

#!/bin/bash

#
This script will log in and get all syncable objects on
the Masking Engine and then, given a grouping command, save the
exported document in a file and export all syncable objects
in the indicated group
#
Grouping command:
algoType: -t <LOOKUP | BINARYLOOKUP | SEGMENT | TOKENIZATION | KEY>
algoCd: -n <RegexForAlgoName>
#
Currently the response from GET /syncable-objects is saved
to getobj_response.json, and the grouped input for /export
in grouped_export_list.json, and the final export response
into export_response.json. But of course, this can script
can be modified to save to other specified places.
#

source apiHostInfo
eval $(cat loginCredentials)
source helpers

login

Continuous Compliance – Continuous Compliance Home

Delphix masking APIs – 773

echo "* GET /syncable-objects"
GETOBJ_RESPONSE=$(curl $SSL_CERT -X GET -H ''"$AUTH_HEADER"'' -H 'Content-Type:
application/json' $MASKING_ENGINE/syncable-objects)
echo $GETOBJ_RESPONSE > "./getobj_response.json"

Create a temporary export list file
GROUPED_EXPORT_LIST="./grouped_export_list.json"
echo "[]" > $GROUPED_EXPORT_LIST

if [[$1 == "-t"]]; then
 ALGO_TYPE=$2
 echo "* Filter for all syncable objects of algorithm type $ALGO_TYPE"

 jq -c '.responseList[]' getobj_response.json | while read i; do
 if [[$(echo $i | jq '.objectType') == \"$ALGO_TYPE\"]]; then
 # The key to getting the correct json format here was to use
 # the --argjson instead of --arg. --arg will stringify everything
 # and escape all special characters like {, ", etc.
 echo $(cat $GROUPED_EXPORT_LIST | jq --argjson obj "$i" '. |= . + [$obj]') >
$GROUPED_EXPORT_LIST
 fi
 done
elif [[$1 == "-n"]]; then
 ALGO_NAME_REGEX=$2
 echo "* Filter for all syncable objects where algorithmCd matches the regex
$ALGO_NAME_REGEX"

 jq -c '.responseList[]' getobj_response.json | while read i; do
 if [["$(echo $i | jq '.objectIdentifier.algorithmName')" =~
\"$ALGO_NAME_REGEX\"]]; then
 echo $(cat $GROUPED_EXPORT_LIST | jq --argjson obj "$i" '. |= . + [$obj]')
> $GROUPED_EXPORT_LIST
 fi
 done
fi

echo "* Export syncable objects from $GROUPED_EXPORT_LIST"
EXPORT_RESPONSE=$(curl $SSL_CERT -X POST -H ''"$AUTH_HEADER"'' -H 'Content-Type:
application/json' -H 'Accept: application/json' -d "$(<$GROUPED_EXPORT_LIST)"
 $MASKING_ENGINE/export)

Save the grouped export response into a file
echo $EXPORT_RESPONSE > export_response.json
echo '* Completed exporting. Check "export_response.json" for the export document.
This export document json object will be what you literally put in as the input for
import'

Continuous Compliance – Continuous Compliance Home

Delphix masking APIs – 774

11.2.14 profileTypeExpressions

11.2.14.1 Add a new type expression

#!/bin/bash

#
This script will login and create a profile type expression. It depends on helpers
in the helpers script as well as host and login
information found in apiHostInfo and loginCredentials, respectively.
#

source apiHostInfo
eval $(cat loginCredentials)
source helpers

login

curl $SSL_CERT -X POST -H ''"$AUTH_HEADER"'' -H 'Content-Type: application/json' -H
'Accept: application/json' --data @- $MASKING_ENGINE/profile-type-expressions <<EOF
{
 "domainName": "FIRST_NAME",
 "expressionName": "FirstNameType",
 "dataType": "String",
 "minDataLength": 5
}
EOF

echo

To be effective, a Profile Type Expression has to be part of a profile set. A type expression can be added to a
profile set with the profile-sets endpoint. For example, if some Profile Type Expressions were created and
have ids 57 and 48, we can use the PUT method on the profile-set endpoint to update an existing profile set
so that it includes the new profile type expression. This is shown below, where the profile set has id 42.

#!/bin/bash

source apiHostInfo
eval $(cat loginCredentials)
source helpers

login

curl $SSL_CERT -X PUT -H ''"$AUTH_HEADER"'' -H 'Content-Type: application/json' -H
'Accept: application/json' --data @- $MASKING_ENGINE/profile-sets/42 <<EOF
{
 "profileSetName": "FINDS_ALL_SENSITIVE_DATA",

Continuous Compliance – Continuous Compliance Home

Delphix masking APIs – 775

 "profileExpressionIds": [
 4,
 8,
 12,
 13,
 27
],
 "profileTypeExpressionIds": [
 57,
 58
]
}
EOF

11.2.14.2 Delete a type expression

Deleting a type expression is done using the DELETE method on the profile-type-expression endpoint. The
expression must be removed from any profile sets it's a part of before it can be deleted.

#!/bin/bash

#
This script will login and delete a profile type expression. It depends on helpers
in the helpers script as well as host and login
information found in apiHostInfo and loginCredentials, respectively.
#

source apiHostInfo
eval $(cat loginCredentials)
source helpers

login

echo "* creating application 'App123'..."
curl $SSL_CERT -X DELETE -H ''"$AUTH_HEADER"'' -H 'Content-Type: application/json' -H
'Accept: application/json' --data @- $MASKING_ENGINE/profile-type-expressions/57

echo

11.2.15 runMaskingJob

This script will login and run a masking job. It depends on helpers in the helpers script as well as host and
login information found in apiHostInfo and loginCredentials, respectively.

#!/bin/bash
source apiHostInfo
eval $(cat loginCredentials)

Continuous Compliance – Continuous Compliance Home

241 https://delphixdocs.atlassian.net/continuous-data/docs/using-pre-and-post-scripts-with-sql-server-dsources

Delphix masking APIs – 776

source helpers

login

When deciding which masking job to run, we simply choose the first masking job found. You are encouraged
to modify this to suit your needs. Please see get_masking_job_id in helpers for more information.

get_masking_job_id

echo "* running masking job '$MASKING_JOB_ID'..."
curl $SSL_CERT -X POST -H ''"$AUTH_HEADER"'' -H 'Content-Type: application/json' -H
'Accept: application/json' --data @- $MASKING_ENGINE/executions <<EOF
{
 "jobId": "$MASKING_JOB_ID"
}
EOF
echo

If a masking job is called by a PowerShell hook script, the following command MUST be added to the script
using the Powershell -File prefix, file path;, and the exit $LASTEXITCODE suffix.
PowerShell -File C:\Users\HomeFolder\AddUser.ps1; exit $LASTEXITCODE

If this is not added then Delphix will not know if the script ran or completed. For more information, please
visit this SQL Server PowerShell Script Error Handling241 documentation.

11.2.16 getDatabaseUsage

#!/bin/bash

#
This script is an "out of the box" script that goes through
Login and GET /database-usage with the authentication
token from Login
#

source apiHostInfo
eval $(cat loginCredentials)
source helpers

login

echo "* GET /database-usage from $EXPORT_ENGINE"
EXPORT_RESPONSE=$(curl $SSL_CERT -X GET -H ''"$AUTH_HEADER"'' -H 'Accept:
application/json' $MASKING_ENGINE/database-usage) || die "curl failed with exit code
$?"
echo $EXPORT_RESPONSE

https://delphixdocs.atlassian.net/continuous-data/docs/using-pre-and-post-scripts-with-sql-server-dsources
https://delphixdocs.atlassian.net/continuous-data/docs/using-pre-and-post-scripts-with-sql-server-dsources

Continuous Compliance – Continuous Compliance Home

242 https://download.delphix.com/folder/574/Delphix%20Product%20Releases/Masking%20SDK
243 http://download.delphix.com

Authoring extensible plugins – 777

•
•
•
•
•
•
•
•
•

12 Authoring extensible plugins
This section covers the following articles:

Introduction (Authoring extensible plugins) (see page 778)

General plugin structure (see page 781)

Setting up your development environment (see page 786)

Algorithms (Authoring extensible plugins) (see page 788)

Driver supports (see page 830)

Managing plugins using the API client (see page 845)

Installing a plugin onto the Delphix masking engine (see page 845)

Secure plugin deployment (see page 847)

Terminology (see page 849)

12.1 Introduction (Authoring extensible plugins)
The SDK was formerly referred to as the Masking Algorithm SDK, but it is now referred to as the Masking
Extensible SDK, as of SDK version 1.5.0, as it now allows for the development of different types of extensible
plugins. As of Delphix release 6.0.3.0, the Delphix Masking Engine supports the installation of plugins, written
in Java, that provide new masking algorithms; and as of 6.0.9.0, driver support plugins. The former feature is
referred to as Extensible Algorithms and the latter is referred to as Extensible Driver Supports. This section of
the documentation details all aspects of masking algorithm and driver support plugin usage and
development. The Guided Tour portion of the workflows section for Extensible Algorithms (see page 794) and
Extensible Driver Supports (see page 794) walk the user through the basic process of building a simple plugin
and installing it onto the Delphix Masking Engine. Other sections explore in-depth topics such as making
algorithms configurable, consuming input files, etc.

This documentation assumes the reader has some familiarity with Java development as well as operation of
the Delphix Masking Engine via both the UI and Web API Client. The reader should also understand the
security requirements associated with any new algorithms being developed.

12.1.1 Before getting started

This documentation assumes you have a functional Java 8 development environment. Instructions for
setting up a basic development environment are here (see page 786).

You should also download the Extensible SDK binary package242 from the Delphix download site243 and
unpack it into a new directory on your development system. This directory - the root of the unpacked archive
- will be referred to as sdk_root.

It's helpful to add the binaries directory to your PATH. On a UNIX like system, this command will add the SDK
utilities to PATH:

https://download.delphix.com/folder/574/Delphix%20Product%20Releases/Masking%20SDK
http://download.delphix.com
https://download.delphix.com/folder/574/Delphix%20Product%20Releases/Masking%20SDK
http://download.delphix.com

Continuous Compliance – Continuous Compliance Home

244 http://download.delphix.com

Authoring extensible plugins – 778

•
•

•

•

•
•
•

$ PATH=$PATH:$(pwd)/sdkTools/bin

It is presumed that the SDK bin directory is in the user's PATH throughout this documentation.

12.1.2 SDK features

The Extensible SDK provides a number of useful functions that aid development of new algorithms and driver
supports for the Delphix Masking Engine. It is available on the Delphix software download site244.

Creation of empty "skeleton" projects, with build files - the maskScript init sub-command
Creation of empty class files for algorithms and driver supports - the maskScript generate sub-
command
Testing of masking algorithms and driver supports without a masking engine

The maskApp CLI (only algorithms)

The maskScript mask sub-command (both algorithms and driver supports)
Uploading of plugins to the masking engine - the maskScript install sub-command
Sample algorithms and driver supports that illustrate the usage of key features of the Masking Plugin
API

12.1.3 Versions Compatibility

The SDK shares some key elements with the Masking Engine, so in order for the SDK to provide behaviors as
close as possible to the Masking Engine, use the SDK version which corresponds to the Masking Engine
where you are planning to use the created algorithm(s). The SDK and the Masking Engine use a common
Masking API which provides the mechanisms to run the extensible algorithms. Masking algorithms built on
the SDK using the latest Masking API will not necessarily run on an older Masking Engine version.

Delphix Release Masking API* Extensible SDK*

6.0.3 1.0.0 -

6.0.4 1.1.0 1.0.0

6.0.5 1.1.0 1.1.0

6.0.6 1.2.0 1.2.0

6.0.7 1.3.0 1.3.0

6.0.8 1.4.0 1.4.0

http://download.delphix.com
http://download.delphix.com

Continuous Compliance – Continuous Compliance Home

Authoring extensible plugins – 779

Delphix Release Masking API* Extensible SDK*

6.0.9 1.5.0 1.5.0

6.0.10 1.6.0 1.6.0

6.0.11 1.6.0 1.6.0

6.0.12 1.7.0 1.7.0

6.0.13 1.8.0 1.8.0

6.0.14 1.9.0 1.9.0

6.0.15 1.10.0 1.10.0

6.0.16 1.11.0 1.11.0

6.0.17 1.12.0 1.12.0

7.0 1.13.0 1.13.0

8.0 1.14.0 1.14.0

9.0 1.15.0 1.15.0

10.0 1.16.0 1.16.0

11.0 1.17.0 1.17.0

12.0 1.18.0 1.18.0

13.0 1.19.0 1.19.0

14.0, 15.0 1.20.0 1.20.0

16.0 1.21.0 1.21.0

Continuous Compliance – Continuous Compliance Home

245 https://maskingdocs.delphix.com/maskingPluginAPIJavadoc/

Authoring extensible plugins – 780

•
•
•

•

•
•
•
•

Several other sources of information are available to aid in plugin development:

The README.md file under docs in the Extensible SDK download archive
The Masking Plugin API Javadoc245

Invoke maskScript (located under sdkTools/bin in the SDK download) with the -h option for usage
help
Type help at the maskApp (also under sdkTools/bin in the SDK download) command prompt

12.2 General plugin structure
This section covers the following topics:

Introduction (General plugin structure) (see page 781)

Dependency management (see page 781)

Plugin Metadata (see page 784)

Versioning (see page 785)

12.2.1 Introduction (General plugin structure)

This section describes the structure of the plugin Java archive (JAR) files used to extend the Continuous
Compliance Engine with additional algorithms. This includes the MaskingAlgorithm interface that classes
providing new algorithm code must implement, and various other metadata present in the plugin JAR
required for the plugin to be usable. It also discusses some aspects of build dependencies and common
pitfalls involved when adding new 3rd party dependencies.

Plugins for the Masking Engine should be self-contained. This means they should included all Java classes
necessary to run, with a few critical exclusions. The Java classes that comprise the Masking Plugin API itself
are the exception; these must be excluded from the plugin JAR to ensure that the plugin properly uses the
API classes present on the Masking Engine (or SDK during the test process). This is described in more detail
in the dependency management section. (see page 781)

12.2.2 Dependency management

A vast assortment of third-party Java libraries are available, expanding the set of ready-to-use functionality
well beyond what is already a rich standard library. Plugins for the Delphix Masking engine are able to make
use of external libraries, but a number of guidelines should be followed to ensure proper function and
compatibility. Note that the plugin classloader uses a plugin-first loading strategy for dependencies.

Prior to Delphix Release 6.0.9 and SDK release 1.5.0, Masking API was referred to as Algorithm
API and Extensible SDK as Algorithm SDK.

https://maskingdocs.delphix.com/maskingPluginAPIJavadoc/
https://maskingdocs.delphix.com/maskingPluginAPIJavadoc/

Continuous Compliance – Continuous Compliance Home

Authoring extensible plugins – 781

•

•

•

•

•

•

•

•

•

12.2.2.1 How to properly use and embed external libraries

When using an external library in a plugin for the Delphix Masking engine, consider these guidelines:

The plugin JAR should contain all external libraries. This is commonly referred to as a "fat JAR". This
prevents the plugin code from inadvertently linking with copies of the same library that might happen
to be part of the Masking Engine's codebase, leading to potential version conflicts and unpredictable
behavior across upgrades.
However, a small set of packages defining the interface between plugins and the Delphix Masking
Engine must not be embedded in the JAR. It is critical that, for these packages, the plugin code link
against the same classes already loaded by the engine. These packages are:

com.delphix.masking:masking-algorithm-api

com.fasterxml.jackson.core:jackson-annotations

com.google.code.findbugs:jsr305

junit:junit

If the externally created plugin uses any of the mentioned libraries, the exact same libraries versions should
be used by the plugin author, as the ones used by the SDK. The way to find those versions is:

- in the installed SDK find the following gradle file under `samples` directory:
 * gradle.properties

It contains the versions of the SDK provided external libraries, for example:

googleGuavaVer=28.0-jre
 maskingAlgoVer=1.3.0
 jacksonVer=2.9.5
 junitVer=4.12

Looking to those versions author should decide what version of corresponding library to use (if it is required
by their design).

Plugins consuming third-party libraries should be thoroughly tested, as it is not uncommon that
library code will attempt to use permissions not granted by the plugin sandbox. If this is the case,
there is currently no way to modify the constraints under which the plugin code is executed.
The plugin author, not Delphix, is responsible for ensuring that any license files or other forms of
attribution required by any embedded software are handled properly.
The entity deploying the plugin, not Delphix, is responsible for ensuring the organization operating the
Masking Engine has obtained the necessary licenses or rights to use any embedded software.

12.2.2.2 Example build file

The following fragments, derived from the sample algorithm build.gradle file, illustrate how to correctly build
a plugin using the gradle build system:

Continuous Compliance – Continuous Compliance Home

Authoring extensible plugins – 782

•

•

•

jar {
 from {
 configurations.runtimeClasspath.collect { it.isDirectory() ? it :
zipTree(it) }
 }
 includeEmptyDirs = false

 manifest {
 attributes(
 (PluginMetadata.PLUGIN_NAME_KEY) : "SampleAlgorithms",
 (PluginMetadata.AUTHOR_NAME_KEY) : "Sample Author",
 (PluginMetadata.PLUGIN_VERSION_KEY) : "1.0.0 ${getGitHash}",
 (PluginMetadata.ALGORITHM_API_VERSION_KEY): maskingAlgoVer,
 'Build-Timestamp': new java.text.SimpleDateFormat("yyyy-MM-
dd'T'HH:mm:ss.SSSZ").format(new Date()),
 'Created-By' : "Gradle ${gradle.gradleVersion}",
 'Build-Jdk' : "${System.properties['java.version']} ($
{System.properties['java.vendor']} ${System.properties['java.vm.version']})",
 'Build-OS' : "${System.properties['os.name']} $
{System.properties['os.arch']} ${System.properties['os.version']}",
)
 }
}

dependencies {
 compileOnly ('com.google.code.findbugs:jsr305:3.0.2')
 compileOnly ('com.delphix.masking:masking-algorithm-api:' + maskingAlgoVer)
 compileOnly ('com.fasterxml.jackson.core:jackson-annotations:' + jacksonVer)

 compile 'com.google.guava:guava:' + googleGuavaVer

 testImplementation 'com.google.code.findbugs:jsr305:3.0.2'
 testImplementation 'com.delphix.masking:masking-algorithm-api:' + maskingAlgoVer
 testImplementation 'com.fasterxml.jackson.core:jackson-annotations:' + jacksonVer
 testImplementation 'junit:junit:' + junitVer
 testImplementation "com.google.truth:truth:" + googleTruthVer
}

How this works:

The "from { ... }" property of the jar section instructs gradle to included all classed need at runtime in
the plugin JAR file.
In the dependencies section, packages comprising the interface between the plugin and Masking
Engine are listed as compileOnly. This excludes them from the runtime environment and causes them
to be omitted from the plugin JAR file.
The third-party code dependency on the popular Google Guava library is listed as compile, causing it
to be included in the plugin JAR file.

Continuous Compliance – Continuous Compliance Home

Authoring extensible plugins – 783

12.2.3 Plugin Metadata

When a plugin is built for use with the Masking Engine, it is critical that certain metadata be included in the
plugin JAR file. This includes certain attributes in the JAR's manifest, as well as the service discovery file
used to determine which classes in the JAR are directly usable by the Extensibility Framework.

12.2.3.1 Manifest Attributes

Java archives carry metadata attributes in the manifest file, located at META-INF/MANIFEST.MF in the
archive file. Some of these attributes are required or at minimum quite useful in a plugin's manifest.

The following attributes carry special meaning to the extensibility framework when present in a plugin's
manifest. Care must be taken to ensure they are set to valid and meaningful values for any plugins intended
for production use. Additional attributes may be supported in the future. Any future attributes introduced for
anything beyond a purely informational purpose will be of the format "Delphix-*" to avoid conflict with any
preexisting usage.

12.2.3.1.1 Recognized Manifest Attributes

Attribute Meaning Example Value

Delphix-
Plugin-
Name

The default name of the plugin. This name will be used on the
Masking Engine unless overridden at plugin install time. All plugin
names beginning with the string "dlpx" are reserved for future use by
modules delivered with the Delphix Masking Engine product.

SamplePlugin

Implement
ation-
Vendor

The individual or organization that authored the plugin module. Sample Inc.

Implement
ation-
Version

The version of the plugin. This is an entirely free-form string, limited
to 255 characters.

1.0.0-SNAPSHOT

Delphix-
Algorithm-
API-
Version

The version of the Delphix Masking Plugin API used by the plugin.
This value must be present and represent a valid API version.

1.0.0

Variables defining the package dependency versions are typically read from the
gradle.properties file.

Continuous Compliance – Continuous Compliance Home

Authoring extensible plugins – 784

12.2.4 Versioning

In order to ensure compatibility between each software component in the extensible algorithms system,
careful use of versioning must be enforced. The goals are twofold; first, to ensure that the version of each
software module is visible, and second, to ensure that incompatible plugins are detected and prevented from
running. The software modules particular to extensible algorithms - the Masking Plugin API and Masking
Algorithm SDK, use a version number in the following format: Major.Minor.Micro, with an option -TEXT
notation.

Version information for the plugin, including the plugin version and the version of the Masking Plugin API it
was built against, are embedded in the plugin JAR file as metadata (see page 784).

12.2.4.1 Table of Versioned Objects

The following table explains how each software module is versioned, and what enforcement takes place:

Software Module Example Values Details

Delphix Masking
Engine

6.0.3.0 None, however the Masking Algorithm API version is fixed for
each particular Delphix Masking Engine release.

Masking Plugin
API

1.0.0 The version of the Masking Plugin API used to build a plugin
must be embedded in each Plugin. This is done automatically
when plugins are built using the Masking Algorithm SDK.
Currently, as only one version of the Masking Plugin API exists,
the only enforcement in place ensures that a valid version has
been been embedded in the plugin metadata. In the future,
should it be necessary to make backward incompatible
changes to the Masking Plugin API, a support matrix will be
established and enforced.

Masking Algorithm
SDK

1.0.0 Each version of the Masking Algorithm SDK will have a
maximum version of the Masking Plugin API it can handle, and
will refuse to work with future versions. This is not currently
enforced.

Plugins Author defined No enforcement. The plugin version will be visible using the
Masking API GET operation on the Plugin endpoint.

The maskScript init sub-command adds logic to the gradle build files to ensure that the project
build inserts the correct attribute values into the plugin manifest.

Continuous Compliance – Continuous Compliance Home

Authoring extensible plugins – 785

•

•

12.2.4.2 Ensuring Plugin Compatibility

As the implementation of a plugin evolves, it's natural for the software to change. Changes like bug fixes,
performance improvements, etc. can typically be made transparently, without endangering backward
compatibility. Challenges can arise when it is necessary to change the configuration schema for a
framework within a plugin or remove certain algorithm frameworks or instances from a plugin. This section
will detail some best practices for maximizing backward compatibility in each case.

In this case, backward compatibility means that it is possible to upgrade the plugin to a new version on the
masking engine without removing the previous version of the plugin. While it is always possible to replace a
plugin by removing the old plugin and installing a new one, this requires manual reconstruction of any
inventory that references the algorithms based on the old plugin, which can be very labor-intensive.

12.2.4.2.1 Schema Changes

A schema change means altering the set of configuration parameters exposed by an algorithm framework.
For example, this might be done to add a case-insensitive flag to an algorithm that processes Strings. In
order to make this kind of change while preserving backward compatibility, the following rules must be
followed:

Existing configurable variables cannot be removed or modified. These are the class fields with to
which the @JsonProperty annotation has been applied.
New configurable variables may be added, but they must have a default value, so that applying a
JSON document lacking a value for the new field results in a valid instance.

If changes must be made that do not meet these requirements, it may be preferable to expose the new or
modified functionality as a new algorithm framework, rather than changing the existing one.

12.2.4.2.2 Component Removal

Component removal means removing an algorithm framework or a built-in instance provided by an existing
framework. When this happens, updating to the new version of the plugin will be blocked if any of the
removed objects are in use by the Delphix Masking Engine. This includes references in Inventory, Domains,
and any File Formats. In addition, the presence of any user-created algorithms based on a framework which
is removed in the new plugin version will block updating.

12.2.4.3 Plugin Naming

One last compatibility concern is the potential for a plugin name to clash with the name of plugins delivered
by the Delphix Masking Engine product. Such a clash would make it impossible to upgrade the engine to a
new version without first removing the conflicting user installed plugin. To avoid this concern, avoid
embedding any default plugin name beginning with the string "dlpx".

Continuous Compliance – Continuous Compliance Home

246 https://www.oracle.com/technetwork/java/javase/downloads/index.html
247 https://adoptopenjdk.net/?variant=openjdk8&jvmVariant=hotspot
248 https://www.jetbrains.com/idea/download/

Authoring extensible plugins – 786

•

•

1.

2.

3.

4.

5.

6.

7.

12.3 Setting up your development environment
This section describes the step-by-step process for setting up the development environment that was used
to develop and test many of the procedures in this Guided Tour. A rich set of tools exist to support Java
development, so this is by no mean the only development environment possible.

12.3.1 Downloading and installing tools

Download and install the Oracle Java JDK246 or OpenJDK247 from the AdoptOpenJDK Project. Make
sure you install Java 8 version.
Download and install IntelliJ IDEA Community Edition248 for your OS. These instructions are known to
work for version 2019.3.

12.3.2 Creating a new project

Identify the root directory of your project code. For example, if you used the instructions to create a new
algorithm (see page 794)or driver support (see page 834) project, this directory is referred to as proj_dir.

Start IntelliJ IDEA. A pop-up should appear.

Select Project Settings > Project > Project SDK > New > JDK

Provide the path to the JDK you installed earlier (e.g. /Library/Java/JavaVirtualMachines/
jdk1.8.0_60.jdk/Contents/Home). Select OK.

For Project language level, set to "8 - Lambda, type annotations etc."

In the IntelliJ IDE, select Import Project from the pop-up.

Provide the path to the root of your project, for example, proj_dir.

Select Import project from external model and Gradle, and then select Next.

After the project is imported, a directory tree is shown on the left panel.

At this point, the development environment should be ready to use.

As of version 6.0.3.0, the Delphix Masking Engine's JVM version is 8, so it's important to build a
plugin compatible with Java 8.

https://www.oracle.com/technetwork/java/javase/downloads/index.html
https://adoptopenjdk.net/?variant=openjdk8&jvmVariant=hotspot
https://www.jetbrains.com/idea/download/
https://www.oracle.com/technetwork/java/javase/downloads/index.html
https://adoptopenjdk.net/?variant=openjdk8&jvmVariant=hotspot
https://www.jetbrains.com/idea/download/

Continuous Compliance – Continuous Compliance Home

249 http://download.delphix.com/

Authoring extensible plugins – 787

12.3.3 Enabling remote debugging

It is often useful to enable remote debugging, which allows the IDEs debugger to attach to a running
maskApp or maskScript process. To enable remote debugging, certain environment variables must be set. In
both cases, the value 5005 can be replaced with the value of any open TCP port.

For maskApp

MASK_APP_OPTS='-Xdebug -Xnoagent -Djava.compiler=NONE
-Xrunjdwp:transport=dt_socket,server=y,suspend=n,address=5005'

For maskScript

MASK_SCRIPT_OPTS='-Xdebug -Xnoagent -Djava.compiler=NONE
-Xrunjdwp:transport=dt_socket,server=y,suspend=y,address=5005'

12.4 Algorithms (Authoring extensible plugins)
As of release 6.0.3.0, the Continuous Compliance Engine supports the installation of plugins, written in Java,
that provide new masking algorithms. This feature is referred to as Extensible Algorithms. This section of the
documentation details all aspects of masking algorithm plugin usage and development. The Guided Tour
portion of the workflows section (see page 794) walks the user through the basic process of building a simple
plugin and installing it onto the Continuous Compliance Engine. Other sections explore in-depth topics such
as making algorithms configurable, consuming input files, etc.

This documentation assumes the reader has some familiarity with Java development as well as operation of
the Delphix Masking Engine via both the UI and Web API Client. The reader should also understand the
security requirements associated with any new algorithms being developed.

The Extensible Algorithms framework is designed to replace the custom algorithm (aka. mapplets) feature
by providing richer functionality, greatly simplifying algorithm development, and ensuring long-term
maintainability of plugins. The end-of-support of custom algorithms will occur in release 6.0.15.0 of the
Continuous Compliance Engine.

12.4.1 SDK Features

The Masking Algorithm SDK provides a number of useful functions that aid development of new algorithms
for the Continuous Compliance Engine. It is available on the Delphix software download site249.

These settings will cause the maskScript to suspend at startup to allow time to attach the
debugger.

http://download.delphix.com/
http://download.delphix.com/

Continuous Compliance – Continuous Compliance Home

250 https://maskingdocs.delphix.com/maskingPluginAPIJavadoc/
251 https://maskingdocs.delphix.com/maskingPluginAPIJavadoc/

Authoring extensible plugins – 788

•
•
•

•

•
•
•

•
•
•

•

•
•
•
•
•

Creation of empty "skeleton" projects, with build files - the maskScript init sub-command
Creation of empty class files for algorithms - the maskScript generate sub-command
Testing of masking algorithms without a masking engine

The maskApp CLI

The maskScript mask sub-command
Uploading of plugins to the masking engine - the maskScript install sub-command
Sample algorithms that illustrate the usage of key features of the Masking Plugin API

12.4.2 Getting more information

Several other sources of information are available to aid in plugin development:

The README.md file under docs in the Algorithm SDK download archive
The Masking Plugin API Javadoc250

Invoke maskScript (located under sdkTools/bin in the SDK download) with the -h option for usage
help
Type help at the maskApp (also under sdkTools/bin in the SDK download) command prompt

12.4.3 The MaskingAlgorithm Java Interface

Any Java class that should be recognized as a masking algorithm (whether stand-alone or configurable)
must implement the MaskingAlgorithm interface. This interface is parameterized with the data type the
algorithm masks, which defines the input and output data type of the mask method. The full details of this
interface are described in the Masking Plugin API Javadoc251

12.4.3.1 Core Data Types

The Delphix Masking Engine is designed to support a wide and extensible set of data sources, which
naturally encode data in a variety of different formats. In order to simplify algorithm development, while
maintaining the ability to mask data from many sources, we've identified a core set of data formats which
are likely to require different masking treatment and ensured that the Extensible Algorithm framework
converts all data to/from these types as needed. These types define the allowed parameterization of the
MaskingAlgorithm Java interface.

Each masking algorithm class is defined to mask exactly one of the following data types:

Binary data - java.nio.ByteBuffer
String data - java.lang.String
Numeric data - java.math.BigDecimal
Date time data - java.time.LocalDateTime
Multi-column data - com.delphix.masking.api.plugin.utils.GenericDataRow (See Multi-Column
Masking section)

Each algorithm is expected to input, process, and emit objects of one of the above Java types, but is free to
use any intermediate types as needed to access library methods. Because it is frequently the case that data

https://maskingdocs.delphix.com/maskingPluginAPIJavadoc/
https://maskingdocs.delphix.com/maskingPluginAPIJavadoc/
https://maskingdocs.delphix.com/maskingPluginAPIJavadoc/
https://maskingdocs.delphix.com/maskingPluginAPIJavadoc/

Continuous Compliance – Continuous Compliance Home

Authoring extensible plugins – 789

•

of one type is stored in databases or documents in a type other than its most natural native type (ex. dates
stored in VARCHAR fields, or numbers stored as text in a CSV file), the masking framework that executes
these algorithms is capable of performing a number of automatic type conversions, detailed in the next
section. This allows algorithms written to process one data type to handle data of other types, with no
additional work required of the algorithm author.

Supported Automatic Type Conversions

Algorithm Native Type Supported Type Notes

ByteBuffer String Algorithm receives the UTF-8 encoded value
of the String and is expected to return a
valid UTF-8 ByteBuffer.

LocalDateTime String The correct date format must be assigned
to the field or column in the masking
inventory.

LocalDateTime Compatible numeric types A compatible date format, such as
yyyyMMdd, must be assigned to the column
in inventory.

BigDecimal All numeric types Upconverted to BigDecimal. Out of range
values after masking are truncated to fit the
range of the underlying type.

BigDecimal String String value is converted to a number.

12.4.3.2 Special Case Values

In order to allow algorithms to implement special handling for null, empty, and special case values, these
values are presented to the masking algorithm unmodified. Algorithms should be prepared to process the
full range of input values possible for the input type. In practice, this means that most mask method
implementations will begin with a null check on the input value, prior to attempting to use the input - for
example, by calling input.length() or similar. It is perfectly acceptable and commonplace to return null in the
case where the mask input is null.

12.4.3.3 Method Overview

This section provides a high-level overview of the methods in the MaskingAlgorithm interface. For complete
details, consult the Masking Plugin API Javadoc included in the Algorithm SDK archive.

getName and getDescription - These methods are used to determine the name and description of
frameworks and algorithm instances included in the plugin. For user-created instances, these
methods are never called.

Continuous Compliance – Continuous Compliance Home

Authoring extensible plugins – 790

•

•

•

•

•

•

•

•

1.

2.

3.

4.
a.
b.
c.
d.

getDefaultInstances and getAllowFurtherInstances - These methods control the set of instances of
the algorithm framework that are defined by the plugin, and whether the user should be allowed to
create additional instances.
validate - This method is called after configuration is applied to allow the algorithm class to check
whether the injected configuration is valid.
setup and tearDown - These methods are called before the algorithm object is used for masking, and
after, respectively. Typically, any resources, such as input files, are acquired during setup and
released during tearDown.
mask - This is the method that does the actual data masking in the algorithm class. The input and
output values are parameterized for type safety as described above
maskBatch - This method is called to perform masking in situations when it is possible for the caller
to build a collection of input values to mask in a single method call. A default implementation is
provided that simply calls the mask method on each value in the batch.
listMultiColumnFields - This method needs to be implemented only for Multi-Column Algorithms. It
returns a list of AlgorithmLogicalField objects that define the set of fields that the multi-column
algorithm masks.

The following methods are available but deprecated:

listMaskedFields - This method needs to be implemented for Multi-Column Algorithms. It returns a
map of field names (String) to the Core Data Type. This method does not need to be implemented
if not implementing a Multi-Column Algorithm. Implement listMultiColumnFields instead.
listReadOnlyFields - Similar to listMaskedFields but optional for Multi-Column Algorithms.
Fields returned by this method are read-only and cannot be changed. Implement
listMultiColumnFields instead.

12.4.3.4 The Life Cycles of Algorithm Objects

The Extensibility framework uses objects classes implementing MaskingAlgorithm interface for several
distinct purposes. These object life cycles are as follows:

12.4.3.4.1 Plugin Discovery

This occurs when the extensibility framework evaluates the capabilities present in a MaskingAlgorithm
class.

Java object creation - an object of the algorithm class is created

getName - determines framework name

getDescription - determines framework description

getDefaultInstances- determines all plugin-provided algorithm instances. For each instance:
getName - determines instance name
getDescription - determines instance description
validate - ensure object passes validation
Serialize configurable fields - these are saved as a JSON document defining the instance's
configuration

Continuous Compliance – Continuous Compliance Home

Authoring extensible plugins – 791

e.

5.

6.

1.

2.

3.

4.

1.

2.

3.

4.

5.

6.

Disposal - the Java object is discarded

getAllowFurtherInstances - determines whether the framework is visible in the algorithm/framework
API endpoint

Disposal - the Java object is discarded

12.4.3.4.2 User Algorithm Creation

This life cycle occurs whenever a user attempts to create a new instance of a plugin algorithm framework.
The algorithm definition is saved only if each step succeeds.

Java object creation - an object of the algorithm class is created

Configuration injection - the values in the user-provided JSON document are injected into the object

validate - the object's validate method is called

Disposal - the Java object is discarded

12.4.3.4.3 Algorithm Use

This is the life cycle of an algorithm object when used to mask data.

Java object creation - an object of the algorithm class is created

Configuration injection - the saved JSON document defining this instance is injected in the object

setup - the setup method is called once

mask - the mask method is called on each value to be masked

tearDown - the tearDown method is called once

Disposal - the Java object is discarded

The setup method is not executed when a user-defined instance is created.

It should be noted that a distinct Java object is created for each application of a masking
algorithm during Job execution. For algorithms that create or load a large amount of state, this
can result in significant memory usage storing redundant data for each instance. This can be
avoided using a class level static cache to store data; the instance name, which can be retrieved
during setup from the ComponentService interface object, can be used as an access key for data
cached in this way.



Continuous Compliance – Continuous Compliance Home

Authoring extensible plugins – 792

•

•

•

•

•
•
•
•

12.4.3.5 Multi-Column Masking

It is possible to write an algorithm that masks data that depends on other column(s) values. In order to
account for the different possible data types, we use an object called a GenericDataRow .

12.4.3.5.1 Generic Data

A GenericDataRow is a map of field names (String) to GenericData objects. Each GenericData
object contains the value, along with methods to return the respective typed object. When accessing the
value from a GenericDataObject it will be necessary to read it into a Core Data Type. To do so, use one
of the following methods:

getStringValue()

getBigDecimalValue()

getLocalDateTimeValue()

getByteBufferValue()

Once the value has been masked it should be re-set by calling setValue and passing as an argument the
value as a Core Data Type.

12.4.3.6 Batch Masking

By overriding the maskBatch method in the MaskingAlgorithm interface, an algorithm implementation
may increase performance or efficiency in cases where the underlying masking operation may be performed
more optimally on multiple values per method call. A common example of this is when the algorithm is
accessing an external API to perform masking; in this case, masking multiple inputs per method call allows
the access latency of the API to be incurred only once for the entire batch of inputs.

The maskBatch method is called with a MaskingBatch object parameterized by the same Java type used

in the MaskingAlgorithm interface definition. The MaskingBatch object provides the following
methods to facilitate masking:

size - returns the size of the batch of values
getValue - returns the value to be masked at a particular index in the batch
setValue - sets the mask result at a particular index in the batch
setError - indicates that an error occurred when masking the input value at a particular index in the
batch

The default implementation of maskBatch in the MaskingAlgorithm interface provides a simple example
of how to use these methods.

Continuous Compliance – Continuous Compliance Home

Authoring extensible plugins – 793

•
•
•

1.
a.
b.

2.

3.

4.

5.

Batching is currently supported for these job types:

All Database masking jobs
Delimited File masking jobs when no more than one body record type is defined
Fixed-Width File masking jobs when no more than one body record type is defined

Batch size is equal to the job's Row Limit divided by 5, or equal to 2000 when the Row Limit is
disabled; this is the guaranteed lower bound for batch size, assuming at least that number of inputs are
available. Typically, the size of the final batch in a job will be larger.

12.4.4 SDK Workflows (Algorithms)

This section is intended to walk a developer through several workflows using the Delphix Algorithm SDK,
such as creating a new algorithm plugin and installing it on a Continuous Compliance Engine. Once an
algorithm plugin has been installed, the included algorithms function as expected; they may be assigned to
domains and inventory in the normal fashion.

In order to develop and deploy algorithm plugins, you will interact primarily with two tools - the Masking API
client, and the Masking Algorithm SDK. The Masking API client is a long-standing feature that allows
interactive execution of API operations on the Continuous Compliance Engine, while the Masking Algorithm
SDK is a new software package created specifically to aid in algorithm development.

12.4.4.1 Outline for a guided tour

By following the steps in the outline below, you can tour the basic functionality provided by the Extensible
Algorithm feature and Algorithm SDK.

Create an algorithm plugin by choosing one of two options:
Building the sample algorithm project (see page 794)

Creating and building your own algorithm project (see page 794)

Run the algorithm plugin using maskApp (see page 798)

Install the newly created plugin on the Continuous Compliance Engine (see page 845)

View and manage the plugins on a Continuous Compliance Engine using the API Client (see page 845)

Upload multiple plugin in SDK (see page 800)

The masking engine will not utilize the maskBatch method or create a batch with size greater
than 1 in all cases. Batch masking is only supported for some job configurations, so it is critical
that the mask method also be implemented for all algorithms. It is strongly recommended that
the mask and maskBatch method be implemented to produce the same mask results given the
same inputs.

Continuous Compliance – Continuous Compliance Home

Authoring extensible plugins – 794

12.4.4.2 Building the sample plugin (SDK workflows/Algorithms)

The Algorithm SDK contains a buildable Sample Algorithm Plugin with a number of functional algorithms
illustrating the features of the Extensibility Framework. These simple commands build the plugin containing
the sample algorithms.

Starting from sdk_root:

$ cd samples
$./gradlew :algorithm:jar

This creates the Sample Algorithm plugin JAR file sdk_root/samples/build/libs/algorithm.jar.

The Sample Algorithm project provides a convenient way to see a working example plugin.

12.4.4.3 Creating a New Project (SDK workflows/Algorithms)

This section describes how to create a brand new Java project for a new masking algorithm plugin. We will
use the maskScript utility to create a skeleton project and an empty algorithm class in that project.

12.4.4.3.1 Creating the Project

Before you begin, you'll want to pick a name for your project, and an empty directory (outside of the Masking
SDK source tree) where your project will be created. Once you've done this, run this maskScript command:

$ maskScript init -t algorithm -d <project path> -n <project name> -a <author name>
-v <version>

For example, this command will create a project named demoProject in the demo-proj subdirectory of your
home directory.

$ maskScript init -d $HOME/demo-proj -n demoProject -a "Demo Author" -v 1.0.0

While it is possible to modify these algorithms by changing the Java source and rebuilding the
plugin, when starting a new project to develop one or more standalone algorithms, it is highly
recommended that you create your own project (see page 794) rather than modifying files in the
Sample Algorithm project subtree. This will prevent the loss of customizations to the project
build files should you chose to install a new version of Masking Algorithm SDK over your existing
SDK directory.



Continuous Compliance – Continuous Compliance Home

Authoring extensible plugins – 795

For the rest of this section, we'll assume a new project has been created under proj_dir. Change your working
directory to proj_dir. You'll notice that the project is created with a sample algorithm file proj_dir/src/main/
java/com/sample/SampleAlgorithm.java. It's possible to build this into a usable plugin by running:

$ cd <proj_dir>
$./gradlew jar

But let's create our own, brand new algorithm.

12.4.4.3.2 Creating an Algorithm Class

For this part of the tour, we're going to create a new algorithm named Clobber. First, we'll run the maskScript
utility to create a skeleton class file:

$ cd <proj_dir>
$ maskScript generate -p com.delphix.demo -c Clobber -v String -s .

By convention, the class file Clobber.java will be created under a sub-directory path based on the package
name, so it might be he helpful to use the find command to locate it:

$ find . -name Clobber.java
./src/main/java/com/delphix/demo/Clobber.java

The initial content of this file is:

$ cat ./src/main/java/com/delphix/demo/Clobber.java

package com.delphix.demo;

import com.delphix.masking.api.plugin.MaskingAlgorithm;
import java.lang.String;
import javax.annotation.Nullable;

public class Clobber implements MaskingAlgorithm<String> {

 /**
 * Masks String object
 * @param input The String object to be masked. This method should handle null
inputs.
 * @return Returns the masked value.
 */
 @Override
 public String mask(@Nullable String input) {
 // TODO: change the default implementation.
 return input;
 }

Continuous Compliance – Continuous Compliance Home

Authoring extensible plugins – 796

 /**
 * Get the recommended name of this Algorithm.
 * @return The name of this algorithm
 */
 @Override
 public String getName() {
 // TODO: Change this if you'd like to name your algorithm differently from the
Java class.
 return "Clobber";
 }
}

12.4.4.3.3 Customizing the Algorithm Class

The first thing to notice about the skeleton algorithm is that the mask method just returns the input. This
means no masking will be done, so this will certainly need to change. We're going to create an algorithm that
overwrites the entire input String with the first letter of that String. This replaces the skeleton mask method
with:

@Override
 public String mask(@Nullable String input) {
 // Always be ready to handle null or empty input
 if (input == null || input.length() < 2) {
 return input;
 }

 char firstChar = input.charAt(0);
 StringBuilder result = new StringBuilder();

 for (int i = 0; i < input.length(); i++) {
 result.append(firstChar);
 }

 return result.toString();
 }

The algorithm name "Clobber" is fine, so we can just delete the TODO comment in the getName() method.

Now, we'll rebuild the project to include this new algorithm in the plugin JAR:

$./gradlew jar

This creates or updates the plugin JAR file proj_dir/build/libs/demoProject.jar

12.4.4.4 Service discovery (SDK workflows/Algorithms)

Java service discovery is used to determine which classes in the plugin JAR present relevant functionality to
the Delphix Masking Engine. When a plugin is loaded, the file
com.delphix.masking.api.plugin.MaskingComponent under META-INF/services in the JAR is consulted for a

Continuous Compliance – Continuous Compliance Home

Authoring extensible plugins – 797

list of classes that implement the MaskingComponent interface. As MaskingAlgorithm includes this
interface, each algorithm in the plugin will be discovered this way. In the future, this mechanism may be
expanded to support additional types of components beyond algorithms.

If an algorithm class is missing from the services file, it will not be usable when the plugin is loaded. It is
essentially invisible to the extensibility framework. If a class is mentioned in this file but not present in the
JAR, the plugin will fail to load. There is a fallback during plugin loading that will scan the entire JAR for
algorithms if the services file is not present. This fallback may be removed in the future and should not be
relied on.

12.4.4.5 Running an Algorithm using the SDK tools (SDK workflows/Algorithms)

It will often be more convenient to use the SDK utilities to test an algorithm since this avoids the need to
install or update your plugin, create masking inventory, and execute jobs on the Continuous Compliance
Engine. This can be done interactively using maskApp, or entirely from the command line using maskScript.

12.4.4.5.1 Using maskApp to Test an Algorithm

The maskApp application is interactive and may be launched with no parameters from the shell:

$ maskApp

After a moment, the application will print a banner and prompt for input. Currently, the only sub-command
supported is mask. In order to use this command, you'll need to know the location of the plugin JAR file on
the filesystem.

MASKING-APP:> mask -j <plugin_jar_location>

You will be prompted to select an algorithm. This example runs maskApp in proj_dir and uses the JAR file
created with the Create a new project (see page 794) workflow:

MASKING-APP:> mask -j build/libs/demoProject.jar
/Users/******/demo-proj/build/libs/demoProject.jar
Loaded plugin demoProject version 1.0.0 (API version: 1.0.0) from [/Users/******/
demo-proj/build/libs/demoProject.jar]
13:17:00.707 [main] INFO global - Loaded plugin demoProject: Plugin {'embeddedName':
'demoProject', 'version': '1.0.0', 'author': 'Delphix Dev', 'apiVersion': '1.0.0'}
Framework:
* [0] Clobber
 [1] SampleAlgorithm

When the maskScript generate sub-command is used to create a new algorithm class, the
service discovery metadata file is automatically updated.

Continuous Compliance – Continuous Compliance Home

Authoring extensible plugins – 798

Select an algorithm framework: 0
Instance:
* [0] demoProject:Clobber
Select an instance of algorithm framework: Clobber: 0
Selected algorithm: com.delphix.demo.Clobber(Clobber) instance: demoProject:Clobber,
data type: STRING
Input value to be masked('null' for null, 'doneMasking' to finish): Test1
Masked value: TTTTT
Input value to be masked('null' for null, 'doneMasking' to finish): test2
Masked value: ttttt
Input value to be masked('null' for null, 'doneMasking' to finish): 1 more test
Masked value: 11111111111
Input value to be masked('null' for null, 'doneMasking' to finish):

When you invoke the mask sub-command, you will first be presented with a list of possible frameworks (aka.
Algorithm Components) to choose from. These correspond with the Java classes that implement the
MaskingAlgorithm interface in the plugin file. Once you have selected a framework, you will be presented
with a list of each pre-defined instance to choose from. If the algorithm supports creating new instances,
that option will be present as well. Once an instance is selected, you're ready to enter test values and see the
masked result.

The selection marked with a star is the default selection; you may always press return at the prompt to make
the default selection.

In order to be usable, each class that implements MaskingComponent must also be listed in the
appropriate service description file. Refer to this section (see page 797) for details.

When a Multi-Column algorithm is selected, the prompt will contain the order to provide the
input values in. They should be placed on a single row, separated by a comma.

Enter CSV-formatted values for the following columns in the following

order: date1(LOCAL_DATE_TIME), date2(LOCAL_DATE_TIME)

Missing Algorithms

If an algorithm seems to be missing from the list, or an algorithm's behavior does not seem to
match the latest version of the code, it may be necessary to rebuild the plugin JAR:

$ cd ; ./gradlew="">;>

Continuous Compliance – Continuous Compliance Home

Authoring extensible plugins – 799

12.4.4.5.2 Running an Algorithm using maskScript

Algorithms may be also be tested using the SDK maskScript. The maskScript utility is non-interactive, which
lets you conveniently process input files using a masking algorithm. Each input line is considered a separate
value to be masked. The algorithm framework and instance are selected using command-line options. This
example uses the "Redaction X" algorithm instance from the Sample Algorithm plugin. This plugin can be
built using the process described here (see page 794).

Create a small sample input file:

$ echo "Adam
Amy
Brandon" > test_input.txt

Mask each line of the file to standard output:

$ cat test_input.txt | maskScript mask -j algorithm/build/libs/algorithm.jar -n
"Sample Plugin:Redaction Z"
Jun 19, 2020 1:51:54 PM com.delphix.masking.api.provider.LogService info
INFO: Loaded plugin Sample Plugin: Plugin {'embeddedName': 'Sample Plugin', 'version':
 '1.0.0', 'author': 'Delphix', 'apiVersion': '1.0.0'}
ZZZZ
ZZZ
ZZZZZZZ
Jun 19, 2020 1:51:54 PM com.delphix.masking.api.provider.LogService info
INFO: StringRedaction: Masked a total of 3 values

When masking using a Multi-Column algorithm, the inputs in the file must be provided in the
same format they would be provided when using the mask subcommand of the maskApp (i.e.:

comma-separated list of expected values). If unsure of the order, use the mask subcommand
in the maskApp to see what the expected order is.

redirecting Information Messages
To remove all informational message from the output, redirect standard error to /dev/null or an
alternate location:
$ cat test_input.txt | maskScript mask -j algorithm/build/libs/

algorithm.jar -n "Sample Plugin:Redaction Z" 2>/dev/null



Continuous Compliance – Continuous Compliance Home

Authoring extensible plugins – 800

1.

2.

12.4.4.6 Installing multiple plugins onto the Delphix Masking engine (SDK
workflows/Algorithms)

Starting SDK version 1.4.0 (corresponding to the Masking Engine version 6.0.8.0) Delphix has implemented
multiple plugins upload within SDK, where the Delphix provided dlpx-core plugin is uploaded by default. That
gives an option to chain multiple extensible algorithms, even if those are based different plugins.

12.4.4.6.1 Load multiple algorithm plugins

Using maskApp to Test an Algorithm The maskApp application is interactive and may be launched
with no parameters from the shell: $ maskApp After a moment, the application will print a banner
and prompt for input. Currently, the only sub-command supported is mask. In order to use this
command, you'll need to know the location of the plugin JAR file on the filesystem.

Upload a desired algorithm plugin bash MASKING-APP:> mask -j <> This example runs
maskApp in proj_dir and uses the JAR file created with the Create a new project (see page 794)

workflow:

MASKING-APP:> mask -j ./algorithm/build/libs/plugin1.jar
 /Users/testuser/delphix/masking-algorithm-sdk/./algorithm/build/libs/plugin1.jar
 Loading security manager
 Loaded plugin dlpx-core version 1.4.0 (API version: 1.4.0) from [/Users/testuser/
delphix/masking-algorithm-sdk/./sdkTools/build/install/maskApp/lib/delphix-algorithm-
plugin-1.4.0.jar, /Users/testuser/delphix/masking-algorithm-sdk/./algorithm/build/
libs/plugin1.jar]
 Loaded plugin plugin1 version 1.4.0 (API version: 1.4.0) from [/Users/testuser/
delphix/masking-algorithm-sdk/./sdkTools/build/install/maskApp/lib/delphix-algorithm-
plugin-1.4.0.jar, /Users/testuser/delphix/masking-algorithm-sdk/./algorithm/build/
libs/plugin1.jar]
 Framework:
 * [0] dlpx-core:CM Numeric
 [1] dlpx-core:Character Mapping
 [2] dlpx-core:Date Replacement
 [3] dlpx-core:Date Shift
 [4] dlpx-core:Date Shift Discrete
 [5] dlpx-core:Date Shift Variable
 [6] dlpx-core:Dependent Date Shift
 [7] dlpx-core:FullName
 [8] dlpx-core:Name
 [9] dlpx-core:Payment Card
 [10] dlpx-core:Regex Decompose
 [11] dlpx-core:Secure Lookup
 [12] plugin1:Byte Array Redaction
 [13] plugin1:Date Redaction
 [14] plugin1:Number Redaction
 [15] plugin1:Randomized Masking
 [16] plugin1:StringRedaction

Continuous Compliance – Continuous Compliance Home

Authoring extensible plugins – 801

 Select an algorithm framework:

It is also possible to upload another plugin along with the already loaded ones: instead of selecting an
algorithm framework from the above menu - step back by pressing Ctrl-C. That will bring you back to the
MASKING-APP:> menu (with the UserInterruptException notification). That error message will be

taken care of in a future releases, providing better way for this step back.

org.jline.reader.UserInterruptException
Details of the error have been omitted. You can use the stacktrace command to print
the full stacktrace.
MASKING-APP:>

Here it is possible to use similar mask -j <> command to upload another plugin:

MASKING-APP:> mask -j ./algorithm/build/libs/plugin2.jar
 /Users/testuser/delphix/masking-algorithm-sdk/./algorithm/build/libs/plugin2.jar
 Loading security manager
 Loaded plugin dlpx-core version 1.4.0 (API version: 1.4.0) from [/Users/testuser/
delphix/masking-algorithm-sdk/./sdkTools/build/install/maskApp/lib/delphix-algorithm-
plugin-1.4.0.jar, /Users/testuser/delphix/masking-algorithm-sdk/./algorithm/build/
libs/plugin2.jar]
 Loaded plugin plugin2 version 1.4.0 (API version: 1.4.0) from [/Users/testuser/
delphix/masking-algorithm-sdk/./sdkTools/build/install/maskApp/lib/delphix-algorithm-
plugin-1.4.0.jar, /Users/testuser/delphix/masking-algorithm-sdk/./algorithm/build/
libs/plugin2.jar]
 21:17:37.426 [main] INFO global - Loaded plugin plugin2: Plugin {'embeddedName':
'plugin2', 'version': '1.4.0', 'author': 'Sample Plugin Author', 'apiVersion':
'1.4.0'}
 Framework:
 * [0] dlpx-core:CM Numeric
 [1] dlpx-core:Character Mapping
 [2] dlpx-core:Date Replacement
 [3] dlpx-core:Date Shift
 [4] dlpx-core:Date Shift Discrete
 [5] dlpx-core:Date Shift Variable
 [6] dlpx-core:Dependent Date Shift
 [7] dlpx-core:FullName
 [8] dlpx-core:Name

Algorithm framework name is now prefexed with the plugin name (that framework is originated
from). There are always dlpx-core plugin frameworks present, since those are provided by
default by the Masking Engine. Previously one could only chain the algorithm with the other
algorithm provided by the same plugin. Now it is possible to chain plugin's algorithm with the
algorithm instance(s), based on the default dlpx-core plugin.

Continuous Compliance – Continuous Compliance Home

Authoring extensible plugins – 802

•
•
•

 [9] dlpx-core:Payment Card
 [10] dlpx-core:Regex Decompose
 [11] dlpx-core:Secure Lookup
 [12] plugin1:Byte Array Redaction
 [13] plugin1:Date Redaction
 [14] plugin1:Number Redaction
 [15] plugin1:Randomized Masking
 [16] plugin1:StringRedaction
 [17] plugin2:MultiColumnDateAlgorithm
 [18] plugin2:Numeric Mapping
 [19] plugin2:RedactionDB
 [20] plugin2:RedactionFile
 [21] plugin2:StringHashedLookup
 Select an algorithm framework:

Example above shows 3 plugins uploaded:

dlpx-core (default)
plugin1 (uploaded by customer)
plugin2 (uploaded by customer)

Now it is possible choosing any of those plugins frameworks and their related algorithm instances, as well
chaining of those algorithms instances to any configurable extensible algorithm (within the loaded plugins).
That behavior simulates Masking Engine where multiple plugins are uploaded.

The technique of algorithms chaining is out of scope of the current description. It's the same as chaining the
algorithms belonging to the same plugin. Please refer to the Algorithm chaining page (see page 821) for
chaining details and examples.

12.4.4.7 Retrieving information about installed plugins (SDK workflows/Algorithms)

The GET endpoints are useful for getting information about plugins. After following the steps in this
section (see page 845) to install the Sample Algorithm plugin, the GET operation will return (elided for brevity):

{
 "pluginId": 7,
 "pluginName": "Delphix Sample",
 "originalFileName": "algorithm.jar",
 "originalFileChecksum":
"74df61f436aceb80107c22964c027d32a565d0100de36c7fa42f528327cf2e2a",
 "installDate": "2020-06-19T20:15:58.239+0000",
 "installUser": 5,
 "builtIn": false,
 "pluginVersion": "1.0.0",
 "pluginObjects": [
 {
 "objectIdentifier": "2",
 "objectName": "StringRedaction",
 "objectType": "ALGORITHM_FRAMEWORK"
 },
 {

Continuous Compliance – Continuous Compliance Home

Authoring extensible plugins – 803

 "objectIdentifier": "3",
 "objectName": "RedactionFile",
 "objectType": "ALGORITHM_FRAMEWORK"
 },
 {
 "objectIdentifier": "5",
 "objectName": "StringHashedLookup",
 "objectType": "ALGORITHM_FRAMEWORK"
 },
 {
 "objectIdentifier": "7",
 "objectName": "Randomized Masking",
 "objectType": "ALGORITHM_FRAMEWORK"
 },
 {
 "objectIdentifier": "Delphix Sample:Byte Array Redaction",
 "objectName": "Delphix Sample:Byte Array Redaction",
 "objectType": "ALGORITHM"
 },
 {
 "objectIdentifier": "Delphix Sample:Date Redaction",
 "objectName": "Delphix Sample:Date Redaction",
 "objectType": "ALGORITHM"
 },
 {
 "objectIdentifier": "Delphix Sample:Number Redaction",
 "objectName": "Delphix Sample:Number Redaction",
 "objectType": "ALGORITHM"
 },
 {
 "objectIdentifier": "Delphix Sample:Numeric Mapping",
 "objectName": "Delphix Sample:Numeric Mapping",
 "objectType": "ALGORITHM"
 },
 ...
]
}

For each plugin, the plugin metadata, including pluginId , pluginName and originalFileChecksum
are displayed first. This is followed by a list of algorithm frameworks included in the plugin, then a list of
algorithm instances included in the plugin. The list of frameworks will contain only those frameworks that
support the creation of additional algorithm instances as described in this section. (see page 805)

12.4.5 Configurability

12.4.5.1 Introduction

The Extensible Algorithms feature supports the creation of algorithm frameworks. When an algorithm class
is constructed to be a framework, the Continuous Compliance Engine operator may create additional
instances of the algorithm - with different configurations - after the plugin has been installed. New instances

Continuous Compliance – Continuous Compliance Home

Authoring extensible plugins – 804

1.

2.

are created by supplying a JSON document describing a new instance using the POST method of the
Algorithm endpoint in the Masking Web API. This may be done using the Masking API client. The JSON
schema for configuration is determined by which data members in the framework class are marked as
configurable, and may vary from framework to framework.

New algorithms created using the SDK skeleton generator are not, by default, configurable using this
mechanism. It is necessary to modify the default implementation of the allowFurtherInstances method and
mark one or more public data members as configurable. This is described in detail in the next section. (see
page 805)

This part of the documentation illustrates what options are available when creating an algorithm to define
whether and what kind of configuration is required, and what, if any, default instances should be created. It
will also describe how to create instances of a plugin provided algorithm framework using the Masking API
Client.

12.4.5.2 Making an Algorithm Configurable

As described in the introduction, there are a couple of requirements for making an algorithm configurable, so
that it will appear as a framework on the Continuous Compliance Engine:

The getAllowFurtherInstances method in the algorithm Class must return true.

One or more data members in the algorithm class must be marked public, and must be annotated
with the @JsonProperty (specifically com.fasterxml.jackson.annotation.JsonProperty) annotation.

In order to assure that JSON document and schema interpretation is consistent, most JSON handling is done
by the Masking Plugin API implementation, rather than the plugins themselves. For each configurable
algorithm, the SDK or Continuous Compliance Engine will examine the annotations in the class to determine
which values are configurable. Whenever a new instance is created, an attempt is made to apply the user-
supplied JSON to the object of the framework class. This includes some validation that the supplied JSON
matches the expected schema implied by the set of fields marked configurable, however there are some
limitations to this validation, as described below.

12.4.5.2.1 Example Configurable Algorithm Explained

The concept of configurability can be illustrated using one of the sample algorithms from the SDK as an
example - StringRedaction.java in this case:

package sample.masking.algorithm.redaction;
...

public class StringRedaction implements MaskingAlgorithm<String> {
 private String name = "StringRedaction";

 @JsonProperty(value = "redactionCharacter", required = true)
 public String redactionCharacter = "specified";

 @Override
 public String getName() {
 return name;
 }

Continuous Compliance – Continuous Compliance Home

Authoring extensible plugins – 805

•

•

 @Override
 public Collection<MaskingComponent> getDefaultInstances() {
 StringRedaction instanceX = new StringRedaction();
 instanceX.name = "Redaction X";
 instanceX.redactionCharacter = "X";
 return Arrays.asList(instanceX);
 }

 @Override
 public boolean getAllowFurtherInstances() {
 return true;
 }

 @Override
 public String getDescription() {
 return String.format(
 "Redact String by overwriting with '%s' character",
redactionCharacter);
 }

 @Override
 public String mask(@Nullable String input) throws MaskingException {
 if (input == null) {
 return null;
 }
 StringBuilder returnVal = new StringBuilder();

 for (int i = 0; i < input.length(); i++) {
 returnVal.append(redactionCharacter);
 }
 return returnVal.toString();
 }

 @Override
 public void validate() throws ComponentConfigurationException {
 if (redactionCharacter == null || redactionCharacter.length() != 1) {
 throw new ComponentConfigurationException(
 "redactionCharacter must be a single character");
 }
 }
}

This algorithm does simple redaction of the input String, but the redaction character may be configured by
creating additional instances with custom values. How this works:

The Class has a public field redactionCharacter annotated with @JsonProperty. A default value has
been provided so that the getDescription method will return a suitable description in both the
framework and instance cases.
The Class's getDefaultInstances method defines a single instance, with redaction characters 'X'. This
is accomplished by simply returning a list of correctly configured objects. The API framework

Continuous Compliance – Continuous Compliance Home

Authoring extensible plugins – 806

•

•

•

•

extracts the object configuration as JSON, and store it for use whenever an instance of "Redaction X"
algorithm is needed.
The Class's getAllowFurtherInstances method returns true, making it possible to create additional
instances of this algorithm after the plugin is loaded on the Masking Engine using the Masking API
via the API client.
The Class implements a validate method to ensure that the supplied configuration value is usable. In
this case, the length of the redactionCharacter String is restricted to a single character.

12.4.5.2.2 Frameworks, Instances, and Configuration Injection

When used as a framework, the algorithm class is instantiated and used without any configuration injection.
In the example above, that means that the getDescription method will return "Redact String by overwriting
with 'specified' character" when the algorithm framework is evaluated. Similarly, getName will return
"StringRedaction", the name of the framework.

When a runnable algorithm instance is needed, the algorithm class is instantiated, and all saved
configuration is injected before any methods are called. This configuration is gathered in one of two ways:

For statically provided instances embedded in the plugin, the configurable fields of each object
returned by the getDefaultInstances method are serialized to JSON and saved. Again, only the values
of public fields marked with the @JsonProperty annotation are extracted this way.
When the user creates a new algorithm instance using the Masking Web API, the contents of the
algorithmExtension field of the POST or PUT request is validated and saved for future injection
whenever that particular algorithm instance is needed in the future.

Using the above example again, when algorithm instance "Redaction X" is created, the saved values will be
injected, so redactionCharacter will have the value 'X'.

12.4.5.2.3 Validation of Configuration Values

For what the author can only presume to be performance considerations, the major JSON handling libraries
perform only minimal validation when objects are deserialized. The practical effect of this is that several
aspects of the @JsonProperty annotation are not enforced. For example, a property might be marked as
required, but an object will be successfully deserialized even when that property is missing from the input
JSON. While libraries are available that would allow us to expand the degree to which JSON is validated by
the framework, this would make defining the exact set of validations done by the API framework vs. what
must be validated in the component's validate method even more complex. For these reasons, only minimal
input validation is performed by the framework. Plugin authors should validate all aspects of the object's
configuration, especially the presence (that is, non-null, non-empty value) of required fields, in the validate
method implementation.

However, this is not to say that the unenforced properties of the @JsonProperty annotation should be
omitted. These values are visible in the auto-generated schema for each framework, which is visible using
the SDK's maskApp, as well as the algorithm/framework endpoint in the Masking API Client, and may be
useful for UI generation in the future.

12.4.5.2.4 Default Interface Implementations

The Masking Plugin API defines default implementations of getDefaultInstances and
getAllowFurtherInstances as follows:

Continuous Compliance – Continuous Compliance Home

Authoring extensible plugins – 807

•
•
•

default Collection<ComponentInstanceDescription> getDefaultInstances() {
 return Collections.singletonList(this));
 }

default boolean getAllowFurtherInstances() {
 return getDefaultInstances() == null || getDefaultInstances().isEmpty();
 }

This means that if neither of these methods is overridden by the masking algorithm class, a single instance
capturing whatever default values exist for configurable fields is created by default.

Only algorithms classes that define getAllowFurtherInstances to return true appear as Algorithm
Frameworks on the Masking Engine.

12.4.5.2.5 Build Dependencies for Configurable Algorithms

When the maskScript init sub-command is used to create a new project, the initial build files will may not
include the dependencies required for the Jackson @JsonProperty annotation. This an be corrected by
adding this line to proj_root/gradle.properties:

jacksonVer=2.9.5

And this line to the dependencies* section at the end of proj_root***/build.gradle:

compileOnly ('com.fasterxml.jackson.core:jackson-annotations:' + jacksonVer)

The set of Jackson annotations tested and supported for use in algorithm plugin classes are:

@JsonProperty
@JsonPropertyDescription
@JsonFormat (Useful in specifying formats for Date fields)

12.4.5.3 Using an Algorithm Framework

When a plugin algorithm supports configuration, it is possible to create new instances of the algorithm on
the Continuous Compliance Engine by specifying the desired configuration. This is done using the engine's
Masking Web API (see page 658). Configurable algorithms may also be tested using the maskApp and
maskScript utilities, by providing the desired configuration in an input file or at the command line.

12.4.5.3.1 Creating New Algorithm Instances Using the maskApp SDK Utility

When the maskApp utility's mask command is invoked and a configurable algorithm is selected, the option
will be presented to create a new algorithm instance. This is done by choosing "::Create New Instance::". The
algorithm's configuration schema is displayed, and then a valid JSON input must be provided to create the
new instances. Rather than entering the literal JSON, the '@' symbol may be used to load the JSON from a
file (@file-path).

Continuous Compliance – Continuous Compliance Home

Authoring extensible plugins – 808

What follows is an example of loading the Sample Algorithm plugin, creating a new instance of the
StringRedaction framework and masking test values with the new algorithm instance.

$ maskApp
... Startup Messages ...
MASKING-APP:> mask -j algorithm/build/libs/algorithm.jar
/Users/jleser/ws/algorithm-sdk/algorithm/build/libs/algorithm.jar
Loaded plugin Delphix Sample version 1.0.0 dea904c (API version: 1.0.0) from [/Users/
jleser/ws/algorithm-sdk/algorithm/build/libs/algorithm.jar]
16:44:47.743 [main] INFO global - Loaded plugin Delphix Sample: Plugin {'embeddedNam
e': 'Delphix Sample', 'version': '1.0.0 dea904c', 'author': 'Delphix', 'apiVersion':
'1.0.0'}
Framework:
* [0] Byte Array Redaction
 [1] Date Redaction
 [2] Number Redaction
 [3] Numeric Mapping
 [4] Randomized Masking
 [5] RedactionFile
 [6] StringHashedLookup
 [7] StringRedaction
Select an algorithm framework: 7
Instance:
* [0] Delphix Sample:Redaction X
 [1] Delphix Sample:Redaction Y
 [2] Delphix Sample:Redaction Z
 [3] ::Create New Instance::
Select an instance of algorithm framework: StringRedaction: 3
The JSON schema of the selected framework is:
{
 "type" : "object",
 "id" : "urn:jsonschema:sample:masking:algorithm:redaction:StringRedaction",
 "properties" : {
 "redactionCharacter" : {
 "type" : "string",
 "required" : true
 }
 }
}
Enter config(Prefix with '@' for file location)(Blank for no config): {
"redactionCharacter" : "+" }
Enter instance name: RedactPlus
Algorithm Configuration: {"redactionCharacter":"+"}
Selected algorithm:
sample.masking.algorithm.redaction.StringRedaction(StringRedaction) instance:
RedactPlus, data type: STRING
Input value to be masked('null' for null, 'doneMasking' to finish): Test
Masked value: ++++
Input value to be masked('null' for null, 'doneMasking' to finish): One
Masked value: +++
Input value to be masked('null' for null, 'doneMasking' to finish): TwoThree

Continuous Compliance – Continuous Compliance Home

Authoring extensible plugins – 809

•

•

•

Masked value: ++++++++

12.4.5.3.2 Creating New Algorithm Instances on the Continuous Compliance Engine

New instances of plugin frameworks may be created using the Continuous Compliance Engine's Web API's
algorithm endpoint. This is similar to creating any other algorithm using the algorithm API endpoint and may
be performed using the API client. Unlike when an algorithm is created using older, built-in frameworks like
Secure Lookup:

The value for algorithmType in the JSON request is always "COMPONENT". This is now the default
value, so this field may be omitted.
A value for the field frameworkId must be included - this is the integer ID of the framework as
provided in the plugin description retrievable using the GET operation on the plugin endpoint, or GET
on the algorithm/frameworks endpoint.
The algorithmExtension field's contents are used directly as the JSON configuration for the algorithm
instance. Unlike other algorithm types, this field does not have a fixed schema for COMPONENT type
algorithms. The required schema may be retrieved using the procedure described below. (see page 0)

This example API request, POSTed to the algorithm endpoint, creates a new instance of the StringRedaction
algorithm (described above), named "RedactStar" using '*' as the redaction character. In this case, the
sample algorithm plugin JAR has already been uploaded, and the StringRedaction framework has id 19:

{
 "algorithmName": "RedactStar",
 "algorithmType": "COMPONENT",
 "description": "Redact with the star character",
 "frameworkId" : 19,
 "algorithmExtension" : {
 "redactionCharacter": "*"
 }
}

12.4.5.3.3 Discovering the algorithm extension API Field Schema

The Masking Web API algorithm/framework endpoint has the ability to show the JSON Schema for each
algorithm framework implemented using the extensibility mechanism. By default, the schema is not included,
but by setting include_schema true, the schema may be retrieved. Here is the GET API result, including
schema, for the StringRedaction framework used above:

{
 "frameworkId": 19,
 "frameworkName": "StringRedaction",
 "frameworkType": "STRING",
 "plugin": {
 "pluginId": 47,
 "pluginName": "algorithm"
 },

Continuous Compliance – Continuous Compliance Home

Authoring extensible plugins – 810

•
•
•
•

 "extensionSchema": {
 "id": "urn:jsonschema:sample:masking:algorithm:redaction:StringRedaction",
 "properties": {
 "redactionCharacter": {
 "type": "string",
 "required": true
 }
 }
 }
}

This schema is generated automatically using the annotated public fields in the framework class.

12.4.5.4 Using Multi-Column Algorithms

To be able to configure and use the Multi-Column (MC) Algorithms one should be familiar with the following
themes:

Extensible Algorithms in general
Their creation using the Masking SDK (see page 789)

Extensible Algorithms Plugin installation (see page 845)

Masking API Client (see page 658) (optional)

12.4.5.4.1 Logical Fields

A sample instance (serving as an example) of the MC algorithms is in the Masking SDK distribution, named
"MultiColumnDateAlgorithm". That framework (the instance is based on) defines two fields:

@Override
 public List<AlgorithmLogicalField> listMultiColumnFields() {
 /*
 * Here we define the column names to be used in the algorithm. These names
are only used to reference the
 * columns within the algorithm and do not need to correspond to the names
of the columns on the data source.
 * For example, our data source may call these 2 fields "dateOfBirth" and
"dateOfDeath", however within the
 * algorithm implementation they will be referenced as "startDate" and
"endDate" (see mask method to see how
 * this is used).
 */
 return ImmutableList.of(
 new AlgorithmLogicalField("startDate", MaskingType.LOCAL_DATE_TIME),
 new AlgorithmLogicalField("endDate", MaskingType.LOCAL_DATE_TIME));
 }

In that example, the fields "startDate" and "endDate" are logical fields, defined by the framework. If
one doesn't have access to the source code of the framework, it's possible to find the logical field names
(and their types) using the Masking API: GET /algorithms/{algorithmName} endpoint.

Continuous Compliance – Continuous Compliance Home

Authoring extensible plugins – 811

•
•

The API provides a five-argument constructor for AlgorithmLogicalField that allows for fields to be marked
as: read-only and/or optional, as well as to provide a short documentation string for the field's usage. The
Extensibility SDK provides an example algorithm that demonstrates this called MultiColumnRedaction.java.

Let's suppose you already have an instance of multi-column Algorithm installed. That might happen in any of
the following two cases:

The Plugin you've installed contains a default instance for MC algorithms.
The Plugin you've installed contains only a framework for configurable MC algorithms. In that case,
you've configured an instance of the algorithm.

Let's take as an example "MultiColumnDateAlgorithm" algorithm mentioned above (plugin is named "sample"
in that example). Retrieving its info using the GET /algorithms/{algorithmName} endpoint returns:

{
 "algorithmName": "Sample Plugin:MultiColumnDateAlgorithm",
 "algorithmType": "COMPONENT",
 "isTokenizationSupported": false,
 "pluginId": 11,
 "fields": [
 {
 "fieldId": 5,
 "name": "startDate",
 "type": "LOCAL_DATE_TIME",
 "isReadOnly": false,
 "isOptional": false
 },
 {
 "fieldId": 6,
 "name": "endDate",
 "type": "LOCAL_DATE_TIME",
 "isReadOnly": false,
 "isOptional": false
 }
],
 "algorithmExtension": {}
 }

Here we can see the information structure for the logical fields, defined by the current framework. We will
use that data when configuring the Inventory fields.

Previous versions of the Extensibility API required two methods - listMaskedFields and
listReadOnlyFields - to be implemented when creating a multi-column algorithm. These methods
are now deprecated, and listMultiColumnFields is preferred way for multi-column algorithms to
define thier fields. However, existing algorithms that use the old methods should continue to
function normally.



Continuous Compliance – Continuous Compliance Home

Authoring extensible plugins – 812

•

•

•
•

12.4.5.4.2 Configuring column metadata for MC algorithm

To configure the involved column (i.e. masked and read-only columns) - we should update the column's
metadata with the following information:

"algorithmFieldId"
"algorithmGroupNo"
"algorithmName"
"domainName"

The last two fields are the regular configuring fields for masked columns. Let's look closer to the newly
introduced fields for MC:

algorithmFieldId is a filedId for the corresponding logical field. For example for "startDate"
from the example above its value is 5.
algorithmGroupNo is a group number (integer) for the columns treated by the same algorithm

instance. It is introduced for cases where we might have multiple columns of a similar type, which are
masked by the different Masking Jobs using the same algorithm. In such a case that's important to
unite the columns per algorithm run, by assigning the same group number.

There are two supported methods to configure the columnMetadata for the masked table inventory:

Via API
Via UI

12.4.5.4.2.1 Configuring columnMetadata for MC algorithms via API

Below is the example of the column metadata before it's configured for MC algorithm:

Continuous Compliance – Continuous Compliance Home

Authoring extensible plugins – 813

Let's associate that field with the logical field startDate (fieldId=5) from the snapshot above, by adding
the mentioned fields:

If at this point an inventory for the masked table is checked in the UI - the configured (via API) inventory will
be displayed there:

For the masked column, the isMasked field should be manually changed to true, while for read-
only field it stays false.



Continuous Compliance – Continuous Compliance Home

Authoring extensible plugins – 814

•

•

12.4.5.4.2.2 Configuring columnMetadata for MC algorithms via UI¶

The same columnMetadata configuration can also be made via the UI. As with other algorithms one has to
choose the Domain and Algorithm values, applied to the current column. If a Multi-Column algorithm has
been chosen, the following additional two fields will need to be filled out:

Select Logical Field dropbox, where the corresponding logical field to be selected.

Algorithm Group window, where algorithmGroupNo value to be entered.

In the UI configuration for columnMetadata, the customer shouldn't mark the isMasked field (as
via the API in the example above). It's taken care automatically since ME knows the associated
logical field is being masked or used as a read-only.



Continuous Compliance – Continuous Compliance Home

Authoring extensible plugins – 815

1.

2.

3.

4.

12.4.5.4.3 Error Management

There are different configuration errors possible while setting the MC algorithms. The configuration process
prevents as many misconfigrations as possible, but some configuration errors can only be detected when a
job is executed. For example, if trying to associate a second column to the same (already busy) logical field
will result in a configuration error similar to:

In case there is a missed association with the required logical field - that type of error isn't recognized during
the configuration, but only during the job execution (which will fail due to that misconfiguration).

Please find below an example of the monitor job error report:

12.4.5.4.4 Limitations for the MC Algorithms

Currently, it's possible to run the MC Algorithms only on a single table. Masking multiple tables
columns by MC Algorithms is not supported.

XML File masking does not support MC algorithms.

VSAM File masking does not support MC algorithms.

Some types of misconfiguration errors (as described above) are only detected during job execution.

12.4.6 Service interfaces (Algorithms)

12.4.6.1 Introduction

The Extensible Algorithms framework makes a number of services available to the algorithm
implementation. This prevents the algorithm from having to re-implement code to perform certain routine
tasks and facilitates seamless integration with the Masking Engine. This functionality is exposed to the
algorithm class via the ComponentService interface.

Whenever a new Masking Algorithm instance is required for masking, the extensibility framework first injects
any saved configuration, then invokes the objects setup method. This method is passed a reference to an

Continuous Compliance – Continuous Compliance Home

252 https://maskingdocs.delphix.com/maskingPluginAPIJavadoc/

Authoring extensible plugins – 816

•

•
•

•

•

object that implements ComponentService. The algorithm's setup method can then use this object to access
a number of provider methods:

getInstanceName - Get the name of this instance. Because the instance name it is not typically a
configurable field in the algorithm, the getName method will not correctly return the name of an
algorithm instance, even after JSON configuration injection. This method will always return the
correct instance name as known to the Masking Engine.
openInputFile - Access the contents of a file, as described in this section (see page 817)

getAlgorithmByName - Get a usable instance of another algorithm, as described in this section (see page

821)

getCryptoService - Access cryptographic methods based on the algorithm's key, as described in this
section (see page 824)

getLogService - Get a logger object, as described in this section (see page 826)

12.4.6.2 Accessing Files

It is often the case that a masking algorithm will require a large library of input values - for example, a set of
replacement names or account numbers. In other cases, it may be desirable to store the configuration of a
particularly complex algorithm in a format other than JSON, perhaps in order to leverage pre-existing code.
To support these use cases, the extensible algorithm framework allows algorithms to access input files from
a variety of sources.

12.4.6.2.1 Opening Input Files

Algorithms may access files in several locations, both on the engine and over the network. In all cases,
access is achieved by invoking the openInputFile method of the ComponentService object passed to the
algorithm's setup method to acquire an InputStream. The file's location must be specified by an
FileReference object visible in the object's public fields. This object is passed to the openInputFile method.
The value of the FileReference may be made configurable using the @JsonProperty annotation. The
openInputFile method accepts a URI style syntax that combines standard URL notation for web resources
with custom URI types for engine and JAR located files. The following formats are supported for
FileReference values:

Getting More Information
Refer to the com.delphix.masking.api.provider package in the Javadoc252 for detailed
information.



https://maskingdocs.delphix.com/maskingPluginAPIJavadoc/
https://maskingdocs.delphix.com/maskingPluginAPIJavadoc/

Continuous Compliance – Continuous Compliance Home

Authoring extensible plugins – 817

URI Format Description

http[s]://

<host>[:<port>]

/<path>

To open files located on a remote web server

jar://file/

<filepath>

To open a file located in the algorithm plugin JAR

delphix-file://

upload/<file

reference

details>

To open a file uploaded using Delphix Masking Engine's fileUpload endpoint. The
result of POST>ing to the fileUpload API endpoint is a URI in this format that
should be used exactly as-is for the uri value of the FileReference.

delphix-file://

mount/

<mountType>/

<mountId>/<file

path>

To open a file located on a NFS/CIFS mount server that has been mounted inside
the Delphix Masking Engine using mountFilesystem endpoint

12.4.6.2.2 Example Algorithm

public class RedactionFile implements MaskingAlgorithm<String> {
 private String redactionCharacter = null;

 @JsonProperty(value = "file", required = true)
 public FileReference file;
 @Override
 public String getName() {
 return "RedactionFile";
 }

 @Override
 public String mask(@Nullable String input) throws MaskingException {
 if (input == null) {
 return null;
 }
 StringBuilder returnVal = new StringBuilder();
 for (int i = 0; i < input.length(); i++) {

Continuous Compliance – Continuous Compliance Home

Authoring extensible plugins – 818

•
•

•

•

 returnVal.append(redactionCharacter);
 }
 return returnVal.toString();
 }

 @Override
 public void setup(@Nonnull ComponentService serviceProvider) {
 InputStream inputStream = serviceProvider.openInputFile(file);
 try (Scanner scanner = new Scanner(inputStream,
Charset.defaultCharset().name())) {
 redactionCharacter = scanner.nextLine().trim();
 } catch (Exception e) {
 e.printStackTrace();
 throw new RuntimeException("Unable to parse input file", e);
 }
 }

 @Override
 public void validate() throws ComponentConfigurationException {
 GenericReference.checkRequiredReference(file, "file");
 }
}

Some methods have been omitted for brevity.

This example algorithm is very similar to the StringRedaction class discussed earlier, in that it redacts strings
by replacing with a same-length string of the redaction character. This variant reads the character to use for
redaction from an input file, the location of which is specified in the algorithm's configuration. This is all done
in the initialize method:

The value of the variable file is public and marked configurable with @JsonProperty.
The file reference is passed to serviceProvider.openInputFile during setup - this allows the algorithm
to ingest input files in any supported location.
The redaction character is read from the input stream and stored in instance variable
redactionCharacter for use in the mask method.
This class's validate method uses the static method GenericReference.checkRequiredReference
provided by the Masking Plugin API to check the file reference for validity.

12.4.6.3 Accessing Database Servers (JDBC)

It is often the case that a masking algorithm will require access to a large amount of data such as lookup
values for masking input data or storing states of the algorithm. To support these use cases, the extensible
algorithm framework allows algorithms to access database servers using JDBC connections.

12.4.6.3.1 Opening Database Connection

Algorithms access the database by using extensible drivers (see page 0). Access is achieved by invoking the
openJdbcConnection method of the ComponentService object passed to the algorithm's setup method to
acquire a Connection (java.sql.Connection) object. The file's location must be specified by an
JdbcReference object visible in the object's public fields. This object is passed to the openJdbcConnection

Continuous Compliance – Continuous Compliance Home

Authoring extensible plugins – 819

1.

2.

3.

method. The value of the JdbcReference may be made configurable using the @JsonProperty annotation.
The JdbcReference object requires following fields

jdbcDriverId: The driver Id of the JDBC Driver uploaded using the JDBC Driver API (/jdbc-drivers).

url: The JDBC URL that will be used to connect to the server. Please don't use this to pass the
credentials.

credFileReference: A FileReference object that contains the location of the JSON file that stores the
credentials. The schema of the file is:

{
 "username": "USERNAME",
 "password": "PASSWORD"
}

The file must be a mount type FileReference object. To see how to create a mount type FileReference object,
refer to Accessing Files (see page 817). The Connection object is kept open throughout the execution of the
algorithm unless it is closed by the algorithm itself.

12.4.6.3.2 Example Algorithm

public class RedactionDB implements MaskingAlgorithm<String> {
 private String redactionCharacter = null;

 @JsonProperty(value = "jdbc", required = true)
 @JsonPropertyDescription("A reference to a database containing a table
redaction_character")
 public JdbcReference jdbc;

 private static final String GET_REDACTION_CHARACTER = "SELECT redact FROM
redaction_character LIMIT 1";

 @Override
 public String getName() {
 return "RedactionDB";
 }

 @Override
 public String mask(@Nullable String input) throws MaskingException {
 if (input == null) {
 return null;
 }
 StringBuilder returnVal = new StringBuilder();
 for (int i = 0; i < input.length(); i++) {
 returnVal.append(redactionCharacter);
 }
 return returnVal.toString();

Continuous Compliance – Continuous Compliance Home

Authoring extensible plugins – 820

•
•
•

•

 }

 @Override
 public void setup(@Nonnull ComponentService serviceProvider) {
 try (Connection conn = serviceProvider.openJdbcConnection(jdbc);
 PreparedStatement stmt = conn.prepareStatement(GET_REDACTION_CHARACTER)) {
 ResultSet resultSet = stmt.executeQuery();
 List<String> redactionChars = new ArrayList<>();
 if (resultSet.next()) {
 redactionCharacter = resultSet.getString("redact");
 } else {
 throw new RuntimeException("Couldn't find redaction character");
 }
 } catch (SQLException e) {
 throw new RuntimeException(e);
 }

 }

 @Override
 public void validate() throws ComponentConfigurationException {
 GenericReference.checkRequiredReference(jdbc, "jdbc");
 }
}

Some methods have been omitted for brevity.

This example algorithm is very similar to the StringRedaction class discussed earlier, in that it redacts strings
by replacing with a same-length string of the redaction character. This variant reads the character to use for
redaction from a table in a database, the connection information for which is specified in the algorithm's
configuration. This is all done in the initialize method:

The value of the variable "jdbc" is public and marked configurable with @JsonProperty.
The jdbc reference is passed to serviceProvider.openJdbcConnection during setup.
The redaction character is read from the table redaction_character and stored in the instance variable
redactionCharacter for use in the mask method.
This class's validate method uses the static method GenericReference.checkRequiredReference
provided by the Masking Plugin API to check the jdbc reference for validity.

12.4.6.4 Algorithm chaining

The extensible algorithm framework allows algorithms to instantiate and call other algorithms. This is useful
to allow for the composition and reuse of algorithm behaviors. This feature is referred to as algorithm
chaining.

12.4.6.4.1 Calling other algorithms

In order to make use of this feature, the caller algorithm must acquire an object of the algorithm class it
wishes to call by requesting it by instance name using the getAlgorithmByName method of the
ComponentService object. This is done during the execution of the algorithm's setup method.

Continuous Compliance – Continuous Compliance Home

Authoring extensible plugins – 821

1.

2.

•

•

This method requires that the caller specify two values:

A reference to the algorithm instance. This must be stored in an AlgorithmInstanceReference object
whose value is the name of the algorithm instance. This is algorithmName in the Masking API,
occasionally referred to as "algorithmCd" or "algorithm code". The AlgorithmInstanceReference
object must be referenced in a public field in the algorithm object.

The type of data the returned algorithm object should mask, selected from the core types supported
by the extensible algorithm framework. Type adaptation is not currently supported in this context, so
the algorithm's native type must be the type requested using getAlgorithmByName.

Once an algorithm object has been obtained using getAlgorithmByName, a reference to the algorithm object
maybe kept and that algorithm's mask method called as needed.

Examples:

You are creating algorithm instance A via the Masking API Client Algorithm endpoint, and algorithm A
uses getAlgorithmByName to find algorithm B during setup. For the creation of algorithm A to
succeed, algorithm B must already exist on the Delphix Masking Engine.
You are installing a plugin that would create the same algorithm A as a static instance. This will fail if
algorithm instance B is not also provided by an algorithm class in the same plugin.

Because it is difficult to predict what algorithm names exist on a Delphix Masking Engine, it is advised that
the names of any algorithms used for chaining be supplied in the algorithm's JSON configuration. Hard-
coding names of algorithms passed to getAlgorithmByName directly in the Java source creates
dependencies that are not visible except in the error message that results when the caller algorithm fails to
initialize, as described in the second example scenario above. Hard-coded references to other algorithms
provided by the same plugin should have the value ":algorithmName". The ":" character tells the API to fill in
this plugin's name when searching for the instance.

12.4.6.4.2 Example algorithm

public class RandomizedStringMasking implements MaskingAlgorithm<String> {
 private List<MaskingAlgorithm<String>> algorithmList = new ArrayList<>();
 private Iterator<Integer> randomStream;

 @JsonProperty(value = "algorithmNames", required = true)
 public List<AlgorithmInstanceReference> algorithms;

 @Override
 public String getName() {
 return "Randomized Masking";

Algorithm instances provided by plugins (via the getDefaultIntances method) are prohibited from
having dependencies on algorithm instances provided by other plugins. A way to safely
implemented this kind of dependency may be added in the future.

Continuous Compliance – Continuous Compliance Home

Authoring extensible plugins – 822

 }
 @Override
 public Collection<MaskingComponent> getDefaultInstances() {
 RandomizedStringMasking myInstance =
 new RandomizedStringMasking() {
 @Override
 public String getName() {
 return "Randomized Redaction";
 }
 @Override
 public String getDescription() {
 return "Apply a random redaction algorithm from { X, Y, Z }";
 }
 };
 myInstance.algorithms =
 Arrays.asList(
 new AlgorithmInstanceReference(":Redaction X"),
 new AlgorithmInstanceReference(":Redaction Y"),
 new AlgorithmInstanceReference(":Redaction Z"));

 return Collections.singletonList(myInstance);
 }

 @Override
 public void validate() throws ComponentConfigurationException {
 if (algorithms == null || algorithms.isEmpty()) {
 throw new ComponentConfigurationException(
 "Value for field algorithmNames is missing or empty");
 }
 for (AlgorithmInstanceReference ref : algorithms) {
 GenericReference.checkRequiredReference(ref, "algorithms");
 }
 }

 @Override
 public void setup(@Nonnull ComponentService serviceProvider) {
 for (AlgorithmInstanceReference algorithm : algorithms) {
 algorithmList.add(serviceProvider.getAlgorithmByName(algorithm,
MaskingType.STRING));
 }
 randomStream = new Random().ints(0, algorithmList.size()).iterator();
 }

 @Override
 public String mask(@Nullable String s) throws MaskingException {
 return algorithmList.get(randomStream.next()).mask(s);
 }

Some methods have been omitted for brevity.

This algorithm is configured with a list of other String masking algorithms and masks by calling another
algorithm from that list at random. This randomization is not based on the algorithm key, so results will not

Continuous Compliance – Continuous Compliance Home

Authoring extensible plugins – 823

•

•

•

be consistent across masking runs. In addition, this framework defines a default instance that chooses
randomly between algorithms "Redaction X", "Redaction Y" or "Redaction Z" included in the same plugin.

The algorithm's public fields include a list of AlgorithmInstanceReference objects, made configurable by the
JsonProperty annotation.

This algorithm's setup method does the following:

For each algorithm name, it calls getAlgorithmByName to instantiate a usable algorithm object, saving
them in algorithmList.
It initializes a random number generator to produce integers corresponding to each index in
algorithmList.

This algorithm's mask method selects an algorithm at random from algorithmList and calls it's mask method
on the input value, returning the result.

This algorithm's getDefaultInstances method creates a single instance that chooses between three
algorithms. Each algorithm reference begins with ':', indicating that these algorithms should be found in the
same plugin as this algorithm. The getName and getDescription methods of the returned object are
overridden to provide values different from those of the framework itself.

12.4.6.5 Using cryptographic keys

eCryptography is useful in algorithm development for a range of purposes, from straightforward encryption
of value to shuffling collections and permuting data in a manner that is consistent across masking jobs. The
extensible algorithm framework automatically provides each algorithm with a cryptographic key. This key is
wrapped by a service provider object that implements the CryptoService interface, providing a number of
useful operations based on the algorithm's key. It is also possible to retrieve the raw key assigned to the
algorithm as an array of bytes.

Similar to working with files, there is a KeyReference type that represents a reference to the key. This is
present to support access to keys stored in alternative locations (ex. a key vault) in the future. Currently, the
only supported value for these references is "", which indicates that the per-algorithm key stored on the
Delphix Masking Engine should be used.

12.4.6.5.1 Using the CryptoService provider

The first step any algorithm that wishes to use its algorithm key must take is to retrieve a handle to a
cryptographic service provider during initialization. This is done by calling the ComponentService object's
getCryptoService method. The returned provider wraps the key. The operations supported by the
CryptoService interface are as follows:

getRawKey - retrieve the raw key associated with this provider as a byte array.

When working with the Masking SDK maskApp and maskScript utilities, each algorithm's key is
a stable hash of its algorithm name, but maybe temporarily set to a random value using the -K
flag.

Continuous Compliance – Continuous Compliance Home

Authoring extensible plugins – 824

•

•

•

•

wrap - wraps an array of bytes to create a CryptoService object. This is useful for accessing
CryptoService methods when the algorithm's key is stored in an alternative location or hard-coded in
the algorithm source.
deriveNewKey - derive a new key by permuting this provider's key using SHA-256. A new
CryptoService object is returned wrapping the new key. The zero-argument version of this method
returns the same key each time it is called on the same provider - in order to create multiple, different
keys, a different salt must be provided to each method call. It is advisable that whenever an algorithm
wishes to use cryptography for multiple purposes, new and distinct keys be derived for each purpose.
computeHashedLookupIndex - compute an integer value from 0 to (modulus - 1) by hashing the input
value + key. This method is designed to allow randomized, but consistent, lookups into a replacement
table based on the input value.
shuffleList and shuffleListNoCollisions - these methods shuffle their argument List in-place using the
key to seed the randomization. The "noCollisions" variant ensures that no object in the list remains in
its original position.

12.4.6.5.2 Example algorithm

public class StringHashedLookup implements MaskingAlgorithm<String> {
 private List<String> replacements;
 private CryptoService crypto;

 public KeyReference key = new KeyReference();

 @JsonProperty("replacementFile")
 public FileReference replacementFile;

 @Override
 public void validate() throws ComponentConfigurationException {
 GenericReference.checkRequiredReference(replacementFile, "replacementFile");
 }

 @Override
 public void setup(@Nonnull ComponentService serviceProvider) {
 replacements = new ArrayList<>();

 String line;
 try (InputStream is = serviceProvider.openInputFile(replacementFile);
 BufferedReader reader =
 new BufferedReader(new InputStreamReader(is, "UTF_8"))) {
 while ((line = reader.readLine()) != null) {
 replacements.add(line);
 }
 } catch (IOException e) {
 throw new RuntimeException(e);
 }
 crypto = serviceProvider.getCryptoService(key);
 }

Continuous Compliance – Continuous Compliance Home

Authoring extensible plugins – 825

•

•
•

•

 @Override
 public String mask(@Nullable String input) {
 if (input == null || input.length() == 0) {
 return input;
 }
 return replacements.get((int) crypto.computeHashedLookupIndex(input,
replacements.size()));
 }
}

Some methods have been omitted for brevity.

This example algorithm functions very similarly to the existing Secure Lookup algorithm, except it employs a
different hash method from the new CryptoService provider.

The algorithm is configured with an input file by supplying a public, annotated FileReference field
replacementFile.
In the setup method, the replacement file is ingested and saved as a list of values.
Additionally in setup, the cryptographic service provider is initialized using the default key reference,
accessing the algorithm's key.
The mask method uses the computeHashedLookupIndex method to compute the index of the
replacement to use from the replacements list.

12.4.6.6 Logging

It is possible for a plugin algorithm to write information into the job logs, and consequently, Continuous
Compliance Engine logs. This is accomplished by using calling the getLogService method of the
ServiceProvider interface provided at the algorithm setup. The resulting LogService object may be used to
make logging entries at various levels of severity. The available log levels are ERROR, WARNING, INFO, and
DEBUG.

The log interface is provided to allow for debugging output during algorithm development, and for reporting
of statistical or similar values detailing the overall operation of the algorithm, typically in the tearDown
method.

Logging Security Warning
An algorithm must never log unmasked values (the input argument to the mask method) to the
log files. The job and Masking Engine log files may be retrieved by engine users and are included
support bundles.



Logging Verbosity

Continuous Compliance – Continuous Compliance Home

Authoring extensible plugins – 826

12.4.6.6.1 Example code

This example is take from the StringRedaction sample algorithm provided with the SDK:

public class StringRedaction implements MaskingAlgorithm<String> {
 ...
 private LogService logger;

 @Override
 public String mask(@Nullable String input) throws MaskingException {
 if (input == null) {
 return null;
 }

 if (random.nextDouble() < 0.1) {
 logger.info("{0}: Masked {1} values", getName(), count);
 }

 StringBuilder returnVal = new StringBuilder();

 for (int i = 0; i < input.length(); i++) {
 returnVal.append(redactionCharacter);
 }
 count++;
 return returnVal.toString();
 }

 @Override
 public void validate() throws ComponentConfigurationException {
 if (redactionCharacter == null || redactionCharacter.length() != 1) {
 throw new ComponentConfigurationException(
 "redactionCharacter must be a single character");
 }
 }

 @Override
 public void setup(@Nonnull ComponentService serviceProvider) {
 logger = serviceProvider.getLogService();
 }

 @Override

Algorithms also should not log progress messages or other verbose details, especially from the
mask method, as this will fill the log files with messages and may impact job performance. There
is a rate-limiting mechanism that limits the volume of messages each algorithm can write over
time, but any amount of routine logging is likely to diminish the overall usefulness of the logs by
obscuring more important messages.

Continuous Compliance – Continuous Compliance Home

Authoring extensible plugins – 827

•

•

•

 public void tearDown() {
 logger.info("{0}: Masked a total of {1} values", getName(), count);
 count = 0;
 }

Some methods and fields elided for the sake of brevity

The relevant details here:

The setup method uses the provided ComponentService object to get a LogService instance, saving
it as logger.
The mask method calls the logger's info method to write informational messages at random during
execution. This kind of "progress" logging may be useful during development but should be removed
for algorithms before production deployment.
The tearDown method calls the info method of the logger again to record the total number of values
masked.

12.4.7 Security considerations

It important that only well-crafted and trustworthy plugin modules are installed on the Continuous
Compliance Engine; otherwise, the security of the appliance and masked data may be compromised. This
section contains information for developers on how to ensure that their algorithm plugins function securely,
as well as for engine administrators to ensure that only trusted plugins are installed and executed on the
engine.

12.4.7.1 Algorithm implementation

This section details a number of security consideration developers should be aware of when creating plugin
algorithms for the Continuous Compliance Engine.

12.4.7.1.1 The security sandbox

During execution, all plugin code is sandboxed using the Java Security Manager. Plugins are granted all
permissions except for the following non- FilePermission :

Class Target Action

java.net.SocketPermission localhost:- accept, connect, listen, resolve

java.lang.RuntimePermission exitVM

java.lang.RuntimePermission createClassLoader

java.lang.RuntimePermission accessClassInPackage.sun

Continuous Compliance – Continuous Compliance Home

Authoring extensible plugins – 828

•

•

Class Target Action

java.lang.RuntimePermission setSecurityManager

java.security.SecurityPermission setPolicy

java.security.SecurityPermission setProperty.package.access

With regards to FilePermissions, read access is granted to all, though write is only allowed for the
following directories:

the masking user's home directory (System.getProperty("user.home"))

the JVM's default temp directory (System.getProperty("java.io.tmpdir"))

Please note that both of these locations are shared, so care will need to be taken to avoid collisions.

The set of permissions granted to plugins is static and cannot be modified. To facilitate testing, the same
security restrictions are applied when plugins are run using the maskApp or maskScript utilities in the
Masking SDK (with the exception of the SocketPermission and all instances of write

FilePermission).

12.4.7.1.2 Handling errors

One important aspect of ensuring that an algorithm securely masks sensitive data is proper handling any
errors that might occur during algorithm execution.

One particular category of error that might occur is when the input value does not match the format expected
by the algorithm. Perhaps an account number masking algorithm is applied to a column containing free-text
comments, or an image blurring algorithm is applied to non-image binary data. This is referred to as Non-
conformant data. The Algorithm Extension Plugin API defines how an algorithm may trigger the Non-
conformant data handling mechanisms built into the Masking Engine.

12.4.7.1.2.1 Reporting non-conformant data

Whenever a Non-conformant input value is encountered, and the algorithm cannot mask it, the algorithm
mask method should throw an exception of class NonConformantDataException supplied by the Masking
Plugin API. This triggers the Non-conformant data reporting mechanism of the masking engine. The String
value used to construct this exception must not include the unmasked input value, as this would result in the
sensitive value being saved in the Masking Engine logs and made visible in the engine UI. A redacted sample
of the Non-conformant data will be saved automatically by the reporting mechanism.

12.4.7.1.2.2 Handling other errors

In general, other code errors should be handled as responsibly as possible by the algorithm implementations,
following these guidelines:

Continuous Compliance – Continuous Compliance Home

Authoring extensible plugins – 829

•

•

•

Under no circumstances should the unmasked input values (the input argument to the mask method)
be included in any Exception thrown. Exception details are recorded in the engine logs, making them
visible to the engine operator and subject to potential disclosure in support bundles. Similarly,
exceptions should not simply be re-thrown as NonConformantDataException as the original
exception's message may contain the sensitive value.
Whenever possible, configuration problems should be reported in the validate or setup method, rather
than the mask method. Waiting until the mask method has run to report an error allows the masking
job to run, potentially leaving the database table or file partially masked.
An algorithm should never fail in such a way that sensitive values pass through without being
masked. In such cases, non-conformant can be reported as described above.

12.4.7.1.3 Logging

The extensibility framework provides the capability for an algorithm to create a logger (see page 826) in order to
write diagnostic messages to the Continuous Compliance Engine logs. Under no circumstances should
unmasked data (any input argument values to the mask method) be logged. Logged messages are visible to
users via the UI and web API, and may be disclosed in support bundles. It is recommended that production
algorithms never log in the mask method, for both performance and security reasons.

Additionally, plugin code should never read or write any of the System input or output streams. Specifically,
these are System.in, System.out, and System.err. All logging should be done using the provided logging
interfaces.

12.4.7.1.4 Handling secret credentials and keys

The JSON document describing the configuration of each algorithm is stored unencrypted on the Continuous
Compliance Engine and made visible to users with access privileges through the UI and web API. For these
reasons, secret values of any kind should never be part of an algorithm's configuration, regardless of
whether the algorithm is user-created or built into a plugin. This includes secret keys, as well as access
credentials or API keys that might be used to access remote systems. The only mechanism available as of
release 6.0.3.0 that would allow an algorithm to load a sensitive value without the risk of compromise is
reading the value from a file stored on an NFS or CIFS mounted filesystem. (see page 817)

Secret values (keys) or seeds that drive the output "randomization" an algorithm should not be embedded in
the algorithm code. Instead, the algorithm's assigned key should be accessed via the CryptoService
interface (see page 824). Static secrets of this kind of risk disclosure should the plugin JAR file be disclosed.
There are also risks associated with the algorithm producing the same masking results in all cases,
especially if the plugin is to be used for masking by multiple organizations.

A feature to allow plugins to securely access managed credentials will be added in a future
Delphix release.

Continuous Compliance – Continuous Compliance Home

253 https://download.delphix.com/
254 https://maskingdocs.delphix.com/maskingPluginAPIJavadoc/

Authoring extensible plugins – 830

•
•

•

•
•

•
•
•

12.5 Driver supports

12.5.1 Introduction

As of release 6.0.9.0, the Continuous Compliance Engine supports the installation of driver support plugins,
written in Java, that provide tasks to execute before/after masking jobs on extended database connectors.
Note that this feature requires creating/updating an uploaded JDBC driver to reference the driver support
plugin, which is only possible via the web API. Thus creating an extended database connector using that
JDBC driver and a corresponding masking job will allow you to enable whatever available tasks that are
implemented by the driver support on the job, which you can do via the web API and UI. This process is
detailed further here (see page 716). This feature is referred to as Extensible Driver Supports. This section of the
documentation details all aspects of masking driver support plugin usage and development. The Guided Tour
portion of the workflows section (see page 832) walks the user through the basic process of building a simple
plugin and installing it onto the Continuous Compliance Engine. Other sections explore topics such as the
DriverSupport interface (see page 831) and service interface. (see page 816)

This documentation assumes the reader has some familiarity with Java development as well as operation of
the Delphix Masking Engine via both the UI and Web API Client. The reader should also understand the
security requirements associated with any new driver supports being developed.

12.5.1.1 SDK features

The Extensible SDK provides a number of useful functions that aid development of new driver supports for
the Continuous Compliance Engine. It is available on the Delphix software download site253.

Creation of empty "skeleton" projects, with build files - the maskScript init sub-command
Testing of the execution of driver support tasks on a database without a masking engine

The maskScript taskExecute sub-command (NOTE: If you want to verify that the
preJobExecute part of the task was successfully executed, you will want to comment out the
reversal of the task in postJobExecute, or vice versa. Otherwise, set up your development
environment (see page 786), add a breakpoint and use the debugger to pause after
preJobExecute execution.)

Uploading of plugins to the masking engine - the maskScript install sub-command
Sample driver support for MSSQL extended database connector

12.5.1.2 Getting more information

Several other sources of information are available to aid in plugin development:

The http://README.md file under docs in the Extensible SDK download archive
The Masking Plugin API Javadoc254

Invoke maskScript (located under sdkTools/bin in the SDK download) with the -h option for usage
help

https://download.delphix.com/
https://maskingdocs.delphix.com/maskingPluginAPIJavadoc/
https://download.delphix.com/
http://README.md
https://maskingdocs.delphix.com/maskingPluginAPIJavadoc/

Continuous Compliance – Continuous Compliance Home

255 https://maskingdocs.delphix.com/maskingPluginAPIJavadoc/

Authoring extensible plugins – 831

•

1.

2.

•

3.

1.

2.

3.

4.

5.

6.

12.5.2 The DriverSupport Java interface

Any Java class that should be recognized as a driver support plugin must implement the DriverSupport
interface. The full details of this interface are described in the Masking Plugin API Javadoc255.

12.5.2.1 Method overview

This section provides a high-level overview of the methods in the DriverSupport interface. For complete
details, consult the Masking Plugin API Javadoc included in the Algorithm SDK archive.

getTasks - This method is used to determine the list of available tasks to execute on a corresponding
data source. The order in which the tasks are added to the list of tasks indicates the order in which
the tasks will be executed on the target data source.

12.5.2.2 The life cycles of driver support objects

The Extensibility framework uses objects classes implementing DriverSupport interface for several distinct
purposes. These object life cycles are as follows:

12.5.2.2.1 Plugin discovery

This occurs when the extensibility framework evaluates the capabilities present in a DriverSupport class.

Java object creation - an object of the driver support class is created

getTasks- determines all available tasks

getTaskName - get the name of each task

Disposal - the Java object is discarded

12.5.2.2.2 Driver support use

This is the life cycle of a driver object when executing a masking job.

Java object creation - an object of the driver support class is created

Configuration injection - the masking inventory is used to instantiate a JobInfo object and the
database connection is used to instantiate the Connection object (the target SQL connection)

setup - the setup method is called once

preJobExecute - the preJobExecute method is called once before executing the transformation

postJobExecute - the postJobExecute method is called once after executing the transformation

Disposal - the Java object is discarded

https://maskingdocs.delphix.com/maskingPluginAPIJavadoc/
https://maskingdocs.delphix.com/maskingPluginAPIJavadoc/

Continuous Compliance – Continuous Compliance Home

Authoring extensible plugins – 832

1.
a.
b.

2.

3.

4.

12.5.3 SDK workflows (Driver supports)

12.5.3.1 Introduction

This section is intended to walk a developer through several workflows using the Delphix Extensible SDK,
such as creating a new algorithm or driver support plugin and installing it on a Continuous Compliance
Engine.

In order to develop and deploy driver support plugins, you will interact primarily with two tools - the Masking
API client, and the Masking Extensible SDK. The Masking API client is a long-standing feature that allows
interactive execution of API operations on the Continuous Compliance Engine, while the Masking Extensible
SDK is a software package created specifically to aid in driver support development.

12.5.3.2 Outline for a guided tour

By following the steps in the outline below, you can tour the basic functionality provided by the Extensible
Driver Support feature and Extensible SDK.

Create a driver support plugin by choosing one of two options:
Building the sample driver support project (see page 832)

Creating and building your own driver support project (see page 834)

Test the driver support plugin using maskScript (see page 837)

Install the newly created plugin on the Continuous Compliance Engine (see page 845)

View and manage the plugins on a Continuous Compliance Engine using the API Client (see page 845)

12.5.3.3 Building the sample plugin (SDK workflows/Driver supports)

The Extensible SDK contains a buildable Sample Driver Support Plugin with a functional driver support
illustrating the features of the Extensibility Framework. These simple commands build the plugin containing
the sample driver support.

Starting from sdk_root:

$ cd samples
$./gradlew :driverSupport:jar

This creates the Sample Driver Support plugin JAR file sdk_root/samples/build/libs/driverSupport.jar.

The Sample Driver Support project provides a convenient way to see a working example plugin.

Continuous Compliance – Continuous Compliance Home

Authoring extensible plugins – 833

12.5.3.4 Creating a new project (SDK workflows/Driver supports)

This section describes how to create a brand new Java project for a new masking driver support plugin. We
will use the maskScript utility to create a skeleton project and an empty driver support class in that project.

12.5.3.4.1 Creating the project

Before you begin, you'll want to pick a name for your project, and an empty directory (outside of the Masking
SDK source tree) where your project will be created. Once you've done this, run this maskScript command:

$ maskScript init -t driverSupport -d <project path> -n <project name> -a <author
name> -v <version>

For example, this command will create a project named demoProject in the demo-proj subdirectory of your
home directory.

$ maskScript init -t driverSupport -d $HOME/demo-proj -n demoProject -a <plugin
author's name> -v <version>

For the rest of this section, we'll assume a new project has been created under proj_dir. Change your working
directory to proj_dir. You'll notice that the project is created with a sample driver support file proj_dir/src/
main/java/com/sample/masking/driverSupport/MSSQLDriverSupport.java. It's possible to build this into a
usable plugin by running:

$ cd <proj_dir>
$./gradlew jar

While it is possible to modify these driver supports by changing the Java source and rebuilding
the plugin, when starting a new project to develop one, it is highly recommended that you create
your own project (see page 834) rather than modifying files in the Sample Driver Support project
subtree. This will prevent the loss of customizations to the project build files should you chose to
install a new version of Masking Extensible SDK over your existing SDK directory.



This sample driver support project is not intended to be used in a production environment and is
only meant to serve as an example



Continuous Compliance – Continuous Compliance Home

Authoring extensible plugins – 834

12.5.3.4.2 Creating a driver support class

Run the maskScript utility to create a skeleton class file:

$ cd <proj_dir>
$ maskScript generate driverSupport -p com.delphix.demo -c <class_name> -s .

By convention, the class file .java will be created under a sub-directory path based on the package name, so it
might be he helpful to use the find command to locate it:

$ find . -name <class_name>.java
./src/main/java/com/delphix/demo/<class_name>.java

The initial content of this file is:

package com.delphix.demo;

import com.delphix.masking.api.driverSupport.DriverSupport;
import com.delphix.masking.api.driverSupport.Task;
import com.delphix.masking.api.driverSupport.jobInfo.JobInfo;
import com.delphix.masking.api.provider.ComponentService;
import com.delphix.masking.api.provider.LogService;
import java.sql.Connection;
import java.util.ArrayList;
import java.util.List;

public class <class_name> implements DriverSupport {

 /**
 * This method serves as a directory of Task objects provided by this plugin.
 *
 * @return an ordered list of tasks. The order that tasks are added to the
returning list is the
 * order that they will be executed in.
 */
 @Override
 public List<Task> getTasks() {
 // TODO: return list of implemented task objects
 List tasks = new ArrayList<>();
 tasks.add(new ExampleTask());

 return tasks;
 }

 public class ExampleTask implements Task {
 private JobInfo jobInfo;
 private LogService logService;

Continuous Compliance – Continuous Compliance Home

Authoring extensible plugins – 835

 private Connection targetConnection;

 @Override
 public String getTaskName() {
 return "Example Task";
 }

 @Override
 public void setup(ComponentService serviceProvider) {
 this.jobInfo = serviceProvider.getJobInfo();
 this.targetConnection =
serviceProvider.getTargetConnection();
 this.logService = serviceProvider.getLogService();
 }

 @Override
 public void preJobExecute() {
 // TODO: implement code to execute BEFORE masking job runs.
 }

 @Override
 public void postJobExecute() {
 // TODO: implement code to execute AFTER masking job runs.
 }
 }
}

12.5.3.4.3 Implementing the driver support class

The first thing to notice about the skeleton driver support class is that the getTasks method just returns

an array of tasks with a single no-op task called ExampleTask . This means no actual additional
transaction will be performed on the target data as part of a masking job, so this will certainly need to
change.

It is recommended that you change the task class to a name that more accurately reflects what the task
does as well as the string returned from the method getTaskName . Delete the TODO comments in

In order to rebuild the project to generate the driver support plugin JAR, you'll need to first update
settings.gradle to include the project directory:

/*
 * Copyright (c) 2019, 2021 by Delphix. All rights reserved.
 */

pluginManagement {
 resolutionStrategy {
 eachPlugin {
 if (requested.id.id == 'com.diffplug.gradle.spotless') {

Continuous Compliance – Continuous Compliance Home

Authoring extensible plugins – 836

 useModule("com.diffplug.spotless:spotless-plugin-
gradle:$spotlessVer")
 }
 }
 }
}

rootProject.name = '<proj_dir>'
include 'sdkTools'
include 'algorithm'
include 'assemble'
include 'driverSupport'

Then to generate the driver support plugin JAR:

$./gradlew jar

This creates or updates the plugin JAR file proj_dir/build/libs/.jar

12.5.3.5 Service discovery (SDK workflows/Driver supports)

Java service discovery is used to determine which classes in the plugin JAR present relevant functionality to
the Delphix Masking Engine. When a plugin is loaded, the file com.delphix.masking.api.plugin.DriverSupport
under META-INF/services in the JAR is consulted for a list of classes that implement the DriverSupport
interface.

If a driver support class is missing from the services file, it will not be usable when the plugin is loaded. It is
essentially invisible to the extensibility framework. If a class is mentioned in this file but not present in the
JAR, the plugin will fail to load.

12.5.3.6 Executing a driver support task using the SDK (SDK workflows/Driver
supports)

It will often be more convenient to use the SDK utilities to test a driver support since this avoids the need to
install or update your plugin, create or update a jdbc driver to reference the driver support plugin, and execute
jobs on the Delphix Masking Engine. This can be done from the command line using maskScript.

When the maskScript generate sub-command is used to create a new driver support class, the
service discovery metadata file is automatically updated.

Continuous Compliance – Continuous Compliance Home

256 https://delphixdocs.atlassian.net/continuous-compliance-10-0-0-0/docs/sdk-workflows-building-the-sample-plugin

Authoring extensible plugins – 837

12.5.3.6.1 Using maskScript to test a driver support task

The maskScript utility is non-interactive, which lets you execute a task on a given data source. The jdbc
driver, driver support and task are selected using command-line options. This example uses the Sample
Driver Support plugin. This plugin can be built using the process described here256.

Create a task set up json file that corresponds to the specific table and desired database with the contents:

{
 "tableMetadata": [
 {
 "name": "Person",
 "schema": "dbo",
 "columns": [
 {
 "name": "column_pk"
 },
 {
 "name": "column_name_1"
 },
 {
 "name": "column_name_2"
 },
 {
 "name": "column_name_3"
 }
]
 }
],
 "jdbcConnection": {
 "username": "USERNAME",
 "password": "PASSWORD",
 "host": "jdbc:sqlserver://HOST:1433;databaseName=DB_NAME",
 "propertyFilePath": ""
 }
}

Execute the task by indicating the name of the desired task, driver support filepath, task set up json, and jdbc
driver:

$ maskScript taskExecute -n "Task Name" -j /path/to/driverSupport.jar -c /path/to/
task-setup.json -l /path/to/jdbcDriver.jar

https://delphixdocs.atlassian.net/continuous-compliance-10-0-0-0/docs/sdk-workflows-building-the-sample-plugin
https://delphixdocs.atlassian.net/continuous-compliance-10-0-0-0/docs/sdk-workflows-building-the-sample-plugin

Continuous Compliance – Continuous Compliance Home

257 https://www.dbvis.com/

Authoring extensible plugins – 838

Use any available database management tool like DbVisualizer257 to connect to the database and verify that
the task was successfully executed.

12.5.3.7 Retrieving information about installed plugins (SDK workflows/Driver
supports)

The GET endpoints are useful for getting information about plugins. After following the steps in this
section (see page 845) to install the Sample Driver Support plugin, the GET operation will return (elided for
brevity):

{
 "pluginId": 9,
 "pluginName": "Sample Plugin",
 "pluginAuthor": "Sample Plugin Author",
 "pluginType": "DRIVER_SUPPORT",
 "originalFileName": "driverSupport.jar",
 "originalFileChecksum":
"f8398c0768ecf7709c6992b3f048f9da8be640285b3ccc968973949ca3cceb02",
 "installDate": "2021-04-21T15:29:01.982+00:00",
 "installUser": 5,
 "builtIn": false,
 "pluginVersion": "1.5.0",
 "pluginObjects": [
 {
 "objectIdentifier": "1",
 "objectName": "Disable Constraints",
 "objectType": "DRIVER_SUPPORT_TASK"
 },
 {
 "objectIdentifier": "2",
 "objectName": "Disable Triggers",
 "objectType": "DRIVER_SUPPORT_TASK"
 },
 {
 "objectIdentifier": "3",
 "objectName": "Drop Indexes",
 "objectType": "DRIVER_SUPPORT_TASK"
 }
]
},
...

In order to be usable, the class that implements DriverSupport must also be listed in the
appropriate service description file. Refer to this section (see page 837) for details.

https://www.dbvis.com/
https://www.dbvis.com/

Continuous Compliance – Continuous Compliance Home

258 https://maskingdocs.delphix.com/maskingPluginAPIJavadoc/

Authoring extensible plugins – 839

•

•
•

•

For each plugin, the plugin metadata, including pluginId , pluginName and originalFileChecksum
are displayed first. This is followed by a list of tasks included in the plugin.

12.5.4 Service Interface (Driver supports)

12.5.4.1 Introduction

The Extensible Driver Supports framework makes certain services available to the driver support
implementation. This prevents the driver support from having to re-implement code to perform certain
routine tasks and facilitates seamless integration with the Masking Engine. This functionality is exposed to
the driver support class via the ComponentService interface.

Whenever a new Masking driver support instance is required for masking, the extensibility framework first
injects any saved configuration, then invokes the objects setup method. This method is passed a reference
to an object that implements ComponentService. The driver support's setup method can then use this object
to access a number of provider methods:

getInstanceName - Get the name of this instance. Because the instance name it is not typically a
configurable field in the driver support, the getName method will not correctly return the name of an
driver support instance, even after JSON configuration injection. This method will always return the
correct instance name as known to the Masking Engine.
getTargetConnection - Gets a java.sql.Connection that is made using the target database connector.
getJobInfo - Gets a jobInfo object, which maps the names of tables, schemas, and columns that are
in the masking ruleset.
getLogService - Get a logger object, as described in this section (see page 826)

The objectIdentifier field refers to the ID of the task. The order in which the tasks are

returned from the API is the order in which the tasks will be executed; the objectIdentifier
(task ID) has no bearing on the task execution order.



Getting more information
Refer to the com.delphix.masking.api.provider package in the Javadoc258 for detailed
information.



https://maskingdocs.delphix.com/maskingPluginAPIJavadoc/
https://maskingdocs.delphix.com/maskingPluginAPIJavadoc/

Continuous Compliance – Continuous Compliance Home

Authoring extensible plugins – 840

12.5.4.2 Accessing masking engine rulesets

The JobInfo object represents the database connector's inventory on the masking engine. It contains all
of the columns that are going to be masked along with the table and/or schema that they belong to.

12.5.4.2.1 Example driver support task

public class DropIndexes implements Task {
 private JobInfo jobInfo;
 private LogService logService;
 private Connection targetConnection;

 @Override
 public String getTaskName() {
 return "Drop Indexes";
 }

 @Override
 public void setup(ComponentService serviceProvider) {
 this.jobInfo = serviceProvider.getJobInfo();
 this.targetConnection = serviceProvider.getTargetConnection();
 this.logService = serviceProvider.getLogService();
 }

 /**
 * This method is to structure all of the columns belonging to the jobInfo.
 *
 * @return A String of comma separated column names.
 */
 private String getCommaSeparatedColumnNames() {
 StringBuilder resultStringBuffer = new StringBuilder();
 for (TableInfo table : jobInfo.getTables()) {
 resultStringBuffer.append(
 table.getColumns().stream()
 .map(ColumnInfo::getName)
 .map(this::singleQuoted)

 .collect(Collectors.joining(",")));
 resultStringBuffer.append(",");
 }
 String commaSeparatedResult = resultStringBuffer.toString();
 return commaSeparatedResult.substring(0,
commaSeparatedResult.length() - 1);
 }
}

Some methods have been omitted for brevity.

Continuous Compliance – Continuous Compliance Home

259 https://maskingdocs.delphix.com/maskingPluginAPIJavadoc/

Authoring extensible plugins – 841

12.5.4.3 Accessing database server (JDBC)

Driver support plugins will require access to the target database table on which its selected tasks will be run
as part of a masking job. The extensible driver support framework allows driver supports to access database
servers using JDBC connections, utilizing the existing masking web API. The same connection that is built
during the test connection endpoint (POST /database-connectors/{connector_id}/test) on the
masking engine is the same connection that will be returned by the service provider's getTargetConnection
method.

12.5.4.3.1 Example driver support task

public class DisableTriggers implements Task {
 ...
 private Connection targetConnection;
 ...

 @Override
 public String getTaskName() {
 return "Disable Triggers";
 }

 @Override
 public void setup(ComponentService serviceProvider) {
 this.jobInfo = serviceProvider.getJobInfo();
 this.targetConnection = serviceProvider.getTargetConnection();
 this.logService = serviceProvider.getLogService();
 }

 ...

 @Override
 public void preJobExecute() throws MaskingException {
 long start = System.currentTimeMillis();
 this.triggersOnMaskedTables = findEnabledTriggersOnMaskedTables();
 try (Statement statement = targetConnection.createStatement()) {
 for (Map.Entry<String, String> entry : triggersOnMaskedTables.entrySet())
{
 String triggerName = entry.getKey();
 String tableName = entry.getValue();

See the Javadocs259 for further information on the JobInfo, SchemaInfo, TableInfo and
ColumnInfo interfaces.

https://maskingdocs.delphix.com/maskingPluginAPIJavadoc/
https://maskingdocs.delphix.com/maskingPluginAPIJavadoc/

Continuous Compliance – Continuous Compliance Home

Authoring extensible plugins – 842

 String disableTriggersStatement =
 String.format(MODIFY_TRIGGERS_SQL, "DISABLE", triggerName,
tableName);
 try {
 statement.execute(disableTriggersStatement);
 } catch (SQLException e) {
 String errorMessage = ...;
 logService.error(errorMessage + e);
 throw new MaskingException(errorMessage, e);
 }
 }
 } catch (SQLException e) {
 String errorMessage = "Error creating a statement on target connection.";
 logService.error(errorMessage + e);
 throw new MaskingException(errorMessage, e);
 }
 }
}

Some methods have been omitted for brevity.

12.5.4.4 Logging (Service interfaces)

It is possible for a driver support plugin to write information into the app logs, and consequently, Continuous
Compliance Engine logs. This is accomplished by using calling the getLogService method of the
ServiceProvider interface provided at the driver support setup. The resulting LogService object may be used
to make logging entries at various levels of severity. The available log levels are ERROR, WARNING, INFO, and
DEBUG.

The log interface is provided to allow for debugging output during driver support development, and for
reporting of statistical or similar values detailing the overall operation of the driver support, typically in the
tearDown method.

12.5.4.4.1 Example code

This example is take from the MSSQL sample Disable Constraints driver support task provided with the SDK:

public class DisableConstraints implements Task {

Logging Verbosity
Driver support tasks also should not log progress messages or other verbose details, especially
from the preJobExecute or postJobExecute methods, as this will fill the log files with messages
and may impact job performance. There is a rate-limiting mechanism that limits the volume of
messages each driver support can write over time, but any amount of routine logging is likely to
diminish the overall usefulness of the logs by obscuring more important messages.



Continuous Compliance – Continuous Compliance Home

Authoring extensible plugins – 843

 ...
 private LogService logService;
 ...

 @Override
 public String getTaskName() {
 return "Disable Constraints";
 }

 @Override
 public void setup(ComponentService serviceProvider) {
 this.jobInfo = serviceProvider.getJobInfo();
 this.targetConnection = serviceProvider.getTargetConnection();
 this.logService = serviceProvider.getLogService();
 }

 ...

 @Override
 public void preJobExecute() throws MaskingException {
 long start = System.currentTimeMillis();
 disableConstraints();
 logService.info(
 String.format(
 "Total execution to disable all constraints on masked tables
took %s ms.",
 String.valueOf(System.currentTimeMillis() - start)));
 }

 /** This function enables all constraints on the target database table. */
 private void disableConstraints() throws MaskingException {
 this.enabledConstraints = findEnabledConstraints();
 try (Statement statement = targetConnection.createStatement()) {
 for (ConstraintMetadata constraint : enabledConstraints.values()) {
 logService.info(
 String.format(
 "Starting to disable constraint: \"%s\" on table
\"%s\"",
 constraint.getName(),
constraint.getQualifiedTableName()));
 try {
 String builtSqlStatement =
 String.format(
 ALTER_CONSTRAINT_STATEMENT,
 constraint.getQualifiedTableName(),
 constraint.getDisableAction(),
 constraint.getName(),
 ";");
 logService.info(builtSqlStatement);
 statement.execute(builtSqlStatement);
 } catch (SQLException e) {
 String errorMessage =

Continuous Compliance – Continuous Compliance Home

Authoring extensible plugins – 844

•

•

 String.format(
 "Error disabling constraint: \"%s\" on table
\"%s\".",
 constraint.getName(),
constraint.getQualifiedTableName());
 logService.error(errorMessage + e);
 throw new MaskingException(errorMessage, e);
 }
 logService.info(
 String.format(
 "Finished disabling constraint: \"%s\" on table
\"%s\".",
 constraint.getName(),
constraint.getQualifiedTableName()));
 }
 } catch (SQLException e) {
 String errorMessage =
 String.format(
 "Error creating statement on target connection %s: ",
 targetConnection.getClass());
 logService.error(errorMessage + e);
 throw new MaskingException(errorMessage, e);
 }
 }
 ...

 @Override
 public void postJobExecute() throws MaskingException {
 long start = System.currentTimeMillis();
 enableConstraints(); // comment this out if testing of the task execution via
the SDK is desired
 logService.info(
 String.format(
 "Total execution to enable all constraints on masked tables
took %s ms.",
 System.currentTimeMillis() - start));
 }

Many methods and fields elided for the sake of brevity

The relevant details here:

The setup method uses the provided ComponentService object to get a LogService instance, saving
it as logService.
The disableConstraints method calls the logger's info method to write informational messages at
random during execution. This kind of "progress" logging may be useful during development but
should be removed for driver supports before production deployment. It also calls the logger's error
method in the event of a failure to connect to the data source or otherwise execute the task on the
given data source.

Continuous Compliance – Continuous Compliance Home

Authoring extensible plugins – 845

•
•
•

12.6 Managing plugins using the API client
The Continuous Compliance Engine's web API includes a plugin endpoint for managing plugins:

12.6.1 Displaying information about installed plugins

The GET endpoints are useful for getting information about plugins. After following the steps in this
section (see page 845) to install the plugin, the GET operation will allow you to retrieve information about the
installed plugins. To know what response and information to expect, please see the respective
documentation for driver supports (see page 839) and algorithms (see page 839).

12.6.2 Other plugin endpoint operations

In addition, to GET, the plugin endpoint supports the other CRUD operations:

POST - install a new plugin
PUT - update an existing plugin
DELETE - remove a plugin from the system

The POST and PUT operations both require a fileReference value representing the plugin file to be installed or
updated. These values are the result of using the fileUpload endpoint to upload the plugin JAR file to the
Masking Engine.

In order to install a new version of this plugin, one could use the PUT operation, or, assuming the algorithm or
driver support plugin are not in use, simply DELETE the plugin and POST a new version (or install using the
SDK maskScript). Both PUT and DELETE operations require the pluginId value listed for each plugin using the
GET operation. Refer to this section (see page 785) for details to help the plugin author ensure that new
versions of a plugin can successfully install over an existing version using the PUT operation.

12.7 Installing a plugin onto the Delphix masking engine
Once you've successfully built a plugin, it's possible to upload it using the fileUpload endpoint in the Masking
Engine's API Client, then install the plugin using the plugin endpoint. The SDK's maskScript includes a sub-
command to automate this process. Replace "admin" with your username if you prefer to install the plugin as
another user.

Continuous Compliance – Continuous Compliance Home

Authoring extensible plugins – 846

$ maskScript install -j <path to plugin JAR> -H <engine hostname> -u admin

For example, if you've chosen to build the included Sample Algorithm Plugin in its standard location, and the
IP address of your Delphix Masking Engine is 10.0.0.1, this command would install the Sample Algorithm
Plugin onto your engine:

$ maskScript install -j algorithm/build/libs/algorithm.jar -H 10.0.0.1 -u admin

You will be prompted for the Delphix Masking Engine user's password.

Upon success, this command will display the JSON response from the API request, including details about
the installed plugin as well as a list of the frameworks and algorithms that were installed.

When installing a plugin using the maskScript, the -n option may be used to override the plugin name on the
Masking Engine. This may be used to install two plugins with the same built-in name on the engine at once
(for example, two different versions of the same plugin), but should usually be avoided due to the potential
confusion that can result from installing the same plugin on multiple engines with different names.

12.8 Secure plugin deployment
It is absolutely vital that only known plugin modules from trusted vendors be installed on the Delphix
Masking Engine. A bad plugin may include algorithms that malfunction, possibly by failing to mask data or
entering a loop consuming CPU or memory resource. This can lead to job failure, the engine UI becoming
unresponsive, or failure to properly mask sensitive data in the case of algorithms (see page 828). Plugin
execution is sandboxed using the Java Security Manager to guard against malfunctioning code. However,
JVM security has historically proven susceptible to allowing untrusted modules to run with the danger of
malicious code gaining enhanced or full access to the system running the JVM.

With these considerations in mind, this section describes steps the Delphix Masking Engine administrator
can take to ensure that only trusted plugins are executed.

12.8.1 Using roles to restrict plugin installation

This section (see page 204)describes how to define roles and assign roles to Delphix Masking Engine users.
The new profile privilege Plugins controls which users are able to install new plugins on to the engine. It is
advised that only users that need the ability to install plugin modules onto the engine be granted roles that
include this privilege.

The Web API Client may also be used to manage the plugins installed on the Delphix Masking
Engine, as described in this section (see page 845). Also, algorithms support installing multiple
plugins (see page 800) on a masking engine.

Continuous Compliance – Continuous Compliance Home

Authoring extensible plugins – 847

12.8.2 Verifying the SHA256 hash of installed plugins

When the Masking Web API Client plugin endpoint is used to GET the details of a plugin, the field
originalFileChecksum contains the SHA256 hash of the plugin file installed. This may be compared to a
vendor-supplied list of known plugin hashes to verify that a plugin installed on the Delphix Masking Engine
has not been tampered with.

For example:

{
 "pluginId": 9,
 "pluginName": "demoPlugin",
 "originalFileName": "demoProject.jar",
 "originalFileChecksum":
"65053d20874ec7929d219b24bdf98ac5b6f7b06ac6bab59712cf78971be135c9",
 "installDate": "2020-06-24T18:19:42.534+0000",
 "installUser": 5,
 "builtIn": false,
 "pluginVersion": "1.0.0",
 "pluginObjects": [
 {
 "objectIdentifier": "demoPlugin:Clobber",
 "objectName": "demoPlugin:Clobber",
 "objectType": "ALGORITHM"
 },
 {
 "objectIdentifier": "demoPlugin:SampleAlgorithm",
 "objectName": "demoPlugin:SampleAlgorithm",
 "objectType": "ALGORITHM"
 }
]
 }

Most UNIX like operating systems provide a way to compute the same hash of a file on the command line.

Apple OSX Example:

$ shasum -a 256 demoProject.jar
65053d20874ec7929d219b24bdf98ac5b6f7b06ac6bab59712cf78971be135c9 demoProject.jar

Ubuntu Linux Example:

$ sha256sum demoProject.jar
65053d20874ec7929d219b24bdf98ac5b6f7b06ac6bab59712cf78971be135c9 demoProject.jar

At the time this document was written, there are no known means that would allow an attacker to produce a
plugin module with different content, but the same SHA256 hash value of a particular file.

Continuous Compliance – Continuous Compliance Home

Authoring extensible plugins – 848

12.9 Terminology

12.9.1 Terminology

Algorithm instance - An algorithm instance is a fully-formed algorithm, which may be assigned to mask data
in your masking Inventory. Algorithm instances are uniquely identified by their algorithmName in the Masking
API, which is sometimes referred to as "algorithm code" or algorithmCd.

Algorithm component - This term refers to a Java class within an algorithm plugin that implements the
MaskingAlgorithm Java interface.

Algorithm framework - This term refers to a family of algorithms on the Delphix Masking Engine. It is
necessary to create an instance of an algorithm framework in order to use it - for example, FirstNameLookup
is an instance of the Secure Lookup (aka. SL) algorithm framework.

Delphix algorithm SDK - A toolkit authored by Delphix to support the development of algorithm plugins. This
includes a CLI for testing algorithms, a skeleton generator for creating empty plugin projects and algorithm
classes, and sample algorithms illustrating various use cases.

Delphix masking API - This refers to the set of web APIs offered by the Delphix Masking Engine over HTTP/
HTTPS. This API is sometimes referred to as the V5 APIs (referencing their current major version number) or
Masking Web API.

Delphix masking plugin API - A package containing the set of Java interfaces that may be implemented in
and consumed by a plugin for the Delphix Masking Engine. In order for a plugin to supply algorithms, one or
more classes in the plugin must implement the MaskingAlgorithm interfaces provided by this API. This
component also includes some common utilities used to load and run plugins on the engine and in the
Masking SDK. The JAR containing the appropriate version of the Delphix Masking Plugin API classes has
been embedded in the Algorithm SDK zip file.

Plugin - A JAR file containing classes that implement interfaces usable to extend the Delphix Masking
Engine. Currently, only masking algorithms may be included in plugins. Plugins also contain self-descriptive
metadata to facilitate their use on the engine.

Multi-Column (MC) algorithm - An algorithm that can take as input more than one field and mask one or all
the inputted fields, computing the masked value using any of the fields provided. An MC Algorithm can also
take in read-only fields that it does not modify but uses to compute a masked value for another field. The
type of the input specified for an MC Algorithm is GENERIC_DATA_ROW, though all the fields must specify
one of the "standard" masking types (STRING, BIG DECIMAL, etc).

	Welcome to the Delphix Continuous Compliance documentation!
	Quick references
	Release notes
	New features
	Release 16.0.0.0
	Release 15.0.0.0
	Release 14.0.0.0
	Release 13.0.0.0
	Release 12.0.0.0
	Release 11.0.0.0
	Release 10.0.0.0
	Release 9.0.0.0
	Release 8.0.0.0
	Release 7.0.0.0
	Release 6.0.17
	Release 6.0.16.0
	Release 6.0.15.0
	Release 6.0.14.0
	Release 6.0.13.0
	Release 6.0.12.0
	Release 6.0.11.0
	Release 6.0.10.0
	Release 6.0.9.0
	Release 6.0.8.0
	Release 6.0.7.0
	Release 6.0.6.0
	Release 6.0.5.0
	Release 6.0.4.0
	Release 6.0.3.0
	Release 6.0.2.0
	Release 6.0.1.0
	Release 6.0.0.0
	Release 5.3

	Fixed issues
	Release 16.0.0.0
	Release 15.0.0.0
	Release 14.0.0.0
	Release 13.0.0.0
	Security Fixes
	Release 12.0.0.0
	Security fixes
	Release 11.0.0.0
	Security fixes
	Release 10.0.0.0
	Release 9.0.0.0
	Release 8.0.0.0
	Release 7.0.0.0
	Release 6.0.17.0
	Release 6.0.16.0
	Release 6.0.15.0
	Release 6.0.14.0
	Release 6.0.13.0
	Release 6.0.12.0
	Release 6.0.11.0
	Release 6.0.10.0
	Release 6.0.9.0
	Release 6.0.8.0
	Release 6.0.7.0
	Release 6.0.6.0
	Release 6.0.5.0
	Release 6.0.4.0
	Release 6.0.3.0
	Release 6.0.2.0
	Release 6.0.1.0
	Release 6.0.0.0

	Known issues
	Release 16.0.0.0
	Release 15.0.0.0
	Release 14.0.0.0
	Release 13.0.0.0
	Release 12.0.0.0
	Release 11.0.0.0
	Release 10.0.0.0
	Release 9.0.0.0
	Release 8.0.0.0
	Release 7.0.0.0
	Release 6.0.17.0
	Release 6.0.16.0
	Release 6.0.15.0
	Release 6.0.14.0
	Release 6.0.13.0
	Release 6.0.12.0
	Release 6.0.11.0
	Release 6.0.10.0
	Release 6.0.9.0
	Release 6.0.8.0
	Release 6.0.7.0
	Release 6.0.6.0
	Release 6.0.5.0
	Release 6.0.4.0
	Release 6.0.3.0
	Release 6.0.2.0
	Release 6.0.1.0
	Release 6.0.0.0

	Deprecated and end-of-life features
	Release 15.0.0.0
	Release 11.0.0.0
	Release 10.0.0.0
	Release 6.0.17.0
	Release 6.0.15.0
	Release 6.0.12.0
	Release 6.0.11.0
	Release 6.0.10.0
	Release 6.0.9.0
	Release 6.0.8.0
	Release 6.0.7.0
	Release 6.0.4.0
	Release 6.0.3.0
	Release 6.0.0.0

	Licenses and notices

	Getting started
	Introduction to Delphix Masking
	Challenge
	Solution
	High-level platform architecture
	How Delphix identifies sensitive data
	How Delphix secures your sensitive data

	Data source support
	Standard connectors
	Select connectors
	DB2 LUW connector
	Oracle connector
	MS SQL connector
	PostgreSQL connector
	MySQL / MariaDB connector
	SAP ASE (Sybase) connector
	DB2 z/OS and iSeries connectors
	Files connector
	Mainframe data set connector
	On-The-Fly masking jobs

	Installation
	Containerized installation
	Network connectivity requirements
	Prerequisites
	First time setup
	AWS EC2 installation
	Azure installation
	Google Cloud Platform installation
	IBM Cloud Platform installation
	Hyper-V installation
	OCI installation
	VMware installation

	Naming requirements
	Affected configurable objects
	Upgrade
	Maximum name lengths
	Create/rename
	Environment export/import
	Sync

	Users and roles
	What are roles?
	What are users?
	Sample JSON

	Best practices for defining masking roles
	Introduction
	Sample RACI
	Sample roles for Masking

	Audit logs
	Audit log UI page
	Audit log APIs
	What gets logged?
	Retention policy
	Recommendation

	Kerberos configuration
	Introduction
	Terminology
	Configuring Kerberos on the appliance
	Creating masking database connectors using Kerberos
	Reference database configurations

	Password vault configuration
	Introduction
	Configuring a password vault on the appliance
	Configuring the database connector
	UI configuration
	API configuration

	DB2 connector license installation
	Applying DB2 connector for mainframe
	Applying DB2 connector for iSeries

	Continuous Compliance Engine icon reference
	Delphix masking terminology
	High level concepts
	Masking algorithms
	Profile job concepts
	Masking job concepts

	Changing the IP address of the Delphix Engine
	Pre-requisites
	Changing the IP address from the user interface
	Changing the IP address using CLI

	Stopping and starting the containerized Continuous Compliance Engine
	Overview
	Starting the containerized Masking Engine
	Stopping the containerized Masking Engine
	Removing persistent volumes / persistent volume claims

	Stopping, starting, and restarting the continuous compliance engine
	Overview
	Use cases examples
	Troubleshooting before a restart
	Using the Command-Line Interface (CLI)

	Upgrading the Continuous Compliance Engine
	Upgrades for virtual Compliance Engines
	Upgrades for containerized Compliance Engines

	Utilization
	Overview
	Utilization UI page
	The jobs utilization report
	The database size report

	Preparing data
	Database user permissions for executing masking and profiling job
	Introduction
	List of database entitlements required to run masking jobs
	List of database entitlements required to run profiling jobs

	Preparing Oracle database for profiling/masking
	Overview
	Archive logging
	DB/VDB memory allocation
	Undo tablespace size and undo retention time:
	Redo logs are optimally sized
	Change PCTFREE to 40-50:
	Change primary Key To ROWID:
	Masking user privileges:

	Preparing SQL server database for profiling and masking
	Logging
	DB/VDB memory allocation
	Primary/Foreign/DMS_ROW_ID Keys
	Creating a masking user and privileges

	Preparing Sybase database for profiling and masking
	What is min/max memory in SQL server?
	Primary/Foreign/DMS_ROW_ID keys to for masking Sybase:
	Creating a Masking user and privileges:

	Connecting data
	Managing environments
	Adding an application
	Creating an environment
	Exporting settings
	Importing settings
	Async task status
	Exporting an environment
	Importing an environment
	Editing an environment
	Copying an environment
	Deleting an environment
	Searching for environments

	Managing remote mounts for VM continuous compliance engines
	Mount filesystem API
	Mount options
	CRUD operations
	Mount operations
	Using mounts
	Recommended mount server configuration

	Managing remote mounts for containerized masking
	Creating the mountpoint connection in Kubernetes
	Using the mountpoint in the pod configuration
	Using the mountpoint in the UI
	Other types of filesystem mountpoint
	Known limitations
	Local file masking troubleshooting

	Managing SSL/TLS over JDBC for containerized masking
	Prerequisites
	Create configmap entry based on database provided SSL/TLS certificate
	Mount the configured configmap as volume
	Create trust store and upload all mounted SSL/TLS certificates
	Configure SSL/TLS over JDBC connector
	SSL/TLS over JDBC troubleshooting

	Managing connectors
	Creating a connector
	Editing a connector
	Deleting a connector
	Database connectors
	Database connector properties
	File connectors

	Managing extended connectors
	Limitations
	Installing a new driver
	Driver permissions
	Extended logging
	Creating an extended connector
	Synchronization
	License entitlement for commercial JDBC drivers

	Managing rule sets
	The rule sets screen
	The create/Edit rule set window
	Creating a rule set
	Refreshing a rule set
	Copying a rule set
	Deleting a rule set
	The rule set screen
	Editing/Modifying a rule set
	Removing a table or File
	Modifying tables in a rule set
	Creating a ruleset for file formats
	Control character support for delimited files
	Define enclosure escaping strategy for delimited files

	Managing file formats
	Construct a Delimited File Format to upload
	Construct a Fixed-width File Format to upload
	Construct XML File Format to upload
	Construct JSON File Format to upload
	Mainframe data set to upload
	To import a File format
	To import a Mainframe format
	To delete a format
	To edit a format
	Assigning a file format to files
	Add Fields to a file format
	View, Edit, or Delete a file field
	Record types
	Redefine conditions

	Managing inventories
	The inventory screen
	Sorting on an inventory grid
	Filtering on an inventory grid
	View more columns on the inventory grid
	Assigning algorithms
	Managing database inventory settings
	Managing a fixed-width or delimited file inventory settings
	Managing a JSON file inventory settings
	Managing an XML file inventory settings
	Managing Mainframe inventory settings
	Importing and exporting an inventory
	Document Store Type masking
	Inventory Approval Workflow (database rule sets only)

	Managing record types and header/footer records
	Overview

	Whole file masking
	Pre-requisite
	Masking a whole file

	Identifying sensitive data
	Discovering your sensitive data
	Overview
	Concepts

	Out of the box profiling settings
	ASDD standard profile set
	Standard profile set
	Legacy profile sets

	ASDD standard profile set
	Standard profile set expressions
	Column level expressions
	Type expressions

	Legacy profile set expressions
	Account numbers
	Physical addresses
	Beneficiary ID
	Biometrics
	Certificate ID
	City
	Country
	Credit card
	Customer number
	Date of birth
	Driver license number
	Email
	First name
	IP address
	Last name
	Plate number
	PO Box numbers
	Precinct
	Record number
	School name
	Security code
	Serial number
	Signature
	Social security number
	Tax ID
	Telephone number
	Vin number
	Web address
	ZIP code

	Configuring profile sets
	Creating and modifying profile sets

	Managing domains
	Overview
	Domains
	Adding a new domain

	Managing classifiers
	To add a classifier
	To edit a classifier
	To delete a classifier
	Configuration considerations for classifiers

	Managing expressions
	Profile expressions
	Managing expressions

	ASDD profile set import and export
	ASDD profile set import
	ASDD profile set export

	Creating a profiling job
	Creating a new profiling job

	Running a profiling job
	Reporting profiling results
	Monitor page
	PDF report
	Inventory page
	CSV
	API endpoint

	ASDD features and support
	ASDD features
	ASDD limitations

	Securing sensitive data
	Algorithms
	Introduction to Masking algorithms
	Algorithm options
	Configuring your own algorithms
	Algorithms Keys
	Multi-column algorithms
	Limitations
	Algorithm frameworks overview
	Out of the box algorithm instances
	Algorithm frameworks
	General UI for extended algorithms

	Builtin Driver Supports
	Introduction
	Oracle
	MSSQL
	PostgreSQL
	Db2 LUW
	Db2 z/OS
	Db2 iSeries
	Built-in Oracle driver support plugin
	Built-in MSSQL driver support plugin
	Built-in PostgreSQL driver support plugin
	Built-in DB2 LUW driver support plugin
	Built-in DB2 z/OS driver support plugin
	Built-in DB2 iSeries driver support plugin

	Creating masking jobs
	Creating new jobs
	Creating a new masking job
	Enabling and disabling database constraints
	Creating SQL statements to run before and after Jobs

	Managing jobs
	Managing jobs from the environment overview screen

	Monitoring masking job
	Monitoring your masking jobs
	Monitoring a single job
	Displaying non-conformant data
	Interpreting samples of non-conformant data patterns
	Tracking Non-conformant Data

	Masking job wizard
	Supported data platforms
	Supported operations
	What is not supported in the wizard
	Opening the masking job wizard
	Creating a new masking job
	Updating an existing masking job

	Running stopping jobs
	Running and stopping jobs from the environment overview screen

	Masked provisioning
	Configuring virtualization service for masked provisioning
	Introduction
	Instructions

	Provision masked VDBs
	Prerequisites
	Restrictions
	Identifying and navigating to masked VDBs
	Provisioning masked VDBs
	Refresh a masked VDB
	Disassociating a masking operation on a dSource
	Masked VDB data operations
	Continuous Data and Continuous Compliance Engine compatibility matrix

	Managing multiple engines for masking
	Introduction (Managing multiple engines for masking)
	Software Development Life Cycle (SDLC)
	Horizontal scale
	Best practice guide and example architectures for synchronizing

	Sync concepts
	Syncable object
	Object identifiers and types
	Dependencies
	Object revision tracking
	Export document
	Security
	Digital signature
	Overwrite
	Error handling
	Concurrent sync operations
	Global objects
	Reference objects
	On-the-fly masking jobs
	Circular dependencies

	Sync endpoints
	GET /syncable-objects
	POST /export
	POST /export-async
	POST /import
	POST /import-async

	Algorithm syncability
	Overview
	Non-deterministic Algorithms
	Fixed Algorithms

	User workflow examples
	Syncing all global objects
	Syncing a masking job
	Syncing an environment

	Change log
	Changes in 6.0
	Changes in 5.3

	Delphix masking APIs
	Masking client
	Masking API client
	API calls for managing algorithms
	API calls for managing extended connectors
	API calls for ASDD profile set import and export
	API calls for managing classifiers
	API calls for managing profile set usage
	API calls for searching and filtering
	API calls for managing masking job driver support tasks
	API calls for creating an inventory
	API calls for creating and running masking jobs
	API calls involving file upload and download
	Backwards compatibility API usage
	API response escaping
	API call for generating support bundle

	API examples
	loginCredentials
	helpers
	apiHostInfo
	Configure enclosure escape character
	createApplication
	createEnvironment
	createInventory
	create DatabaseConnector
	create DatabaseRuleset
	getBillingUsage
	getAuditLogs
	getSyncableObjects
	getSyncableObjectsExport
	profileTypeExpressions
	runMaskingJob
	getDatabaseUsage

	Authoring extensible plugins
	Introduction (Authoring extensible plugins)
	Before getting started
	SDK features
	Versions Compatibility

	General plugin structure
	Introduction (General plugin structure)
	Dependency management
	Plugin Metadata
	Versioning

	Setting up your development environment
	Downloading and installing tools
	Creating a new project
	Enabling remote debugging

	Algorithms (Authoring extensible plugins)
	SDK Features
	Getting more information
	The MaskingAlgorithm Java Interface
	SDK Workflows (Algorithms)
	Configurability
	Service interfaces (Algorithms)
	Security considerations

	Driver supports
	Introduction
	The DriverSupport Java interface
	SDK workflows (Driver supports)
	Service Interface (Driver supports)

	Managing plugins using the API client
	Displaying information about installed plugins
	Other plugin endpoint operations

	Installing a plugin onto the Delphix masking engine
	Secure plugin deployment
	Using roles to restrict plugin installation
	Verifying the SHA256 hash of installed plugins

	Terminology
	Terminology

